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Abstract—A distributed binary hypothesis testing problem
involving two parties, a remote observer and a detector, is studied.
The remote observer has access to a discrete memoryless source,
and communicates its observations to the detector via a rate-
limited noiseless channel. The detector tests for the independence
of its own observations with that of the observer, conditioned on
some additional side information. While the goal is to maximize
the type 2 error exponent of the test for a given type 1 error
probability constraint, it is also desired to keep a private part,
which is correlated with the observer’s observations, as oblivious
to the detector as possible. Considering equivocation and average
distortion as the metrics of privacy at the detector, a tight single-
letter characterization of the rate-error exponent-equivocation
and rate-error exponent-distortion tradeoff is obtained.

I. INTRODUCTION

Data inference and privacy are often contradicting objec-
tives. In a distributed learning system, the performance of the
learning algorithm depends critically on the communication
between the agents involved. Typically, in multi-agent systems,
each node provides information about their data to a remote
decision maker, whose decisions determine the utility achieved
by the system. On the other hand, privacy of the underlying
data is increasingly becoming important due to the availability
of powerful data-mining and machine learning algorithms.
Thus, it is critical that the agents only reveal information
relevant for obtaining the desired utility so that maximum
possible privacy is retained for the sensitive information.

In distributed learning applications, the goal is typically to
learn the joint probability distribution of the data available
at different locations. Usually, there is some prior knowledge
about the joint distribution, for example, that it belongs to
a certain set of known probability distributions. In such a
scenario, the detector, which tries to infer the joint distribu-
tion, applies hypothesis testing (HT) to decide on the joint
distribution of the data based on its own observations and the
data that it receives from other nodes. While the performance
of the hypothesis test depends on the data transferred between
the remote nodes and the detector, more data transferred may
also result in reduced privacy. With the efficient data mining
and machine learning algorithms available today, the detector
can illegitimately infer some unintended private information
from the data provided to it exclusively for HT purposes. Such
threats are becoming increasingly imminent as large amounts
of seemingly irrelevant sensitive data are released without
proper anonymization, such as in medical research, social

networks, online shopping, etc. Therefore, there is an inherent
trade-off between the utility acquired by sharing personal data
and the associated privacy leakage.

In this paper, we study a special case of the problem of
distributed HT known as the testing against conditional inde-
pendence (TACI) problem, under a privacy constraint. In TACI,
the detector tests whether its own observation is conditionally
independent of data at a remote observer, conditioned on an
additional side information Z, available at the detector. Dis-
tributed HT without any privacy constraints has been studied
extensively from an information theoretic perspective in the
past, although many open problems remain. Testing against
independence, e.g., no side information Z, is studied in [1] and
[2], where the best achievable type 2 error exponent (T2EE)
is established, in addition to other fundamental results for the
general HT problem. The TACI is first studied in [3], where
the optimality of a random binning based encoding scheme is
shown. Various multi-terminal scenarios have been studied in
[4], [5] and [6]. Recently, the optimal T2EE for TACI over a
noisy channel is established in [7].

HT under a mutual information and maximal leakage pri-
vacy constraint has been studied in [8] and [9], respectively,
where the encoder uses a memoryless privacy mechanism to
convey a noisy version of its observed data to the detector. The
detector performs HT on this noisy data and the optimal pri-
vacy mechanism that maximizes the T2EE is studied. Several
other privacy measures have been considered in the literature,
such as k-anonymity, differential privacy etc.; see [10] for a
detailed survey. Among these, equivocation (or, equivalently,
the mutual information between the data and the revealed
information) is most commonly used to quantify the average
privacy leakage from an information theoretic perspective [11].
A more general rate-distortion approach to privacy was first
explored by Yamamoto for the case of a noiseless channel with
a rate constraint, where, in addition to a distortion constraint
for the legitimate data, a minimum distortion requirement is
enforced for the private data [12].

In the sequel, we study TACI under privacy constraints with
average distortion and equivocation as the metrics of privacy.
To contrast with [8] and [9], we do not assume memoryless
coding mechanisms at the encoder. More specifically, the out-
put of the encoder is allowed to depend on the entire sequence
of observed samples, rather than a single sample. Also, while
[8] and [9] are concerned with general HT in a point to point



Fig. 1: HT under a privacy constraint.

setting, i.e., no side information at the detector, our focus
is TACI in a distributed setting. Our main contribution is to
establish a single-letter characterization of the complete rate-
T2EE-distortion and rate-T2EE-equivocation trade-off.

A. Notations

We denote random variables (r.v.’s) and their realizations by
upper and lower case letters (e.g., X and x), respectively. Sets
are denoted by calligraphic letters, e.g., the alphabet of a r.v. X
is denoted by X . Sequence of r.v.’s (X1, . . . , Xn) is denoted
by Xn. Given distributions PX and PY |X , the marginal dis-
tribution PY of Y (induced by PX ) is denoted by PX ◦PY |X ,
where PY (y) = (PX ◦ PY |X)(y) =

∑
x∈X PX(x)PY |X(y|x).

Following the notation in [13], Tm[PX ]δ
(or Tm[X]δ

or simply Tmδ
when there is no ambiguity) denotes the set of PX -typical
sequences of length m. 1 denotes the indicator function.
X − Y − Z denotes a Markov chain between r.v.’s X , Y
and Z.

(n)−−→ denotes asymptotic limit with respect to n, e.g.,
an

(n)−−→ 0 means the sequence an tends to zero asymptotically
with n. P(E) denotes the probability of event E . For positive
real m, we define [m] , {1, . . . , dme}. For an arbitrary set A,
we denote its complement by Ac and for A ⊆ Rn, we denote
its closure by cl(A) (with respect to the Euclidean metric).

II. PROBLEM FORMULATION

Consider the HT setup illustrated in Fig. 1. The encoder
(observer) observes a discrete memoryless source Un indepen-
dent and identically distributed (i.i.d.) according to

∏n
i=1 PU ,

and sends an index M , f (n)(Un) to the detector over an
error-free channel using some encoding function (possibly
stochastic) f (n) : Un → [2nR], where R is the rate of the
error-free communication channel available from the encoder
to the detector. Given its own i.i.d. observation V n and
side information Zn, the detector performs TACI with null
hypothesis

H0 : PUV Z

and alternate hypothesis

H1 : QUV Z = PU |ZPV |ZPZ

on the joint distribution of U , V and Z. Let A ⊆ [2nR]×Zn×
Vn (resp. Ac) denote the acceptance region for H0 (resp. H1).
The decision rule of the detector is given by g(n)(m, zn, vn) =
1 ((m, zn, vn) ∈ Ac), where 0 (resp. 1) denotes H0 (resp. H1).
Let ᾱ

(
f (n), g(n)

)
, PMZnV n(Ac)

(
resp. β̄

(
f (n), g(n)

)
,

PMZn × PV n|Zn(A)
)

denote the type 1 (resp. type 2) error

probability for an (f (n), g(n)) pair. For a given type 1 error
probability constraint ε, we define the minimum type 2 error
probability over all possible decoders as

β
(
f (n), ε

)
, inf
g(n)

β̄
(
f (n), g(n)

)
, (1)

such that ᾱ
(
f (n), g(n)

)
≤ ε.

The performance of TACI is measured by the T2EE achieved
by the test for a given constraint ε on the type 1 error
probability, i.e., lim infn→∞− 1

n log
(
β(f (n), ε)

)
.

The detector is also curious about a latent r.v. Sn that
is correlated with the data observed by the encoder, Un.
Sn is referred to as the private part of Un, and is i.i.d.
according to the joint distribution PSUV Z = PS|UV ZPUV Z
and QSUV Z = QS|UV ZPU |ZPV |ZPZ under the null and
alternate hypothesis, respectively, where PS|UV Z and QS|UV Z
denotes two arbitrary conditional probability distributions.
The observer desires to keep the private part as concealed
as possible from the detector. We consider two metrics of
privacy for Sn at the detector. The first metric is equivocation
defined as 1

nH(Sn|M,V n, Zn). The second one is the average
distortion between Sn and its reconstruction Ŝn at the detector,
measured according to an arbitrary bounded additive distortion
measure d : S × Ŝ → [0, Dm] with multi-letter distortion
defined as

d(sn, ŝn) ,
1

n

n∑
i=1

d(si, ŝi). (2)

The goal is to ensure that the T2EE for HT is maximized,
while satisfying the constraints on the type 1 error probability
ε and the privacy of Sn. In the sequel, we state the results
characterizing the trade-off between the rate, T2EE (hence-
forth referred to as the error exponent), and privacy achieved
in the above setting for the case ε→ 0.

Let H, Ĥ ∈ {H0, H1} denote the r.v.’s corresponding to the
true hypothesis and the output of the HT, respectively.

Definition 1. For a given type 1 error probability constraint
ε, a rate - error exponent - distortion tuple (R, κ,∆0,∆1) is
achievable, if there exists a sequence of encoding and decoding
functions f (n) : Un → [2nR] and g(n) : [2nR] × Zn × Vn →
{0, 1} such that

lim sup
n→∞

log
(
β(f (n), ε)

)
n

≤ −κ, and (3)

lim inf
n→∞

inf
g
(n)
r

E
[
d
(
Sn, Ŝn

)
|H = Hi

]
≥ ∆i, i = 0, 1, (4)

where g(n)r : [2nR] × Zn × Vn → Ŝn denotes an arbitrary
(possibly stochastic) mapping. The rate - error exponent -
distortion region Rd(ε) is the closure of the set of all such
achievable (R, κ,∆0,∆1) tuples for a given ε.

Definition 2. For a given type 1 error probability constraint
ε, a rate-error exponent-equivocation (R, κ,Ω0,Ω1) tuple is
achievable, if there exists a sequence of encoding and decoding
functions f (n) : Un → [2nR] and g(n)h : [2nR] × Zn × Vn →



{0, 1} such that (3) is satisfied and

lim inf
n→∞

1

n
H(Sn|M,V n, Zn, H = Hi) ≥ Ωi, i = 0, 1. (5)

The rate-error exponent-equivocation region Re(ε) is the
closure of the set of all achievable (R, κ,Ω0,Ω1) tuples for a
given ε.

The goal of the paper is to provide a single-letter character-
ization for Re(ε) and Rd(ε) in the regime of vanishing type
1 error probability, i.e., ε → 0, which we denote by Re and
Rd, respectively.

Let R(n)
d denote the set of (R, κ,∆0,∆1)-tuples such that

there exists f (n) : Un →
[
2nR

]
satisfying1

κ ≤ 1

n
I(M ;V n|Zn), (6)

inf
g
(n)
r

E
[
d
(
Sn, Ŝn

)
|H = Hi

]
≥ ∆i, i = 0, 1. (7)

(V n, Zn, Sn)− Un −M, M = f (n)(Un) (8)

Similarly, let R(n)
e = {(R, κ,Ω0,Ω1)} such that there exists

f (n) : Un →
[
2nR

]
satisfying (6), (8) and

1

n
H(Sn|M,V n, Zn, H = Hi) ≥ Ωi, i = 0, 1. (9)

The next theorem provides an n−letter characterization of Rd
and Re in terms of R(n)

d and R(n)
e , respectively.

Theorem 3.

Rd = cl
(
∪nR(n)

d

)
, (10)

Re = cl
(
∪nR(n)

e

)
. (11)

Due to space constraints, the proof of the theorem is omitted
here. The details can be found in an extended version of the
paper. In the next section, we introduce the one-helper lossless
source coding problem under a privacy constraint, which will
be instrumental in obtaining a single-letter characterization of
Rd and Re.

III. ONE-HELPER LOSSLESS SOURCE CODING PROBLEM
UNDER A PRIVACY CONSTRAINT

Consider the setup shown in Fig. 2, which we refer to as
the one-helper lossless source coding problem under a privacy
constraint. In this problem, the main encoder f (n)v

(
resp. helper

encoder f (n)
)

sends the message M̃ (resp. M ) based on
its observation V n (resp. Un) to the legitimate decoder g(n)v

through a noiseless channel with rate constraint Rv (resp. R).
The goal of the legitimate decoder gnv is to reconstruct V n

losslessly using the received indices M and M̃ as well as its
side information Zn. This is a source coding with coded side
information problem, studied in [14]. However, in our case,
there is an additional sequence Sn and an adversary decoder
g
(n)
r which has access to (M,V n, Zn). The goal is to keep

1The mutual information in (6) is computed with respect to the joint
distribution induced under H0, and this will also be the case in the rest
of the paper unless specified otherwise.

Fig. 2: Source coding problem in the presence of a helper
under a privacy constraint.

Sn private from the adversary decoder such that (4) (resp.
(5)) is satisfied when average distortion (resp. equivocation)
is the measure of privacy. Note that the adversary decoder
has access to all the information that the legitimate decoder
has. Hence, protecting Sn cannot depend on coding techniques
that are based on the adversary partially missing data (or
having a noisier channel), as is common in many physical
layer security related works. We measure the privacy of Sn at
the adversary decoder under two cases, namely, when the joint
distribution of the r.v.’s (Sn, Un, V n, Zn) is (i)

∏n
i=1 PSUV Z

and (ii)
∏n
i=1QSUV Z . The pair of equivocation and average

distortion tuples simultaneously achievable in these two cases
are of interest.

Definition 4. Given a distortion measure d : Sn × Ŝn →
[0, Dm], a rate-distortion tuple (R,Rv,∆0,∆1) is achievable
if there exists a sequence of encoding functions f (n) : Un →
[2nR], f (n)v : Vn → [2nRv ] and decoding functions g(n)v :
[2nR]× [2nRv ]×Zn → V̂ n such that

lim sup
n→∞

P(V n 6= V̂ n) = 0 (12)

and (4) are satisfied. Let R̂d denote the closure of all achiev-
able (R,Rv,∆0,∆1) tuples.

Definition 5. A rate-equivocation tuple (R,Rv,Ω0,Ω1) is
achievable if there exists a sequence of encoding functions
f (n) : Un → [2nR], f (n)v : Vn → [2nRv ] and decoding
functions g(n)v : [2nR]× [2nRv ]×Zn → V̂ n such that (5) and
(12) are satisfied. Let R̂e denote the closure of all achievable
(R,Rv,Ω0,Ω1) tuples.

The next theorem provides a multi-letter characterization of
R̂d and R̂e.

Theorem 6. Let R̂(n)
d denote the set of (R,Rv,∆0,∆1) tuples

such that (7), (8) and

Rv ≥
1

n
H(V n|M,Zn). (13)

are satisfied. Similarly, let R̂(n)
e denote the set of



(R,Rv,Ω0,Ω1) tuples such that (8), (9) and (13) are satisfied.
Then,

R̂d = cl
(
∪nR̂(n)

d

)
, (14)

R̂e = cl
(
∪nR̂(n)

e

)
. (15)

The proof of this theorem is omitted here due to space
constraints and is available in an extended version of the paper.

Noting that I(M ;V n|Zn) = nH(V |Z) − H(V n|Zn,M),
it follows from Theorems 3 and 6 that,

(R, κ,∆0,∆1) ∈ Rd ⇔
(R,H(V |Z)− κ,∆0,∆1) ∈ R̂d (16)

An equivalence similar to (16) also holds between Re and R̂e
with ∆i replaced by Ωi, i = 0, 1. In Section IV, we obtain
a single-letter characterization of Rd and Re by exploiting
these equivalences.

IV. MAIN RESULTS

The main results of the paper are presented in this section.

Theorem 7. (R, κ,Ω0,Ω1) ∈ Re if and only if there exists an
auxiliary r.v. W such that the Markov chain (Z, V, S)−U−W
is satisfied and

R ≥ I(W ;U |Z) (17)
κ ≤ I(W ;V |Z) (18)

Ωi ≤ HP (i)(S|W,Z, V ), i = 0, 1 (19)

where the joint distribution P (0) = PSUV ZPW |U and P (1) =
QSUV ZPW |U .

Proof: We show that (R,Rv,Ω0,Ω1) ∈ R̂e if and only
if there exists an auxiliary r.v. W such that (17), (19) and

Rv ≥ H(V |W,Z). (20)

The result then follows from the equivalence mentioned above.
Achievability: Fix a conditional probability distribution PW |U .

Codebook of the helper encoder: Generate codewords
Wn(m,m′), m ∈ [2nR], m′ ∈ [2nR

′
] drawn independently

according to distribution
∏n
i=1 PW , where PW = PU ◦PW |U .

Denote this codebook by Cnu .
Codebook of the main encoder: This codebook is generated

by performing uniform random binning of the V n sequences,
i.e., an index M̃ is assigned to each sequence vn uniformly at
random from the set [2nRv ]. Denote this codebook by Cnv . The
two codebooks are revealed to all the encoders and decoders.

Encoding: The helper encoder uses joint-typicality2 encod-
ing, i.e., it first looks for a unique (M,M ′) pair such that
(un,Wn(M,M ′)) ∈ Tn[UW ]δ

, δ > 0, where Tnδ denotes
the δ− typical set as defined in [13]. If successful, M is
transmitted to the decoder; otherwise, it transmits a message
chosen uniformly at random from the set [2nR]. The message
M ′ is not transmitted, but is intended to be recovered by the

2The typical sets defined in this paper are with respect to the joint
distribution induced under H0, i.e., P (0).

decoder using its side information Zn. The encoder of source
V n sends the bin-index M̃ = f

(n)
v (V n) via its channel.

Decoding: The decoder first looks for a unique index M̂ ′

such that (Wn(M, M̂ ′), Zn) ∈ Tn[WZ]δ′
, δ′ > δ > 0. If

successful, it then checks for the unique sequence Ṽ n in bin M̃
such that (Ṽ n,Wn(M,M̂ ′), Zn) ∈ Tn[VWZ]δ′′

, δ′′ > δ′ > 0.
If this is also successful, it sets the estimate as V̂ n = Ṽ n;
otherwise, a random sequence from set Vn is chosen as the
estimate. It can be shown that P(E) , P(V n 6= V̂ n) can be
made to decay to zero with n, provided that (17) and (20)
are satisfied. It can also be proved that an equivocation of
Ωi is achievable for Sn at the adversary under hypothesis
Hi, provided (19) is satisfied. The details are available in an
extended version of the paper.

Converse: Let Q be a r.v. uniformly distributed over [n] and
independent of all the other r.v.’s (Un, V n, Zn,M). Define
U = UQ, Z = ZQ, V = VQ, S = SQ and auxiliary r.v.
W , (WQ, Q), where Wi , (M,V i−1, Zi−1, Zni+1), i ∈ [n].
Note that (Z, V )−U−W . Then, for any ε′ > 0 and sufficiently
large n, we have

n(R+ ε′) ≥ H(M) ≥ H(M |Zn) ≥ I(M ;Un|Zn)

=
∑n

i=1
I(M ;Ui|U i−1, Zn)

=
∑n

i=1
I(M,U i−1, Zi−1, Zni+1;Ui|Zi) (21)

=
∑n

i=1
I(M,U i−1, Zi−1, Zni+1, V

i−1;Ui|Zi) (22)

≥
∑n

i=1
I(M,Zi−1, Zni+1, V

i−1;Ui|Zi)

=
∑n

i=1
I(Wi;Ui|Zi) = nI(WQ;UQ|ZQ, Q)

= nI(WQ, Q;UQ|ZQ) (23)
= nI(W ;U |Z). (24)

Here, (21) follows since the sequences (Un, Zn) are mem-
oryless; (22) follows from the Markov chain V i−1 −
(M,U i−1, Zi−1, Zni+1)− Ui ; (23) follows from the fact that
Q is independent of all the other r.v.’s.

The equivocation of source Sn can be bounded as follows.

H(Sn|M,V n, Zn, H = Hi)

=
∑n

i=1
H(Si|M,Si−1, V n, Zn, H = Hi)

≤
∑n

i=1
H(Si|M,V i−1, Vi, Z

i−1, Zi, Z
n
i+1, H = Hi)

=
∑n

i=1
H(Si|Wi, Vi, Zi, H = Hi)

= nH(SQ|WQ, VQ, ZQ, Q,H = Hi)

= nHP (i)(S|W,V,Z). (25)

Finally, we prove the bound on Rv . First, note that

n(Rv + ε′) ≥ H(M̃ |M,Zn)

= H(M̃ |M,Zn) +H(V n|M̃,M,Zn)−H(V n|M̃,M,Zn)

≥ H(M̃, V n|Zn,M)− γ′′n, (26)

where γ′′n
(n)−−→ 0. Eqn. (26) follows from Fano’s inequality.



Defining ε′′n , ε′ +
γ′′
n

n

(n)−−→ ε′, from (26), we get

n(Rv + ε′′n) ≥ H(V n|M,Zn) +H(M̃ |V n, Zn,M)

≥ H(V n|M,Zn) =
∑n

i=1
H(Vi|V i−1,M,Zn)

=
∑n

i=1
H(Vi|Zi,Wi) = nH(VQ|ZQ,WQ, Q)

= nH(V |Z,W ). (27)

Eqns. (24), (25) and (27), along with the fact that R̂e (and
Re) is closed completes the proof of the converse via the
equivalence in (16).

Next, we state the result for the case when privacy is
measured using an arbitrary distortion measure d(·, ·).

Theorem 8. (R, κ,∆0,∆1) ∈ Rd if and only if there exist an
auxiliary r.v. W such that

R ≥ I(W ;U |Z) (28)
κ ≤ I(W ;V |Z) (29)

∆i ≤ min
φ(·,·,·)

Ei [d (S, φ(W,V,Z))] , i = 0, 1 (30)

for some deterministic function φ : W × V × Z → Ŝ. Here,
Ei denotes expectation under P (i) defined in Theorem 7.

Proof: Similarly to Theorem 7, we show that
(R,Rv,∆0,∆1) ∈ R̂d if and only if there exists an
auxiliary r.v. W such that (20), (28) and (30) are satisfied.
The result then follows from the equivalence in (16). To prove
achievability, the same codebook generation as in Theorem 7
is used.

Encoding: The encoder f (n) uses stochastic encoding to
choose the messages (M,M ′) ∈ [2nR] × [2nR

′
] according to

the following probability.

PEu(m,m′|un) =

∏n
i=1 PU |W (ui|Wi(m,m

′))∑
m,m′

∏n
i=1 PU |W (ui|Wi(m,m′)))

.

The message M is transmitted over the noiseless link, whereas
M ′ is not, but is intended to be recovered at the decoder using
the side- information Zn. The encoder f (n)v transmits the bin-
index M̃ ∈ [2nRv ] over its own noiseless link.

Decoding: The decoder first uses maximum-likelihood
(ML) decoding to retrieve M̂ ′. It then looks for a
unique sequence Ṽ n in the bin with index M̃ such that
(Ṽ n,Wn(M, M̂ ′), Zn) ∈ T[VWZ]δ′′

. If such a sequence
exists, it sets V̂ n = Ṽ n, else it declares an error.

Due to space constraints, rest of the proof of achievability
and converse is omitted and can be found in an extended
version of the paper.

Remark 9. It can be shown using standard arguments based
on the Fenchel-Eggleston-Carathéodory’s Theorem [15] that,
considering auxiliary r.v. W such that |W| ≤ |U|+ 3 suffices
in Theorems 7 and 8.

Example. Here we provide an example in which maximum
privacy (under alternate hypothesis) can be achieved together

with a non-zero error exponent. Let Z be a constant, S = U =
{0, 1, 2, 3}, V = {0, 1},

PSU = 0.125 ∗


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1


,

PV |U =


0.4 0.6
0.2 0.8
0.3 0.7
0.1 0.9


,

PSUV = PSUPV |U and QSUV = PSUPV , where PV =
PU ◦ PV |U . Then, H(U) = H(S) = 2 bits. If we set
W = U mod 2, then we have I(S;W ) = 0, I(U ;W ) = 1 bit,
and I(V ;W ) = 0.0393 bits. Thus, by revealing only W to the
detector, it is possible to achieve a positive T2EE while ensur-
ing maximum privacy, i.e., the tuple (1, 0.0393, I(S;W |V ), 2)
is achievable. Alternatively, (2, I(V ;U), I(S;U |V ), 1) can be
achieved by setting W = U .

V. CONCLUSIONS

We have studied the TACI problem over a rate-limited
noiseless channel under privacy constraints. With equivocation
and average distortion as the metrics of privacy, we estab-
lish single-letter characterizations of the rate-error exponent-
equivocation and rate-error exponent-distortion trade-offs. Ex-
tending this problem to the case where general hypothesis
testing is considered in place of TACI is an interesting avenue
for future research.
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