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Abstract—We consider the transmission of two correlated
Gaussian sources over a Gaussian weak interference channel.
Each transmitter has access to one component of a bivariate
Gaussian source, and each of these components need to be recon-
structed at the corresponding receiver, under the squared-error
distortion measure. We are interested in characterizing the region
of average distortion pairs achievable simultaneously at the two
receivers. We derive an outer bound on the achievable region, and
show that, under certain conditions, achievable distortion pair
with uncoded transmission lies on this outer bound; therefore, it
is optimal. In particular, optimality of uncoded transmission is
shown to hold for all signal-to-noise ratio values below a certain
threshold which depends on the correlation coefficient between
the sources.

I. INTRODUCTION

Emerging Internet of Everything (IoE) applications require
simultaneous wireless transmission of sensor measurements
for distributed monitoring and control. In most cases, these
measurements come from an underlying continuous-amplitude
physical signal, such as vibration, temperature, various health
indicators, etc., and due to the increasing density of IoE
devices, measurements at nearby sensors exhibit significant
correlations. In order to model such a scenario, we consider
lossy transmission of correlated Gaussian signals over a Gaus-
sian interference channel.

This is a multi-user joint source-channel coding (JSCC)
problem, and like most such problems, the optimal trans-
mission strategy remains open. As opposed to the point-
to-point setting, in multi-terminal JSCC problems, the opti-
mality of separate source and channel coding breaks down.
In recent years, there have been significant efforts towards
understanding multi-user JSCC problems. In [1] the optimal-
ity of uncoded transmission is shown for transmission of
correlated Gaussian sources over a Gaussian multiple access
channel (MAC) below a signal-to-noise ratio (SNR) thresh-
old. Uncoded transmission is the simplest JSCC scheme, in
which the source samples are simply scaled and used as the
channel input. In the case of distributed transmitters, this
allows generating correlated channel inputs; hence, exploit-
ing beamforming gains without any coordination among the
transmitters (apart from synchronization). The optimality of
uncoded transmission is also significant, as it achieves the
optimal performance in a zero-delay fashion. A similar result
is also proven for transmission of correlated Gaussian sources
over a Gaussian broadcast channel (BC) in [2]. The optimal
strategy for this latter scenario is characterised for all SNR
values in [3]. Various other results involving MAC and BC
settings can also be found in [4]-[9].
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Fig. 1. Correlated Gaussian sources transmitted over a Gaussian weak

interference channel, i.e., c? <l,i=1,2.

In this paper, we show that the optimality of uncoded
transmission also holds for Gaussian interference channels
(GICs) (see Fig. 1) in the weak interference regime, in which
c?,c3 < 1, up to a certain SNR threshold. This extends the
results in [1], [2] to the GIC model, and, to the best of our
knowledge, is the first such optimality result for GICs, apart
from some trivial and asymptotic regimes studied in [10] and
[11]. It is worth noting that, as opposed to the MAC and BC
scenarios, the capacity region for the weak GIC is not known,
apart from the sum-rate optimality of treating interference as
noise in the noisy interference regime [12].

II. SYSTEM MODEL
Consider a length-n sequence of independent identi-

cally distributed (i.i.d.) zero mean bivariate Gaussian source
{S1k, Sar}_, with a covariance matrix

2 2

Ksl,sz = (;;,2 p;-Q ) . (D
Here, assuming equal variances for the sources and imposing
p € [0,1] is without loss of optimality. Transmitter ¢ ob-
serves the i-th source sequence, and encodes it with function
fr+ R — R”™ such that X = f7(S?) for i = 1,2.
The corresponding channel input vectors X' are subject to
individual average power constraints

1 n
SEIXul <P, i=1,2. (2
k=1

BIX) = -

The additive memoryless GIC is characterized by
Yir = Xup + 2 Xop + Zig, 3)
Yor = c1 Xk + Xok + Zog, 4)
where ¢; > 0, ¢ = 1,2, are the interference coefficients, and

Z;k 1s the 1.i.d. zero-mean Gaussian noise term at the ¢-th
terminal with variance N, i.e., Z;;, ~ N(0, N). The decoding



function at the i¢-th receiver, ¢;' : R® — R" for i = 1,2,
reconstructs an estimate of the sequence of interest S, i.e.,

87 = ¢(Y;*). The distortion is measured in terms of the
mean square-error defined as

572 S RS- Sw?l i=12 )
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Given Q = (02, p, c1, co, P1, P,, N), we say that an average
distortion pair (D1, D) is achievable if there exists a sequence
{f1, f&, oF, @5} satisfying the power constraints in (2), and
achieve a mean square-error distortion of

lim 6™ <D;, i=12 (6)

n—oo
We define the achievable distortion region, Dic(f), as the set
of all achievable distortion pairs.
In this paper we are interested in the weak interference
regime, that is, we assume C? <1, i =1, 2. For convenience,
we define i¢ = {1,2}\i, log™ () £ max{0,log(x)} and

]52' £ Pz + C?cpic + QCicp\/ P1P27
A. Main Result: Optimality of Uncoded Transmission

fori=1,2. (7)

The main result of the paper is the optimality of uncoded
transmission in the weak interference regime under certain
conditions. In uncoded transmission, each transmitter sends
a scaled version of its source directly over the channel, i.e.,
X' = \/BiP;/02S], where §3; € [0,1] is the scaling factor.
Then, a minimum mean square error (MMSE) estimator is
used at each receiver to reconstruct the source of interest.
In general, different distortion pairs can be achieved by
employing only part of the available power at the transmitters
to control the interference. If full power transmission is used,
i.e., B; = 1, the achievable distortion pairs are given by

_ O_QC%PQ(l —p*)+N Db — 52 ctP(1 - p*)+N
P+ N 2 Py+ N

The main result of the paper states that, under certain con-

ditions on the available average transmit power values and

the correlation coefficient p, the pair (DY, DY) lies on the

boundary of the achievable distortion region Dic({); that is,
uncoded transmission is optimal.

Theorem 1. The pair (DY, DY) lies on the boundary of the
achievable distortion region Dic(Q) if

vV P1 PQ < 14
N —1-p%
Proof. The proof is outlined in Section V. O

Dy

(8)

€))

min{cl, CQ} .

It follows from Theorem 1 that, in the case of a symmetric
GIC,ie., PL= P,= P and ¢ = ¢; = c¢g, uncoded transmission
achieves the optimal symmetric distortion of Dy = Dy = D*.

Corollary 1. In a symmetric GIC in the weak interference
regime, i.e., c = c1 = co < 1, uncoded transmission achieves
the optimal symmetric distortion D*, given by
AP(1—-p*)+ N P p

P
(1+c2+2cp)P+ N’ e

D* = o2 < .
N~ 1-—p?

III. BACKGROUND: BIVARIATE GAUSSIAN SOURCES OVER
POINT TO POINT CHANNELS

In this section, we provide some results concerning the
achievable distortion pairs when transmitting a bivariate Gaus-
sian source sequence (S7',.S%) over a point-to-point Gaussian
channel. We assume that an average power constraint of P
applies at the encoder, and the decoder reconstructs the sources
with average distortion pair (D7, D3). We denote the set of
achievable distortion pairs by Dpp(a?, p, P, N).

The set of achievable distortion pairs is characterized in [1],
and shown to be given by the pairs (Dy, D,) satisfying,

R 1 P+ N
Rs, 5,(D1,D2) = 3 logy ( ) ;

N (10)

where Rg, s,(D1,Ds) is the rate distortion function of a
bivariate Gaussian source presented in [13].

Under certain conditions, stated in Proposition 1 below,
some of the optimal pairs can be achieved by using a symbol-
by-symbol linear transmission of the source samples as the
channel input X}, given by

(aSik + BSa), (11

P
X =
b \/02(a2 +2a8p + 2)
for some «, 5 > 0. The receiver employs MMSE estimation
to achieve the optimal distortion pairs. The distortion pairs
achieved by the linear encoding scheme are given as follows.

. _ PR (1—p?) N
Di(a, B, P)=0" [(p+N)(a2+2aﬁP+52)+P+N] ’
. - Po?(1— p?) N
DY (v, 8, P)=0" [(p+N)(a2+2a5P+52) P"'N].

The following proposition, proven in [1], states a sufficient
condition for the optimality of linear transmission in the point-
to-point setting.

Proposition 1 ( [1], Proposition IIl.1). For any (D1, D3) €
Dptp(02, 12 Pa N)r lf

= <T(Dyo ), (12
where the threshold T'(D, 02, p) is defined as
I'(D, 02 p) (13)
, if0<D<o?(1-p?),

D(o?(1—p?)—-D)

{ o*(1—p?)—2Dc%(1—p?)+D?
A

00, otherwise,

then, there exist o, 3* > 0 such that
D¥(a*,8*,P) < Dy, and D¥(a*,3*,P) < Ds.
IV. TWO OUTER BOUNDS FOR THE GAUSSIAN IC

In this section we derive two outer bounds on the region
of achievable distortion pairs (D1, D2) for the Gaussian IC.
First, we note from the cut-set bound in [11, Lemma 1] that
if (D1, D3) € Dic(€2), then for i =1, 2,

N
P+ N’

D; > Dj in = 0 (14)



Here we present another outer bound on Dic(£2). For this,
we define the region Dic(€2) as the set of all (Dq, Ds) pairs
which satisfy

Dje > U,(D;), fori=1,2, (15)
where 2( 2)
N oc*(1—p
U, (9) éUQPic N <012 5 +1c?> )
Lemma 1. IfC%,C% <1, then ch(ﬂ) - 'ch(Q)
Proof. See Appendix A. O

A tighter outer bound can be constructed if certain condi-
tions on the parameters ) are satisfied. We define the regions
Di(Q),i=1,2, as the set of all (D1, Dy) pairs which satisfy
for some o, * > 0,

D; = D¥(a*,B*,P;), Dje > W;(n;(D;, a1;,a2;)), (16)
and

<T(Dy,0?, p), (17)

=| o

where

2 _a1(0* = 9)(2 —a1) — az0*(2p — as)

— D.(6)),

ni(6,a1,a2) £ o

+2a1a2\/(02 — 5)(0’2

and the coefficients a1; and ao; are given as follows

N (0% — D;)o? — poQ\/(U2 — D;)(0% — D%(D;))
" (02 — D;) D;.(D;) 7
, 0% — /(02 = D))(0? — D;.(Dy)
ag; = = ; (18)
D;.(D;)
where D% (D;) = D% (a*, 5*, P;).
Lemma 2. If ¢?,c3 <1, then Dic(Q) C Dig(Q) N D ().

Proof. See Appendix B. O
V. PROOF OF THEOREM 1

The optimality of uncoded transmission under the condition
in (9) follows by showing the pair (D}, DY) lies on the
boundary of the outer bound derived in Lemma 2. In particular,
we note that if

o —1/ \/02&
27 252

then qu( , 8%, P1) = D¥. If condition (17) holds, then
(ﬁ%(a*7ﬁ*7pl)>Dg(a*76*’P1))) = (Df’DS) = (DI’D5)7

from the definition of Dj(£2). Condition (17) can be equiva-
lently written, after some manipulation, as

19)

VP, P.
Y2 P (20)
N 1—p?
Finally, substituting D} and f)g(Dl) into (16) we have
Dy > Uy (m (DY, a11,a21)) = D3, (21

which implies that uncoded transmission lies on the bound-
ary of D}o(Q), and therefore of Djc(Q2). Following the
same reasoning when D, = Dj, we obtain D; >
Wy (n2(DY, az1,a22)) = DY if e1v/PiPy/N < p/(1 — p?),
that is, (DY, D¥) lies on the boundary of D7, (2). Therefore
uncoded transmission is optimal if condition (9) holds.

VI. DISCUSSION AND CONCLUSION

It is worth noting that separate source and channel coding
is optimal when the two sources are independent, i.e., p =
0 [14]. On the other hand, it is known that in most multi-
user JSCC problems separate source and channel coding is
suboptimal in general [15]. In the GIC model considered here,
it is challenging even to characterise the achievable distortion
pairs with separation, since we do not know all the achievable
rate pairs in the weak interference regime.

The best achievable channel coding scheme for the inter-
ference channel is the well-known Han-Kobayashi scheme
[16], which applies message splitting. In the case of corre-
lated sources, the analysis of the Han-Kobayashi scheme is
challenging as it requires the analysis of multi-terminal rate-
distortion problems [17]. Instead, for the sake of comparison,
we consider the scheme in which the receivers treat inter-
ference as noise (TIN). TIN is known to be sum-capacity
achieving in the noisy interference regime [12], given by

co(c3Py + N) +ci(c3P, + N) < N. (22)

With a single message available at each destination, the opti-
mal compression becomes simple point-to-point compression.
Therefore, the achievable distortion pair by TIN is given by

1+L -
ZPe+N)

In Fig. 2, we plot the upper and lower bounds on the
achievable symmetric distortion with respect to the correlation
coefficient p in a symmetric weak GIC assuming P/N = 1.5
and ¢ = 0.4, which corresponds to the noisy interference
regime, i.e., (22) is satisfied. We observe that, in general, the
lower bound proposed in Lemma 1, which we denote by D;,
is significantly tighter that the cut-set bound D s, given in
(14). Observe that in the noisy interference regime, uncoded
transmission and TIN achieve the same performance at p = 0
while for p > 0, uncoded transmission outperforms TIN,
and performs close to the D.p;, while TIN becomes highly
suboptimal. For p larger than a certain threshold p;, = 0.4684,
for which condition in (8) holds with equality, it follows from
Lemma 9 that uncoded transmission achieves the minimum
achievable distortion D*. We can see that D,,; is not always
tight in this regime, and the tighter bound derived in Lemma
2 is required to prove the optimality of uncoded transmission.

DN — (23)

APPENDIX A
PROOF OF LEMMA 1

We define A(") as the least distortion at which S} ¢
be reconstructed at receiver ¢ when S]. is given as 51de
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Fig. 2. Distortion upper and lower bounds for the symmetric IC with P/N =
1.5 and c = 0.4.

information, and f'(S7) and f3(S%) are transmitted. Note
that AZ(-”) < D;, and

I(SP;Y"|S%) > nRg,js,. (A™) > nRg, .. (D;), (24)

where Rg,s,.(6) 2£1/2log"* (62(1—p?)/6) is the Wyner-Ziv
rate-distortion function for S; when S;c is available at the
receiver. We prove the following bound,

Die > (A", fori=1,2. 25)

We prove (25) for ¢ =1. The result for i =2 follows similarly.
We have

I(XT; Y5 X555 ) = h(an X1 + 25| X3 S5) —
= MXT +1/c1 25| X5 S5) — h(1/c1 Z3)
= h(X{ + Z{ + W"|X5'Sy) = h(1/e1 Z3),

where in (26) we define Z{‘ and W™ as iid. sequences
with Gaussian entries distributed as Z3;, ~ AN(0,N) and
Wy ~ N(0,N(1/c? — 1)), respectively, and independent of
each other.

We have

h(Zy)

(26)

exp( WXT + 27 + W X7 52)> 27)

Y

exp (20xt + 201x5p) ) +oxp (2009 )

2 1
= exp < h(XP+Z7| XSy )> + 2me (02 — 1> N
1

2meN [exp <2R51‘52 (A&” )) +1/cf - 1} ,

where (28) follows from the entropy power inequality, and
(29) is due to the following inequality.

h(XT + Z7|X5'S3) = I(XT; Y{'| X5 55) + h(Z})
> I(S15Y1"[55) + h(Z7) (30)
> nRg, s, <A§H)> + glog(%reN),

Y

(29)

where (30) follows from the data processing inequality, the
Markov chain ST — 53 — X3, and since conditioning reduces

entropy. Then, by substituting (29) in (26) we obtain

n n nqQn n CO’(I— )
I(XT Y3 X5S85) > 510g <1Agn)+1—01>(31)

Now, we have the following:

I(X7X3:Y5") = I(Sy X1 X33 Ys") (32)
> I(Sg§y2n)+I(X1»Y2 ‘SQX2)
> nRg, (D2)+ 5 log (cla (1— )/A +1-— cl) (33)

where (32) follows due to the Markov chain (S7S%) —
(X7XZ7)—Y5", and (33) follows from (31) and standard rate-
distortion arguments.

Finally, we upper bound the left hand side of (32) as follows,

n —
[(X]XJ:Y") < nl(X1X5:Ya) < o log (P2 + N)/N)

where we have used the fact that correlated Gaussian inputs
(X1, X2) maximize the mutual information, and that the cor-
relation between the channel inputs is upper bounded by the
correlation between the source sequences, similarly to [I,
Lemma B.2].

Lemma 1 follows since we have D;c > \Ili(Agn)), and
WU, (9) is monotonically decreasing in 6.

APPENDIX B
PROOF OF LEMMA 2

Let 6™ 6{") satisfy (6) be an achievable distortion pair
for some n, and an encoder decoder tuple {f]*, f&, @7, @5 }.
We prove Dic(2) C Dj(Q), i = 1,2, by deriving an upper
bound on Ag m) tighter than the upper bound A( ) < D; used
to derive Lemma 1 in Appendix A. We show the following
upper bound

Az('") < (55"), QAlis a2i)a (34)

by relying on the average distortion with which S}% can be
reconstructed at the ¢-th receiver from the received signal Y;".
In this proof, we assume that (D;, D5) satisfy
o2(1—p>)Pi+ N
P+ N ’
and consider the necessary conditions (14) if (35) does not
hold. We will see later that this leads to a continuous outer
bound. Here, we prove the lemma for i = 1, i.e., Dic(2) C
Di+(), and Dy () C D7 (2) follows similarly.
We need the following definition concerning the lowest
distortion at which S§ can be reconstructed at receiver 1.

Djmin < D;<Dj £ (35)

Definition 1. For every D1 > D1 min, we define

D3(Dy) £ inf Dy, (36)

where the mﬁmum is over all average -power limited encoders
{fln), f2 } and decoders {¢1 N0) } satisfying

lim 5()<D1 and lim —ZE Sgk—Sgk)]SD

n— 00 n—oo N
k=1



where 87 = gbln) (Y7*) and Sy = o (Y7).

It follows that D (D) is the unique solution to equation

- 1 P+ N
RShSz(DlvDQ(Dl)):*lOgQ — : (37)
2 N
The pairs (D, D3(D;)) can be explicitly characterized
using the results presented in Section III. Then, if
Py

— <T(Dy,0%p), (38)

=

the distortion pairs (D1, D3(D,)) are given by the pairs
(D1, D5) in Proposition 1 we have, for some o*, 5* > 0,

Dy = D¥(a*,5*,P1) and Dj(Dy) = D¥(a*,p*, Py).

Next, we derive an upper bound on Agn) based on the pairs
(D1, D3(D1)) by considering the linear estimator of Sf”)
when receiver 1 has S3 as side-information, that is

Sik=anSik+anSok, k=1,..,n, (39)

where a1, as > 0.

We note that, without loss of generality, the set of decoders
can be reduced to optimal MMSE estimators, ¢>Z(-n)(Yi") =
E[SP|Y"], i =1,2, since any achievable distortion is indeed
achievable using the optimal decoding function. Then, we have
the following direct version of [2, Lemma B.9].

Lemma 3. If a scheme (f 1"),f2”),¢§”)ﬂ, ¢én)A) satisfies the
orthogonality condition, i.e., E[(S1x — S1k)S1k] =0, k =
1,...,n, then,

1 u O n o n
- ; E[S 4 S2.4] < \/(a2 = o) (o2 = D3(6(™)).

Then, the upper bound on Agn) in (34) is derived as follows.

n _ 1 «
N - Y E[(Sik — S1,)7]
i=1
o2 — 2a11 (02 — 8\ = 2a1p02 + a2, (02 — 6\™)

I e A
2 ~ ) E[S;.S 202 40
+ a11a21n; [S1,652,k] + a3,0 (40)

<o? —ap(o? - 5§n))(2 —ai1) — a210°%(2p — as1)
F2aran /(02 — 600) (02 — D3(31")),

where (40) follows by substituting (39) and due to the or-
thogonality principle; and (41) follows due to Lemma 3 and
because ai1,a21 > 0.

Similarly to the proof of Lemma (25) we have

55 > wy(AM).

(41)

(42)

Therefore, since Wy (d) is monotonically decreasing in 9,

from (41) we have
5§n) > ‘1’1(771(5571),@11,&21))- (43)

We choose a1; and ao; as in (18), such that satisfy

Uy (n1(D1,a11,a21) = DY under the conditions in Theorem
1, and satisfy ai1,a2; > 0 if (35) holds. Then, (16) follows
similarly to [2, Proof of Lemma B.4] from the continuity of
Uy (n;(d),a1,az2) in §, and since, if (35) holds, we can reduce
to decoders satisfying

lim 6" < D,.

n—roo

lim 6" =D; and

n—roo

(44)

Finally, for a = 0, D27min = \111(771 (Dl,tha all,agl)), and
therefore, by considering Dy > Dy i, we have a continuous
outer bound if (35) does not hold.
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