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Imperial College London, London, UK

Email: d.gunduz@imperial.ac.uk

Abstract—Transmission of correlated Gaussian sources over a
Gaussian interference channel is studied. Each terminal has one
source available, which has to be reconstructed at the correspond-
ing destination with the minimum average distortion. Focusing
on the strong interference setting, we first derive necessary
conditions on the achievable distortion pairs. Then, focusing
on the symmetric scenario, we present achievable distortion
pairs considering several transmission strategies. We compare
the achievable distortion by the proposed schemes with the lower
bound. In particular, we consider separate source and channel
coding, uncoded transmission, a vector quantization (VQ) scheme
which uses the quantization codewords as channel inputs, and
finally a superposition of two quantization codewords. We show
that the VQ scheme is optimal in the high SNR regime. We also
show that the proposed superposition scheme performs very close
to the lower bound in certain regimes.

I. INTRODUCTION

Many emerging wireless applications, such as multime-
dia streaming and Internet of things (IoT), require lossy
transmission of source signals over noisy channels. With
the increasing number of wireless terminals, signals at dif-
ferent nodes typically exhibit statistical correlation due to
the nature of the underlying random processes; e.g., video
signals recorded by cameras observing the same scene, or
measurements at nearby sensors. Lossy transmission of source
signals over a noisy channel is a joint source-channel coding
(JSCC) problem. Shannon’s separation theorem reduces it,
in point-to-point scenarios, to separate rate-distortion and
channel encoding problems, without loss of optimality. Nev-
ertheless, in many multi-terminal problems, the optimality
of separation breaks down, since JSCC can exploit source
correlation to generate correlated channel inputs despite the
distributed nature of the encoders, potentially improving the
overall performance [1]–[5].

We consider the JSCC problem in which two correlated
Gaussian sources, S1 and S2, are available at two separate
terminals, which transmit these observations to their destina-
tions over a Gaussian interference channel (IC). Receiver i,
i=1, 2, is interested in reconstructing source Si with the min-
imum average distortion (see Fig. 1). Interference is typically
considered as an impairment, and communication systems are
designed to minimize and combat interference. On the other
hand, in our model, due to the correlation among the sources,
the problem is significantly more intriguing. The interference
signal may carry useful information for the unintended re-
ceiver, and at the same time, the underlying correlation may
allow new techniques to combat interference. In particular, we
will consider the JSCC problem for the Gaussian strong IC,

Fig. 1. Gaussian interference joint source-channel coding problem.

in which the interference is stronger than the direct channel
signal, i.e., coefficients in Fig. 1 satisfy c2i ≥ 1, i = 1, 2.

The JSCC IC problem has previously been studied in the
lossless setup in [3], [6]–[8], showing the suboptimality of
separation, and characterizing the sufficient and necessary
conditions for reliable transmission in certain cases. Achiev-
able schemes for lossy transmission over the IC based on
JSCC are considered in [2] and [4]. The strong IC is also
considered in [4] and separation is shown to be suboptimal
in this regime. However, the characterization of the optimal
achievable distortion region remains open in general.

The capacity of the IC is a longstanding open problem. It
has been fully characterized only in some special cases; in [9]
for Gaussian strong ICs, and in [10] for discrete memoryless
ICs. The main idea in [9] and [10] is that the interference
caused at the unintended terminal is strong enough to allow
each receiver to decode the unintended message without loss
of optimality. Thus, the capacity region reduces to the inter-
section of the capacity regions of two multiple access channels
(MACs). However, the JSCC problem is significantly harder,
and the set of achievable distortion pairs remain open even for
the strong ICs. We will see that, since the encoders transmit
correlated sources, techniques employed to characterize the
capacity of the Gaussian strong IC cannot be applied here.

In this paper we first derive an outer bound on the achievable
distortion pairs in a strong Gaussian IC, which is significantly
tighter than the cut-set bound. Then, we consider achiev-
able schemes based on separate source and channel coding
(SSCC) and uncoded transmission. We also consider three
JSCC schemes based on hybrid coding [2]. First, we consider
a scheme in which each source is optimally quantized at
the corresponding transmitter, and the quantization codewords
are scaled and used as channel inputs, same as the vector
quantizer (VQ) scheme proposed for the MAC in [1]. We
show that, similarly to the MAC scenario, this scheme achieves
the optimal distortion pairs in the high SNR regime. Then,



we consider a generalized VQ scheme in which an uncoded
layer is superposed on the quantized codeword. Finally, we
consider a novel VQ strategy in which two VQ codewords are
superposed, and we numerically show that, this superposition
scheme significantly outperforms the previous schemes and
approaches the proposed outer bound in certain regimes.

II. SYSTEM MODEL

Consider a length-n sequence of independent identi-
cally distributed (i.i.d.) zero mean bivariate Gaussian source
{S1k, S2k}nk=1 with a covariance matrix

KS1,S2 =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
. (1)

Without loss of generality, we assume that the sources have
equal variances, i.e., σ2

1 =σ2
2 = σ2, and ρ∈ [0, 1], as one of the

transmitters can always multiply its source by −1 if ρ < 0.
Transmitter i observes the i-th source sequence and encodes

it with function fni : Rn → Rn such that Xn
i = fni (Sni ) for

i = 1, 2. The corresponding channel input vectors Xn
i are

subject to individual average power constraints

E[|Xn
i |2] =

1

n

n∑
k=1

E[|Xik|2] ≤ Pi, i = 1, 2. (2)

The additive memoryless IC is characterized by

Y1k = X1k + c2X2k + Z1k, (3)
Y2k = c1X1k +X2k + Z2k, (4)

where c2i ≥ 1, i = 1, 2, and Zik is the i.i.d. zero-mean
Gaussian noise term at the i-th terminal with variance N . The
decoding function at the i-th receiver, φni : Rn → Rn, for
i = 1, 2, estimates Sni , i.e., Ŝni = φni (Y ni ).

Given (σ2, ρ, P1, P2, N), we say that an average distor-
tion pair (D1, D2) is achievable if there exists a sequence
{fn1 , fn2 , φn1 , φn2} satisfying the power constraints in (2), and
achieve a mean square-error distortion of

lim
n→∞

1

n

n∑
k=1

E[(Sik − Ŝik)2] ≤ Di, i = 1, 2. (5)

A symmetric strong IC (SS-IC) refers to the strong IC
problem with D1 = D2 = D, P1 = P2 = P and c1 = c2 = c.
We define log+(·) , max{0, log(·)} and ic = {1, 2}\i.

III. TWO OUTER BOUNDS FOR THE STRONG IC

In this section we derive two outer bounds on the region
of achievable distortion pairs (D1, D2) for the strong IC. Our
first bound is based on the idea that, unlike in the channel
coding problem with independent messages, when the two
sources Sn1 and Sn2 are correlated, the encoders can generate
correlated channel inputs exploiting the available correlation
among the source samples observed at different transmitters.
This brings an additional degree-of-freedom to the system,
which potentially improves the performance. However, the
amount of correlation that can be created is limited by the
source correlation [1]. We use this fact, together with the cut-
set bound arguments to obtain the following set of necessary

conditions on the achievable distortion pairs. This bound is
tighter than the one in [4].

Lemma 1. The achievable distortion pairs for a Gaussian
IC are included in the region formed by the pairs (D1, D2)
satisfying, for some 0 ≤ ρx ≤ ρ, and i = 1, 2,

RSi
(Di) ≤

1

2
log
(

(Pi + c2icPic + 2cicρx
√
P1P2 +N)/N

)
,

RSi|Sic
(Di) ≤

1

2
log((Pi(1− ρ2x) +N)/N),

where RSi|Sic
(Di) , 1/2 log+

(
σ2(1− ρ2)/Di

)
is the

Wyner-Ziv rate-distortion function for Si when Sic is available
at the receiver, and RSi

(Di) , 1/2 log+
(
σ2/Di

)
, is the

classical rate-distortion function.
Next, we derive a tighter outer bound. We highlight the diffi-

culty in characterizing the optimal set of achievable distortion
pairs even in the case of strong interference. The converse
proof in [9] hinges on the idea that, after decoding the intended
message, each receiver is capable of reconstructing a statis-
tically equivalent signal available at the other receiver and,
therefore, decode the non-intended message as well. However,
in the JSCC Gaussian IC problem, the receivers do not nec-
essarily decode the channel inputs, and this argument cannot
be used anymore. Instead, we use the following information
flow inequality implied by the strong interference condition.

Lemma 2. If I(Xi;Yi|Xic) ≤ I(Xi;Yic |Xic), for i = 1, 2,
holds for all p(x1, x2), or equivalently c2i ≥ 1 for the Gaussian
IC, then

I(Xn
i ;Y ni |SnicXn

ic) ≤ I(Xn
i ;Y nic |SnicXn

ic), i = 1, 2. (6)

Proof: The proof follows similarly to [11, Lemma 5], in
which the strong interference conditions of [10] are extended
to the IC with correlated channel inputs.

We apply Lemma 2 together with cut-set bound arguments
and the limitation on the maximum channel input correlation
to derive the following necessary conditions.

Lemma 3. The achievable distortion pairs for the Gaussian
strong IC are included in the region formed by the pairs
(D1, D2) satisfying, for some 0 ≤ ρx ≤ ρ, and i = 1, 2,

RSi
(Di) +RSic |Si

(Dic) (7)

≤ 1

2
log
(

(Pi + c2icPic + 2cicρx
√
P1P2 +N)/N

)
,

RSi|Sic
(Di) ≤

1

2
log((Pi(1− ρ2x) +N)/N). (8)

Proof: A proof sketch can be found in Appendix A.
In the SS-IC we denote by Dcs the lower bound on the

distortion resulting from Lemma 1; and by Dl, the lower
bound resulting from the application of Lemma 3, given by

Dl , min
0≤ρx≤ρ

max

{
σ2

√
N(1− ρ2)

(1 + c2 + 2cρx)P +N
,

σ2N

(1 + c2 + 2cρx)P +N
,
σ2N(1− ρ2)

(1− ρ2x)P +N

}
.

Next, we show that the latter bound is tight in certain regimes.



IV. ACHIEVABLE SCHEMES FOR THE STRONG IC

In this section we propose a number of transmission
schemes, and derive the corresponding achievable distortion
values.

A. Separate Source and Channel Coding (SSCC)

In SSCC, the sources are first compressed using optimal
distributed source compression, and the compressed bits are
transmitted over the IC using a capacity achieving channel
code. Under strong interference, the capacity is achieved by
jointly decoding both channel inputs at both receivers [12].
Since both destinations have the transmitted messages, the
source coding problem reduces to the distributed compression
problem. For Gaussian sources, the optimal distribued source
coding scheme is given by the Berger-Tung scheme [13].
Therefore, the set of achievable distortion pairs is given by the
intersection of the capacity region of the strong IC with the
Berger-Tung rate-distortion region. In the SS-IC, the minimum
distortion achievable by SSCC is given by

Ds = σ2
√

2−4R∗(1− ρ2) + ρ22−8R∗ , (9)

where the rate minimizing the distortion can be shown to lie
on the boundaries of the two MAC capacity regions, i.e.,

R∗ =
1

2
log(min{

√
(1 + c2)P + 1, P + 1}). (10)

When the sources are uncorrelated, i.e., ρ = 0, SSCC
achieves all the distortion pairs satisfying the necessary con-
ditions from Lemma 2, as also shown in [14]. However, for
ρ > 0, as we will see below, SSCC is suboptimal.

B. Uncoded Transmission

In uncoded transmission, each transmitter sends scaled
source samples directly over the channel, i.e., Xn

i =√
βiPi/σ2Sni , where βi ∈ [0, 1] is the scaling factor. Mini-

mum mean square estimator (MMSE) is used at each receiver.
In general, better distortion pairs can be achieved by not
employing full power at both transmitters to reduce inter-
ference [5]. However, in SS-IC, Di

u(β1, β2) is minimized by
transmitting at full power, i.e., β1 = β2 = 1, and it is given by

Du = σ2 c2P (1− ρ2) +N

(1 + c2 + 2cρ)P +N
. (11)

When ρ= 1, uncoded transmission achieves any distortion
pair satisfying the necessary conditions in Lemma 3, and
therefore, is optimal, while SSCC is strictly suboptimal.

C. Hybrid Coding with Common Message (HC-CM)

The best known JSCC scheme for the general IC is the
hybrid coding scheme proposed in [2]. In this scheme, simi-
larly to the Han-Kobayashi scheme for channel coding, each
transmitter generates a common message, decoded at both
destinations, and a private message, decoded only at the
corresponding destination, but these are transmitted using the
hybrid coding approach. Here, we consider the special case
of this scheme, which we call hybrid coding with common

message (HC-CM), in which both transmitters only send
common information.

In HC-CM, each source sequence Sni is mapped to one
of the 2nRi codewords Wn

i (mi), which serve as common
information. Then, Wn

i (mi) are mapped symbol-by-symbol
to generate the channel input as Xi = xi(Wi, Si). Upon
receiving Y ni , receiver i recovers Wn

1 (m1) and Wn
2 (m2) using

a joint typicality decoder, and reconstructs Ŝi by mapping
symbol-by-symbol the channel output Y ni and the decoded
codewords Wn

1 (m1),Wn
2 (m2). The distortion pairs achievable

by this scheme follow from [2] and are given next.

Lemma 4. A distortion pair (D1, D2) is achievable by HC-
CM in the JSCC IC if there exist a pdf p(w1|s1)p(w2|s2),
two encoding functions xi(wi, si), and two decoding functions
ŝi(w1, w2, yi), for i = 1, 2, such that E[di(Si, Ŝi)] ≤ Di and

Rj ≥ I(Wj ;Sj), Rj ≤ I(Wj ;Yj ,Wjc),

R1 +R2 ≤ I(W1,W2;Yj) + I(W1;W2), j = 1, 2

Lemma 4 provides a single letter expression for the distor-
tion pairs achievable by HC-CM. However, it does not indicate
how to characterise the optimal auxiliary random variables and
the channel input mappings. Next, we consider different con-
structions in order to maximize the performance of HC-CM.

D. Vector Quantizer (VQ)

Here, we consider a special case of HC-CM, called the vec-
tor quantizer (VQ) scheme, in which both transmitters quantize
their source vector and use the quantized codewords as channel
input. VQ is shown to achieve the optimal performance in high
SNR asymptotics when transmitting correlated sources over a
Gaussian MAC setup [1].

In VQ, each source sequence Sni is mapped to one of the
2nRi codewords Wn

i (mi), generated with the test channel
Wi=(1−2−2Ri)Si+Qi, where Qi ∼ N (0, 2−2Ri(1−2−2Ri))
is independent of Si. Codewords Wn

i (mi) serve as common
information. Then, Wn

i (mi) are mapped symbol-by-symbol to
generate the channel input as Xn

i =
√
Pi/(1− 2−2Ri)Wn

i ,
which satisfies the power constraint. Upon receiving Y ni ,
receiver i recovers Wn

1 (m1) and Wn
2 (m2) using a joint typi-

cality decoder, and reconstructs Ŝi using MMSE estimation as
Ŝni = E[Sni |Wn

1 W
n
2 ]. The distortion pairs achievable by VQ

follows from Lemma 4 and are characterized next.

Lemma 5. The distortion pairs (D1, D2) satisfying

Di > σ22−2Ri · 1− ρ2(1− 2−2Ric )

1− ρ̃2
, i = 1, 2, (12)

are achievable by VQ, where the rate-pair (R1, R2) satisfies

Ri <
1

2
log

(
Pi(1− ρ̃2) +N

N(1− ρ̃2)

)
, i = 1, 2,

R1 +R2 < min
i=1,2

1

2
log

(
Pic + c2iPi + 2ρ̃ci

√
P1P2 +N

N(1− ρ̃2)

)
,

with ρ̃ , ρ
√

(1− 2−2R1)(1− 2−2R2).



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.02

0.04

0.06

0.08

0.1

0.12

Fig. 2. Distortion bounds for the SS-IC with P/N = 10 and c = 2.5.

Next, we show that VQ achieves the optimal performance
in the high SNR asymptotics, i.e., when N → 0.

Theorem 1. VQ achieves the optimal performance in the
high SNR asymptotics, characterized by the pairs (D∗1 , D

∗
2)

satisfying

lim
N→0

D∗1D
∗
2 ·K∗ = σ4(1− ρ2),

where K∗ , mini=1,2{Pic + c2iPi + 2ciρ
√
P1P2 + N}/N ,

provided that D∗1 ≤ σ2 and D∗2 ≤ σ2, and that

lim
N→0

N

P1D∗1
= 0 and lim

N→0

N

P2D∗2
= 0. (13)

Theorem 1 indicates that for sufficiently small N , conditions
in (7) are tight. We note that each condition coincides with
the necessary condition for a MAC, as given in [1, Theorem
IV.1]. Therefore, in the high SNR regime, the set of achiev-
able distortion pairs is equivalent to the one formed by the
intersection of the achievable pairs in two MACs, in which
both destinations have to reconstruct both source sequences
(S1, S2) at distortion pair (D1, D2). This is reminiscent of the
strong IC channel coding problem, in which each destination
decodes both messages.

A generalization of VQ, denoted by superposed vector
quantizer (S-VQ) scheme, is proposed in [1]. In S-VQ, an
uncoded version of the source sequence is superposed with a
scaled VQ codeword. S-VQ is the best known scheme for the
transmission of correlated sources over a Gaussian MAC [1].
The performance of the S-VQ scheme will be included in the
numerial analysis in Section V.

E. Generalized Vector Quantizer (G-VQ)

Here, we consider an alternative HC-CM scheme in which
each encoder quantizes the source sequence into two quanti-
zation codewords and sends a superposition of the two. We
denote this scheme as generalized vector quantized (G-VQ).

Each source sequence Sni is mapped to one of the 2nRi

codeword pairs (W̄n
i (mi), U

n
i (mi)), generated with the test

channels W̄i = γiSi + Qi, where Qi ∼ N (0, 1) is in-
dependent of Si, as in VQ, and Ui = ηiSi + Ti, where
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Fig. 3. Distortion bounds for the SS-IC with P/N = 1 and c = 1.5.

Ti ∼ N (0, 1) is independent of Si. Then, W̄n
i (mi) and

Uni (mi) are mapped symbol-by-symbol to generate the chan-
nel input as Xn

i =
√
Pi/νi(αiW̄

n
i + τi(Ui − ηiSi)), where

νi = α2
i (η

2
i + 1) + τ2i in order to satisfy the power constraint.

Upon receiving Y ni , receiver i recovers (W̄n
1 (m1), Un1 (m1))

and (W̄n
2 (m2), Un2 (m2)) using a joint typicality decoder,

and reconstructs Ŝi using MMSE estimation as Ŝni =
E[Sni |W̄n

1 W̄
n
2 U

n
1 U

n
2 Y

n
i ]. The achievable distortion pairs fol-

low from Lemma 4, and are not given here due to space
limitations. Numerical results are provided in Section V.

Note that G-VQ reduces to VQ by considering τi = 0 but
not to S-VQ, in general. While a superposed uncoded layer in
G-VQ, as in S-VQ, could be considered, numerical simulations
indicate that this does not improve the achievable distortion.

V. NUMERICAL RESULTS

In Fig. 2, we plot the proposed distortion upper and lower
bounds for the SS-IC with respect to the correlation coefficient
ρ for P/N=10 and c = 2.5, and numerically optimize the per-
formance of VQ, S-VQ and G-VQ, denoted by Dvq , Dsvq and
Dgvq, respectively. We observe that in general, the proposed
lower bound Dl is significantly tighter that the cut-set bound
Dcs. Up to a certain correlation threshold ρth ' 0.55, VQ, S-
VQ and G-VQ perform very close to the lower bound. When
ρ ≥ ρth, the performances of VQ and S-VQ digress from the
lower bound, while G-VQ continues to follow the lower bound
closely. In our extensive numerical simulations we observe that
as the SNR increases, the value of ρth increases and tends to
one. This is in line with Theorem 1, and the optimality of VQ
in the high SNR regime. Interestingly, we observe that for high
correlation values SSCC outperforms VQ and S-VQ. For very
high correlation values, uncoded transmission, together with
S-VQ and G-VQ, is again the best transmission scheme, and
they all meet Dl for ρ = 1.

Fig. 3 shows the proposed distortion upper and lower
bounds for the SS-IC with respect to ρ for P/N = 1 and
c = 1.5. We note that the cut-set bound Dcs and Dl are very
close for low and high correlation values, and Dl is tighter
for intermediate values. We observe that SSCC, VQ, S-VQ
and G-VQ meet Dl for ρ = 0, while uncoded transmission



performs far from the lower bounds. On the contrary, uncoded
transmission achieves the optimal performance for ρ = 1,
while SSCC and VQ fall short of the lower bound, and S-VQ
and G-VQ behave as uncoded transmission for high correlation
values. For intermediate correlation values, S-VQ and G-VQ
achieve the best performance. Interestingly, G-VQ achieves the
same performance as uncoded transmission despite not using
a superposed analog layer.

VI. CONCLUSION

We have studied the JSCC problem over a two-user Gaus-
sian IC with correlated Gaussian sources. Focusing on the
strong interference regime, we have proposed necessary con-
ditions on the achievable distortion pairs. We have shown
that separation and uncoded transmission are optimal for
independent and fully correlated sources, respectively. Next,
we have proposed schemes based on hybrid coding. First,
we have considered a scheme in which a quantized source
sequence is used as the channel input, and a generalized
scheme in which an analog component is superposed on the
quantized source sequence. We have shown that these schemes
achieve the optimal distortion region in the high SNR regime.
Finally, a novel scheme that superposes two quantized versions
of the source is considered, and it is numerically shown to
outperform the other considered schemes, and perform very
close to the lower bound.

APPENDIX A
SKETCH OF THE PROOF OF LEMMA 3

For i = 1, 2, we have

I(Xn
1X

n
2 ;Y ni ) = I(Sni X

n
1X

n
2 ;Y ni ) (14)

≥ I(Sni ;Y ni ) + I(Xn
ic ;Y ni |Sni Xn

i )

≥ I(Sni ;Y ni ) + I(Xn
ic ;Y nic |Sni Xn

i ) (15)
≥ I(Sni ;Y ni ) + I(Snic ;Y nic |Sni Xn

i ) (16)
≥ I(Sni ;Y ni ) +H(Snic |Sni )−H(Snic |Y nicSni ) (17)
= I(Sni ;Y ni ) + I(Snic ;Y nic |Sni )

≥ nRSi
(Di) + nRSic |Si

(Dic), (18)

where (14) follows since (Sn1 S
n
2 ) − (Xn

1X
n
2 ) − Y ni form a

Markov chain; (15) follows from Lemma 2; (16) follows due
to the data processing inequality; (17) follows since Sic−Sni −
Xn
i and conditioning reduces entropy; and (18) follows since,

from standard rate-distortion arguments, we have I(Sni ;Y ni ) ≥
nRSi

(Di) and I(Sni ;Y ni |Snic) ≥ nRSi|Sic
(Di).

We also have, for i = 1, 2,

I(Xn
1X

n
2 ;Y ni ) ≤

n∑
k=1

I(X1kX2k;Yik). (19)

On the other hand, we have for i = 1, 2,

nRSi|Sic
(Di) ≤ I(Sni ;Y ni |Snic)

≤I(Xn
i ;Y ni |Xn

ic) ≤
n∑
k=1

I(Xik;Yik|Xick).(20)

Next, we jointly upper bound the mutual information terms
on the left hand side of (19) and (20). We will use the

following lemma, which is an extension to the interference
channel of [15, Converse], derived in the context of a MAC
channel with feedback.

Lemma 6. Let {X1k} and {X2k} be zero-mean satisfying∑n
k=1 E[X2

ik] ≤ nPi, i = 1, 2. Let Yik = Xik+cicXick+Zik,
where Zik ∼ N (0, N), and for every k, Zik independent of
(X1k, X2k). Then, for any ρn ∈ [0, 1] we have, for i = 1, 2,
n∑
k=1

I(X1kX2k;Yick) ≤ (21)

n

2
log
(

(c2iPi + Pic + 2ciρn
√
P1P2 +N)/N

)
,

n∑
i=1

I(Xik; Yik |Xick) ≤ n

2
log
(
(Pi(1− ρ2n) +N)/N

)
.

The correlation between the channel inputs, denoted by ρn
in Lemma 6, is upper bounded by the correlation between the
source sequences as 0 ≤ ρn ≤ ρ, similarly to [1, Lemma
B.2]. Using this bound together with Lemma 6, we can upper
bound (19) and (20); and finally, combining these with the
lower bounds in (14) - (18), we obtain (7) and (8).
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