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Abstract—This paper deals with the design of coding schemes
for lossy transmission of a source over a broadcast channel
when there is correlated side information at the receivers.Using
ideas from Slepian-Wolf coding over broadcast channels and
dirty paper coding, new schemes are presented and their rate-
distortion performance is derived. For the binary Hamming
and quadratic Gaussian scenarios, when the source and the
channel bandwidths are equal, it is shown that these schemesare
sometimes optimal and that they can outperform both separate
source and channel coding, and uncoded transmission.

I. I NTRODUCTION

Finding the capacity of a broadcast channel is a longstand-
ing open problem in multiuser information theory. In a recent
paper, the seemingly harder problem of characterizing the nec-
essary and sufficient conditions for Slepian-Wolf (SW) coding
over broadcast channels (BC) was completely solved [11].
SWBC involves lossless transmission of a source across a BC
where each receiver has correlated side information.

In this paper, we consider a lossy extension of the SWBC
problem, where the reconstruction of the source at the re-
ceivers need not be perfect. We shall refer to the problem
setup as Wyner-Ziv (WZ) coding over BC. We present coding
schemes for this problem and analyze the performance of our
schemes in the binary Hamming and quadratic Gaussian cases.
Unlike in [11], the schemes that derived here are not always
optimal.

The new WZBC schemes that we present use ideas from
SWBC [11] and dirty paper coding (DPC) [2], [4] as a starting
point. The SWBC scheme is modified to a) allow quantization
of the source, and b) additionally handle channel state informa-
tion (CSI) at the encoder by using DPC. These modifications
are then employed in layered transmission schemes, where
there is common layer (CL) information destined for both
receivers and refinement layer (RL) information meant for
only one of the receivers. Since part of the information is
decoded by both receivers, there are significant differences
between optimal encoders and decoders in our DPC based
layered scheme and those in DPC based schemes used in other
contexts [1].

A simple alternative approach to the WZBC problem is
to separate the source and channel coding. Both Gaussian
and binary symmetric BC are degraded. Hence their capacity
regions are known [3] and further, there is no loss of optimality
in confining ourselves to two layer source coding schemes.
Although the corresponding source-side information pairsare
also degraded, only a partial characterization of the rate-
distortion performance is available [9], [10]. By comparing

the rate-distortion results with the capacity results, we obtain
the distortion region achievable by separate source and channel
coding.

For the two examples we consider, a second alternative if
there is no bandwidth expansion or compression is uncoded
transmission. This scheme is optimal in the absence of side
information at the receivers in both the Gaussian and binary
symmetric cases. However, in the presence of side information,
the optimality breaks down.

The paper is organized as follows. In Section II, we formally
define the problem and present relevant past work. Our main
results are presented in Section III and Section IV: we develop
extensions of the scheme in [11] and apply them to the binary
Hamming and quadratic Gaussian cases. For these cases,
we compare the derived schemes among themselves, with
separate source and channel coding, and finally with uncoded
transmission.

II. PROBLEM DEFINITION AND BACKGROUND

Let (X, Y1, Y2) ∈ X × Y1 × Y2 be random variables
(r.v.) denoting a source with independent and identically
distributed (i.i.d.) realizations. TheX sequence is to be
transmitted over a memoryless broadcast channel defined by
pV1V2|U (v1, v2|u), u ∈ U , vi ∈ Vi, i = 1, 2. Decoderi has
access to side informationYi in addition to the channel output
Vi. A WZBC code(m, n, f, g1, g2) consists of

• an encoder –f : Xn → Um

• a decoder at each receiveri – gi : Vm
i × Yn

i → X̂n
i

The rate of the code isκ = m
n

channel uses per source symbol.
Single-letter distortion measuresdi : X × X̂i → [0,∞) are
defined at each receiver. A distortion pair(D1, D2) is said to
be achievable at rateκ (which we assume is rational) if for
every ǫ > 0, there existsn0 such that for all integersm >

0, n > n0 with m
n

= κ, there exists a code(m, n, f, g1, g2)
satisfying

1

n
E

[ n
∑

j=1

di(Xj , X̂ij)

]

≤ Di + ǫ ,

whereX̂n
i = gi(V

m
i , Y n

i ) andV m
i denotes the channel output

corresponding tof(Um
i ).

In this paper, we present some general WZBC techniques
and derive the corresponding achievable distortion regions. We
study the performance of these techniques for the following
cases.



• Binary Hamming: All source and channel alphabets are
binary. The channels forming the BC are binary symmet-
ric with transition probabilitiesp1 andp2. The side infor-
mation sequences at the two receivers are noisy versions
of the source corrupted by passage through virtual binary
symmetric channels with transition probabilitiesβ1 and
β2. Reconstruction quality is measured by Hamming
distance –di(x, x̂) = x ⊕ x̂.

• Quadratic Gaussian: All r.v. are real-valued. The channels
forming the BC are additive white Gaussian channels with
noise variancesσ2

W1
and σ2

W2
. There is an input power

constraint on the channel:

1

m
E

[ m
∑

j=1

U2
j

]

≤ P ,

whereUm = f(Xn). The source and side information
are also jointly Gaussian. Without loss of generality, we
assume thatσ2

X = σ2
Y1

= σ2
Y2

= 1 andE[XYi] = ρi > 0.
σ2

Ni
= 1− ρ2

i , i = 1, 2 denotes the error in estimatingX
from Yi. Reconstruction quality is measured by squared-
error distance –di(x, x̂) = (x − x̂)2.

The problems considered in [6], [8], [11] can be seen as
special cases of the WZBC problem. However the binary
and Gaussian cases with non trivial side information have
never, to our knowledge, been analyzed before. Nevertheless,
separate source and channel coding and uncoded transmission
are obvious strategies to compare our schemes with.

A. Separate Source and Channel Coding

In both the binary Hamming and the quadratic Gaussian
cases, the channel and the side information are degraded: we
can assume that one of the two Markov chains,U −V1−V2 or
U−V2−V1, holds for the channel, and similarly eitherX−Y1−
Y2 or X−Y2−Y1 holds for the source. The capacity region for
degraded BC is known [3]. Further, since any information sent
to the weaker channel can be decoded by the stronger channel,
two layer source coding, which has been considered in [9],
[10], is sufficiently general. For simplicity, we denote ther.v.
associated withgood channel by the subscriptg and those
associated with thebad one byb, i.e., the channel variables
satisfy theU −Vg −Vb. g is either 1 or 2 andb takes the other
value. A distortion pair(Db, Dg) is achievable by separate
source and channel coding if there exist a channel inputU ∈
U and an auxiliary r.v.Ub ∈ Ub satisfyingUb − U − Vg −
Vb, source auxiliary r.v.(Zb, Zg) ∈ Zb × Zg satisfying either
(Yb, Yg) − X − Zb − Zg or (Yb, Yg) − X − Zg − Zb and
reconstruction functionsgi : Zi × Yi → X̂ , i = b, g such that
E[di(X, gi(Zi, Yi))] ≤ Di, i = b, g and

κI(Ub; Vb) ≥ I(X ; Zb|Yb)

κI(U ; Vg|Ub) ≥

{

[

I(X;Zg|Yg)−I(X;Zb|Yg)
]+

, X−Yg−Yb

I(X;Zg|Yg)−minj=b,g I(X;Zj |Yb), X−Yb−Yg

In the original papers, [9], [10], the source coding bounds
were on the total rates, whereas we use the marginal rates.
When the channels are degraded, the two regions are identical.

Also note that this characterization gives the complete region
in the case of Gaussian source-channel pairs [10].

B. Uncoded Transmission

If κ = 1 and the source and channel alphabets are com-
patible, uncoded transmission is a possible strategy. The best
distortion pairs achievable are

• Binary Hamming:Di = min{pi, βi}, i = 1, 2.

• Quadratic Gaussian:Di =
σ2

Ni
σ2

Wi

σ2
Wi

+σNi
2P

, i = 1, 2.

C. Trivial Converse

At each terminal, no WZBC scheme can achieve a distortion
less than the best distortion achievable by ignoring the pres-
ence of the other terminal. This gives the following converse.

• Binary Hamming: Forα ∈ [0, 1] and β ∈ [0, 1], let
g(α, β) , h(α ∗ β) − h(α) where ∗ denotes binary
convolution:a ∗ b = āb + ab̄. For a ∈ [0, 1], ā denotes
1 − a. A distortion pair is achievable only if

min
0≤q≤1,0≤α≤βi:qα+q̄βi≤Di

qg(α, βi) ≤ κ(1 − h(pi)) .

• Quadratic Gaussian: A distortion pair(D1, D2) is achiev-
able at power levelP and rateκ only if

Di ≥
σ2

Ni

(1 + P
σ2

Wi

)κ
, i = 1, 2 .

III. B ASIC WZBC SCHEMES

In this section, we present the basic coding schemes that
we shall then develop into the schemes that form the main
contribution of this paper.

The first scheme, termed Scheme 0, is a simple extension of
the scheme in [11] where the source is first quantized before
transmission over the channel.

Theorem 1: (D1, D2) is achievable at rateκ if there exist
r.v. Z ∈ Z, U ∈ U and functionsgi : Z × Yi → X̂ with
(Y1, Y2) − X − Z such that

I(X ; Z|Yi) ≤ κI(U ; Vi), i = 1, 2 (1)

E[di(X ; gi(Z, Vi))] ≤ Di, i = 1, 2 . (2)

Here and in what follows, we only present code constructions
for discrete sources and channels. The constructions can be
extended to the continuous case in the usual manner. Our
coding arguments rely heavily on the notion of typicality.
Given an r.v.X ∼ PX(x), x ∈ X the typical set at block
lengthn is defined as [7]

T n
δ (X) , {xn∈Xn:| 1

n
N(a|xn)−PX(a)|≤δPX(a), ∀a∈X} ,

whereN(a|xn) denotes the number of timesa appears inxn.
Proof: The encoder constructs a source codebookCZ ,

{zn(j), j = 1, . . . , M} by choosing sequences fromT n
δ (Z)

uniformly at random. Similarly, it constructs a channel code-
book CU , {um(j), j = 1, . . . , M} from T m

δ (U). Given
a source sequenceXn, the encoder findsj∗ ∈ {1, . . . , M}
such that(Xn, zn(j∗)) ∈ T n

δ′(X, Z) and transmitsum(j∗).
The encoder declares an error if it cannot findj∗. The



decoder at terminali tries to findj ∈ {1, . . . , M} such that
(um(j), V m) ∈ T m

δ′′(U, V ) and simultaneously(Y n, zn(j)) ∈
T n

δ′′(Y, Z). If no suchj or more than one suchj is found,
an error is declared. If a uniquej is found, coordinate-wise
reconstruction is performed usinggi with Y n

i and the decoded
zn(j). For an appropriate choice of(δ, δ′, δ′′) we can show
using standard typicality arguments that the distortion will be
less thanDi + ǫ for sufficiently highn if (1) is satisfied. The
requisite codebook size isM ≈ 2nI(X;Z).

Next, we give a dirty-paper version of Theorem 1. Suppose
that there is CSI available solely at the encoder, i.e., the
broadcast channel is defined by the transition probability
pV1V2|US(v1, v2|u, s) and the CSISm ∈ T m

δ (S), where
S ∈ S has some fixed distribution, is available non-causally
at the encoder. Given a source and side information at the
decoders(X, Y1, Y2), codes(m, n, f, g1, g2) and achievability
of distortion pairs is defined as in the WZBC scenario except
that the encoder now takes the formf : Xn × Sm → Um

Theorem 2: (D1, D2) is achievable at rateκ if there exist
r.v. Z ∈ Z, T ∈ T , U ∈ U and functionsgi : Z × Yi → X̂
with (Y1, Y2) − X − Z andT − (U, S) − (V1, V2) such that

I(X ; Z|Yi) ≤ κ(I(T ; Vi) − I(T ; S)), i = 1, 2 (3)

E[di(X ; gi(Z, Vi))] ≤ Di, i = 1, 2 . (4)

Proof: This scheme will be referred to as Scheme 0
with DPC. The code construction is as follows. As before,
a source codebookCZ , {zn(j), j = 1, . . . , M} is chosen
from T n

δ (Z). A set of M bins CT (j) = {tm(j, k), k =
1, . . . , M ′}, where eachtm(j, k) is chosen randomly at uni-
form from T m

δ (T ), is also constructed. Given a source word
Xn and CSI Sm, the encoder tries to find a pair(j, k)
such that(Xn, zn(j)) ∈ T n

δ′(X, Z) and (Sm, tm(j, k)) ∈
T m

δ′ (S, T ). If it is unsuccessful, it declares an error. If it
is successful, the channel input is drawn from the distribu-
tion

∏m
l=1 pU|TS(ul|tl(j, k), Sl). At terminal i, the decoder

tries to find (j, k) such that(Y n, zn(j)) ∈ T n
δ′′(Y, Z) and

(V m, tm(j, k)) ∈ T m
δ′′(V, T ). If there is no such pair or

more than one, the decoder declares an error. If decoding is
successful, reconstruction proceeds as in Scheme 0. Again,
using typicality arguments, it can be shown that the distortion
constraints are met if (3) is satisfied. The requisite codebook
sizes areM ≈ 2nI(X;Z) andM ′ ≈ 2mI(S;T ).

Although both Scheme 0 and Scheme 0 with DPC are joint
source-channel coding schemes, there is an apparent separation
between source and channel coding in that the source and
channel codebooks are independently chosen. Due to this
quasi-independence we shall refer to source codes and channel
codes separately when we discuss layered WZBC schemes.

IV. L AYERED WZBC SCHEMES

We improve the performance of Scheme 0 by layered
coding, i.e., by not only transmitting a common layer (CL)
to both receivers but also additionally transmitting a refine-
ment layer (RL) to one of the two receivers. The channel
codewords corresponding to the two layers are superposed by
addition, denoted by ‘+’. The natural choices for binary and

Gaussian channels are the XOR operation and real addition
respectively. Superposition results in interference between the
CL and RL channel codewords. To mitigate the interference,
we devise two extensions of Scheme 0 one of which uses
successive decoding (called Scheme CR to reflect that RL acts
as interference while decoding CL) while the other uses DPC
(called Scheme RC). For ease of exposition, we also rename
the source and channel r.v. by replacing the subscripts 1 and
2 by c and r depending on whether the terminal referred to
receives only the CL or whether it also receives the RL.

The CL is transmitted using either Scheme 0 or Scheme 0
with DPC. However, the expressions for channel capacity in
(1) and (3) must be modified to account for the presence of the
RL codeword. The RL is transmitted by separate source and
channel coding. IfZc andZr denote the source auxiliary r.v.
for CL and RL, we shall require(Yc, Yr)−X−Zr −Zc. Due
to the separability of the source and channel variables in the
required inequalities, we can say that(Dc, Dr) is achievable
if there exist(Zc, Zr) as above and reconstruction functions
gi : Zi × Yi → X̂i, i = c, r such that

Rbb ≤ κCbb (5)

Rbr ≤ κCbr (6)

Rrr ≤ κCrr (7)

E[dc(X, gc(Zc, Yc))] ≤ Dc (8)

E[dr(X, gr(Zr, Yr))] ≤ Dr (9)

where Rcc = I(X ; Zc|Yc), Rcr = I(X ; Zc|Yr), Rrr =
I(X ; Zr|Zc, Yr) (cf. [10]). Ccc andCcr are the common input
capacities of the effectivec and r channels for transmitting
the CL. Crr is the capacity of the effectiver channel for
transmitting the RL. Characterizing these capacities for the
two schemes is the task of the rest of the section.

A. Scheme CR

This is the simplest extension of Scheme 0, where RL is
superposed over CL. We fix r.v.Uc, Ur ∈ U for transmitting
CL and RL. The CL channel codebook is chosen fromT m

δ (Uc)
while the RL channel codebook is chosen fromT m

δ (Ur).
The channel input is the coordinatewise sum of the chosen
pair of CL and RL codewords. In decoding the CL, the RL
codeword acts as interference at both receivers. Once receiver
r decodes CL, it can diminish the interference of the CL
channel codeword while decoding RL. This gives

Ccc = I(Uc; Vc) (10)

Ccr = I(Uc; Vr) (11)

Crr = I(Ur; Vr|Uc) . (12)

B. Scheme RC

We begin by fixingUr and constructing an RL codebook
with elements fromT m

δ (Ur). The CL codeword is now
encoded using Scheme 0 with DPC with the RL codeword
acting as CSI. The binsCT (j) = {tm(j, k)} for Scheme 0
with DPC are chosen by fixing auxiliary r.v.(T, Uc) satisfying
T − (Uc, Ur) − (Vc, Vr). At both receivers, the CL codeword
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Fig. 1. Auxiliary r.v. for binary source coding. The edge labels denote
transition probabilities.

is decoded first. As discussed in Section III, when the DPC
decoding is successful, the receivers know thetm(j, k) chosen
by the encoder. Since this codeword was chosen to be jointly
typical with the RL codeword, ther receiver can use both
tm(j, k) and V m

r to decode the RL. The resulting capacity
expressions are

Ccc = I(T ; Vc) − I(T ; Ur) (13)

Ccr = I(T ; Vr) − I(T ; Ur) (14)

Crr = I(Ur; T, Vr) . (15)

DPC is used here in a manner quite different from the way it
has been used in other work on coding for BC [1]. Since most
past work concentrates on sending private information only,
the information that forms the CSI and the information that is
dirty paper coded are meant for different receivers. Therefore,
although the DPC auxiliary codewords are decoded at one of
the receivers, unlike in our scheme, this is of no use to that
receiver. This difference leads to an additional interplayin the
choice of (T, Uc, Ur), as elaborated in Section IV-D for the
quadratic Gaussian case.

We now specialize the results to the binary Hamming and
quadratic Gaussian cases.

C. Binary Sources and Channels

To evaluateRcc, Rcr and Rrr, we need to first fix the
auxiliary r.v. Zc, Zr. We chose them both to be as shown
in Figure 1, motivated by the optimality of the r.v. used by
Wyner and Ziv [12]. While this choice might not be optimal,
it has the advantage of being readily computable.Zr can be
viewed as the output of a generalized erasure channel, where
both erasures and bit flips are allowed. The erasure probability
is q̄r. Given there is no erasure,αr is the flip probability.
Similarly Zc can also be viewed as the output of an erasure
channel with erasure probabilitȳqc, whereqc = qrq

′
c and flip

probability αc = αr ∗ α′
c. The resulting source coding rates

are shown in Table I.
For the channel coding part, we made the following choices.

In Scheme CR, the auxiliary r.v. areUc ∼ Ber(1
2 ) andUr ∼

Ber(γ), whereBer(ǫ) denotes the Bernoulli distribution with
P [1] = ǫ. In Scheme RC,Ur ∼ Ber(1

2 ) while Uc ∼ Ber(γ). T

is defined asUc +Ur, i.e., it is identical to the actual channel
input. In both schemes, the parameterγ controls the tradeoff
betweenCcc andCbr on the one hand, andCrr on the other.
The resulting channel coding rates are presented in Table I.

TABLE I
BINARY SOURCES ANDCHANNELS

Rcc/Ccc Rcr/Ccr Rrr/Crr

Source qcg(αc, βc) qcg(αc, βr) qrg(αr , βr) − qcg(αc, βr)

CR 1 − h(γ ∗ pc) 1 − h(γ ∗ pr) h(γ ∗ pr) − h(pr)

RC h(γ) − h(pc) h(γ) − h(pr) 1 − h(γ)

The performance of the various schemes for certain source-
channel pairs forκ = 1 is presented in Figure 2. In both
layered schemes, we need to choose which terminal receives
RL, i.e., (b = 1, r = 2) or vice versa. We tried both
possibilities and for a given scheme the figures show the
convex hull of the two. In computing the performance of
separate source and channel coding, we use source auxiliary
r.v. that are as presented in Figure 1. However, the alphabet
size bounds in [9], [10] are much higher and therefore it might
be possible to further improve the performance of separate
coding. For the choice that we make, in all our examples,
one of the new schemes always performs better than separate
source and channel coding. In fact, in Figure 2 (b), we show a
case where Scheme 0 (and consequently the derived schemes)
is optimal, i.e., it attains the trivial converse. If the better
channel also has the better side information, then separate
coding performs as well as any of the new schemes.

D. Gaussian Sources and Channels

In the Gaussian case, there is an additional power constraint.
In all our schemes, the total powerP is partitioned intoPc

andPr, the powers available for the common and refinement
information. The auxiliary r.v. areZr = X + Sr and Zc =
X + Sc = Zr + S′

c where Sr, Sc and S′
c are Gaussian r.v.

satisfyingSr ⊥ X , Sc ⊥ X and S′
c ⊥ Zr. The variances of

Sr andSc areσ2
Sr

andσ2
Sc

.
In the channel coding part, for both schemesUc andUr are

chosen to be independent zero-mean Gaussian r.v. with vari-
ancesPc andPr. In Scheme RC,T = γUr+Uc. Since each of
the capacities has to be non-negative,γ has to lie in the interval

(
1−

√

1+
Pr+σ2

W
Pc

1+
σ2

W
Pc

,
1+

√

1+
Pr+σ2

W
Pc

1+
σ2

W
Pc

), σ2
W = max[σ2

Wc
, σ2

Wr
]. The

flexibility in the choice ofγ is a feature that is not present
in other scenarios where DPC has been used for coding over
BC [1]. In those scenarios, there is a unique value ofγ, as
specified in [2], that is optimal. In the layered WZBC schemes,
γ can be used to tradeoff between(Ccc, Ccr) and Crr. The
source and channel coding rates are given in Table II.

A comparison of the various schemes for some source-
channel pairs at rate1 is given in Figure 3. For Gaussians,
if σ2

N1
σ2

W1
> σ2

N2
σ2

W2
, it is enough to consider the case

b = 1, r = 2. If the opposite inequality holds,b = 2, r = 1. If
there is equality, then Scheme 0 achieves the converse.

In all the cases considered, one of the new schemes performs
at least as well as separate coding. Here too, if the better
channel has better side information, the new schemes offer no
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Fig. 2. Performance comparison for binary sources and channels. In (a),
Scheme RC has the same performance as Scheme 0 and Scheme CR isthe
best. In (b) schemes 0, CR and RC are optimal.

TABLE II
GAUSSIAN SOURCES ANDCHANNELS

22Rcc /22Ccc 22Rcr /22Ccr 22Rrr /22Crr

Source 1 +
σ
2
Nc

σ2
Sc

1 +
σ
2
Nr

σ2
Sc

(1+
σ
2
Nr

σ2
Sr

)(1 +
σ
2
Nr

σ2
Sc

)−1

CR 1 + Pc

Pr+σ2
Wc

1 + Pc

Pr+σ2
Wr

1 + Pr

σ2
Wr

RC
1+ P

σ2
Wc

1+Pr(
(1−γ)2

σ2
Wc

+
γ2

Pc
)

1+ P

σ2
Wr

1+Pr(
(1−γ)2

σ2
Wr

+
γ2

Pc
)

1+Pr(
(1−γ)2

σ2
Wr

+
γ2

Pc
)

advantage over separate coding. Note that in case (a), uncoded
performs better than any other scheme and therefore the union
of the distortion regions of the layered schemes cannot be
the complete region. In an upcoming paper, we combine the
two digital schemes we just presented with analog or uncoded
transmission to extract the benefits of both methods [5].
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