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Abstract—Smart meters (SMs) measure and report energy
consumption of individual users to the utility provider at short
intervals on the order of minutes. While SM data is used to
increase the efficiency in electricity distribution, it also conveys
sensitive private data on the energy consumption behaviour of
individual customers. In this work, privacy in a smart metering
system is studied from an information theoretic perspective in
the presence of alternative energy sources and storage units.
An alternative energy source provides increased privacy by
diversifying the energy source, and the storage device filters the
real energy consumption to reduce the leaked data. Connections
between this problem and rate-distortion theory is established,
and both theoretical and numerical results are presented.

I. INTRODUCTION

Smart grids are advanced electricity distribution networks
that exploit digital technology to save energy, increase reliabil-
ity and reduce the cost both for the customers and the utility
providers (UPs). An important aspect of smart grid technology
is the advanced control mechanisms that monitor the network
closely and enable rapid diagnosis and solutions to problems,
and dynamic adaptation to the changes in demand and supply.
The essential components that provide such advanced control
mechanisms are distributed sensing and measurement devices,
such as smart meters (SMs), as well as the communication
infrastructure, which establishes a two-way communication
network among the SMs and the controllers for real-time
information and control.

Compared to conventional electricity meters, SMs measure
and report the energy consumption of the user to the UPs
much more frequently. This high resolution information on
user’s energy consumption behaviour provides rapid control
and response capability to the UP, which prompted the hasty
adoption of SMs worldwide [1]. However, SMs also triggered
a growing concern on consumer privacy [2]. It has been
repeatedly shown that SM data can be easily analyzed for
surveillance purposes by tracking appliance usage patterns,
employing non-intrusive appliance load monitors and data
mining algorithms [3]–[5]. At the very least, through SM
readings it is possible to infer whether a user is at home or not.
But, through more advanced pattern recognition techniques
energy consumption patterns of individual appliances can be
identified with high accuracy even when the SM can read only
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the aggregated household energy consumption [6]. Thus, even
if partially, assuring the privacy of the household’s electrical
load profile is essential for users.

There is a growing literature on advanced mechanisms to
provide privacy to the users of SMs. A major line of research
on SM privacy is based on the assumption that the user
has access to the SM readings and can manipulate them
before forwarding to the UP. Bohli et al. [7] propose sending
the aggregated energy consumption of a group of users, [8]
proposes noise addition and [9] proposes compression of
smart-meter data. The main limitation of these studies is the
assumption that the UP depends solely on the SM reading to
measure the user’s energy consumption profile. However, the
UP or other third parties can have other means to keep track
of a user’s energy consumption directly. The second group
of work on the SM privacy problem assume that users are
equipped with a certain technology that allows them to store
or produce energy, through which they can alter the energy
consumption profile observed by the UP. In this framework, the
SM readings are not tempered, i.e., the UP can perfectly track
the energy it provides to the user over time. The user’s goal
is to differentiate the appliances’ real energy consumption as
much as possible from the profile of the energy provided by the
UP. While privacy protection using rechargeable batteries (RB)
to filter out the real energy consumption is studied in [10]–
[12], alternative energy sources (AES) for privacy protection
is first proposed in [12], [13].

In our system model, we integrate both an AES and a
RB. The energy flow is managed by the energy management
unit (EMU). The EMU is responsible for providing the exact
amount of power needed by the appliances. The EMU has
access to three different energy sources: the power grid, the
AES and the RB. At each time instant, the EMU provides the
energy required by the appliances from these energy sources,
and can also store some extra energy in the battery. We employ
stochastic policies at the EMU that decide the amount of power
taken from the grid based on the harvested energy, energy
demand of the appliances and the state of the RB.

We measure privacy with the amount of leaked information
about users’ energy consumption to the UP, which is quantified
by the mutual information between the users’ real energy
consumption and the energy provided by the UP. Mutual
information has previously been proposed as a measure of
privacy in SMs in [14], [15] and [11]. Obviously, with the
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introduction of an AES, the privacy problem can be resolved
in a straightforward manner if the AES is sufficient enough to
provide all the required energy by the appliances. However,
in general, the energy produced by the AES will be limited.
We consider two different settings depending on the nature
of the AES. In the first model, we consider a simple AES,
such as an energy harvesting (EH) device, without energy
storing capabilities. The energy from the AES is thus produced
according to the energy generation profile of the underlying
energy source, and wasted if, at a given instant, the energy
generated surpass the energy required by the appliances and
the energy storing capabilities of the RB. For this scenario, we
require the EMU to increase both the privacy of the user and
the energy efficiency of the system by avoiding wasting energy.
We define and characterize the optimal privacy - wasted power
- battery capacity function. Due to the memory introduced
into the system through the battery, analytical expressions for
this scenario are elusive, and we use numerical methods to
estimate the average wasted power and information leakage
rate for various energy management policies.

In the second model, we consider an AES with its own
storage unit, which might model an electric vehicle battery
that serves as an AES when connected to the household grid,
or an independent power grid. Such an AES is assumed to
supply the power requested by the appliances as long as the
average and peak power constraints are satisfied. To simplify
the system model, we eliminate the battery from the EMU
and do not allow wasting energy from the AES or from the
grid. For this scenario, we characterize the optimal privacy
depending on the average and peak power supported by the
AES. We provide a single-letter characterization of the privacy
- average power - peak power function when the input load
is an independent and identically distributed (i.i.d.) random
variable. For discrete input distributions, we show that the
privacy - average power - peak power function can be written
as a convex optimization problem with linear constraints. For
continuous input distributions, we derive the Shannon lower
bound (SLB), and show that it is achieved for exponential
input distributions, and for certain average and peak power
values for other input load distributions.

We also highlight an equivalence between the privacy
problem studied here and the rate - distortion function with a
difference distortion measure. This allows us to exploit certain
tools from rate - distortion theory to analyze the optimal
privacy achievable in a SM system.

The rest of the paper is organized as follows. In Section II,
we introduce the system model and define the concept of
information leakage rate which will be used to measure the
system performance. The privacy - wasted power - battery
capacity problem is addressed in Section III and the privacy -
average power - peak power problem is addressed in Section
IV. Finally, we conclude our work in Section V.

II. SYSTEM MODEL AND THE PRIVACY MEASURE

The SM system model considered in this paper is depicted
in Fig. 1. We model the energy flow as a discrete time system.

Fig. 1: Smart metering privacy model via an AES.

At each time instant t, the EMU receives the energy demand
of the appliances, Xt ∈ X , called the input load. The EMU
provides this energy demand either from the RB, the AES or
the power grid. The SM measures the power that is requested
from the grid, Yt ∈ Y , at each time instant, and reports it to
the UP. We call Yt the output load.

We measure the privacy by the information rate leaked to
the UP about the input load. Assuming that the statistical
behavior of the energy demand is known by the UP, its
initial uncertainty about the real energy consumption can be
measured by the entropy rate 1

n
H(Xn). After the UP observes

the output load, this uncertainty is reduced to the equivocation
rate

1

n
H(Xn|Y n) =

1

n
H(Xn)−

1

n
I(Xn;Y n).

Since H(Xn) is a characteristic of the appliances and is as-
sumed to be known, the EMU tries to minimize I(Xn;Y n) in
order to maximize the equivocation. Accordingly, the privacy
achieved by an energy management policy is measured by the
mutual information rate between the input and output loads.
We define the information leakage rate as

I(n) �
1

n
I(Xn;Y n). (1)

The tools available to the EMU to reduce the information
leakage rate are directing some of the energy demand to the
AES, or filtering the energy demand form the UP using the
RB. We consider two different models for the AES. In the
first model, studied in Section III, we assume that the AES
is an EH device, and harvests a certain amount of energy
at each time instant with a certain probability. The statistical
behavior of the EH distribution depends on the design of the
energy harvester. For example, for a solar energy harvester
the average harvested energy can be increased by scaling the
size and the efficiency of the solar panel. In this stochastic
energy harvesting model, the harvested energy is either directly
consumed by the appliances or stored in the RB. Otherwise
the harvested energy is lost. The RB is assumed to have finite
capacity of P̂B . In this model, the EMU employs energy
management policies that decide, at each time instant t, the
amount of energy that is provided from the power grid and
from the battery, based on the input load up to time t, energy
obtained from the EH, the state of the battery and the output
load up to the previous time instant.

In the second model studied in Section IV, we consider an
AES which has its own RB. In this model, the AES is able to
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supply all the energy requested by the EMU, as long as the
peak and average power constraints are satisfied. The RB at
the EMU is not employed and we do not allow the EMU to
waste energy neither from the AES nor from the power grid.
In this model, the EMU employs energy management policies
that decide, at each time instant t, the amount of energy that is
provided from the power grid and/or from the AES, based on
the input load up to time t, the load obtained from the power
grid and the AES up to the previous time instant.

III. THE PRIVACY - WASTED POWER - BATTERY
CAPACITY FUNCTION

In this model, we consider the AES as an EH device, and
the harvested energy is modeled as a discrete time stochastic
process, denoted by Zn = Z1, Z2, . . . , Zn. Here we assume
that Zn is an i.i.d. sequence with distribution pZ over Z =
{0, 1, . . . ,M}. Denoting the battery state at time instant t by
Bt, we require Xt, Yt, Zt, and Bt to satisfy the following
conditions at each time instant t:

Bt ≤ P̂B , (2a)
Xt ≤ Yt + Zt +Bt −Bt−1, (2b)
0 ≤ Xt, Yt, (2c)

which guarantee that the energy stored in the battery is within
its capacity, and the energy demand of the appliances is
satisfied at each time instant.

Notice that due to the finite capacity of the RB, some of the
energy from the grid and from the EH device can be wasted.
We measure the wasted power after n time instants as

P
(n)
W �

1

n

n∑
t=1

(Zt + Yt −Xt). (3)

At each time instant t, the EMU decides on the amount of
energy it gets from the UP and from the battery based on the
input load up to time t, Xt, the energy harvested up to the
previous time instant, Zt−1, state of the battery Bt−1, and the
output load Y t−1.

Definition 1: A length-n energy management policy is
composed of, possibly random, power allocation functions

ft : X
t ×Zt−1 × Yt−1 × Bt−1 → Y × B,

for t = 1, . . . , n, such that Xt, Yt, Zt, Bt, satisfy the
constrains in (2) at each time instant. The privacy achieved
by this policy is given by the information leakage rate, I(n),
defined in (1), while the average wasted power is defined
as P̄W � E

[
P

(n)
W

]
, with P

(n)
W defined as in (3). Here the

expectation is taken over the probability distributions of the
AES, the input and output loads.

Definition 2: An information leakage rate - average wasted
power - battery capacity triplet (I, P̄W , P̂B) is said to
be achievable if there exists a sequence of energy man-
agement policies, satisfying (2) at each time instant, and
limn→∞ I(n) ≤ I , and limn→∞ P̄

(n)
W ≤ P̄W .

Definition 3: The information leakage rate - average wasted
power - battery capacity region is the closure of the set of all
achievable triplets (I, P̄W , P̂B).

Definition 4: The privacy - wasted power - battery capacity
function, I(P̄W , P̂B), is the infimum of the information leak-
age rates such that (I, P̄W , P̂B) is in the information leakage
rate - average wasted power - battery capacity region.

We restrict our analysis to discrete loads; that is, we assume
that there is a minimum unit of energy; and hence, at each
time instant t, the input load, harvested energy, battery state
and output load are all integer multiples of this energy unit.
Over time, we assume that the input load Xn is an i.i.d.
sequence with distribution pX over X . The harvested energy
is also modelled as a discrete time stochastic process, where
Zn is also an i.i.d. sequence with distribution pZ over Z ,
independent of X .

For this scenario, due to the memory introduced into the
system through the battery, a single letter expression for the
privacy - wasted power function is elusive. Instead, we focus
on a limited set of energy management policies and analyze the
achievable privacy - wasted power performance numerically.
Note that, energy management policies can be time-varying in
general. We consider time-invariant fixed policies in which the
transition probabilities and parameters of the energy manage-
ment policy are fixed throughout the operation. For a fixed
policy, the average wasted power P̄W and the information
leakage rate I between the input and the output loads can
be estimated numerically. To keep the complexity of possible
energy management policies simple, we restrict our attention
to those that depend only on the input load, battery state and
harvested energy at time t; that is,

ft : X × Z × B → Y × B

for t = 1, ..., n. Energy management policies that depend on
both the battery state and the previous output load are studied
in [11]; however, the authors indicate that they have not found
any battery/output conditioned policy that performs better than
the optimal policy that acts solely based on the battery state.
We have made the same observation in our numerical analysis.
Accordingly, to keep our model simple we focus only on
battery-conditioned policies in this work.

Due to the discrete time nature of the system, it can be
represented by an FSM. The FSM of this system has |B| states.
The management policy specifies the transition probabilities
in the FSM. For numerical computation, we sample very long
sequences (large n) of Xn, Zn and Y n by using the FSM. We
then compute the average wasted power by evaluating P

(n)
W in

(5) for a very long sequence. The weak law of large numbers
then ensures that with high probability, P (n)

W → P̄W as n →
∞. For the computation of the information leakage rate, we
use the computation method studied in [16].

For numerical results, we focus on a binary system for its
simplicity, as otherwise, the transitions in the state diagram
get very complicated and the numerical computation becomes
intractable. Consider a system with X = Y = Z = {0, 1}. At
a given time instant t, the EMU decides stochastically y = 0 or
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Fig. 2: Finite state diagram for the battery conditioned energy
management policy with s = 2 states. Transition probabilities
are also included in the figure.

y = 1 depending on the system state defined by bt−1, xt and
zt, according to the conditional probabilities Pr{Y = 1|X =
x, Z = z,B = b} = pY |x,z,b for all x ∈ [0, 1], z ∈ [0, 1],
b ∈ [0, P̂B]. The EMU can choose any pY |x,z,b as long as the
instantaneous constraints in (2) are satisfied.

In our simulations, we perform an exhaustive search by
varying the transition probabilities in Fig. 2 with 0.1 incre-
ments. We use n = 106 for the computations. Based on
these numerical results we provide various observations and
conclusions regarding the optimal operation of the EMU from
a joint privacy–energy efficiency perspective.

A. Privacy - Wasted Power Function
First, we consider the binary system described above with

a binary battery state, |B| = 2. To satisfy, the instantaneous
power constraint in (2), we require pY |1,0,0 = 1. If we,
additionally, enforce that no energy can be wasted from the
power grid, then pY |0,1,0 = pY |0,0,1 = pY |1,1,1 = 0. In that
case, the possible transitions are depicted in Fig. 2.

In Fig. 3 we characterize the whole trade-off between the
privacy and energy efficiency for pZ = 0.5 and pX = 0.5.
Each circle in the figure marks the value of a

(
I, P̄W

)
pair that

can be achieved by assigning different transition probabilities
labeled on Fig. 2. The Pareto optimal trade-off curve is the
one that is formed by the points on the lower-left corner of the
figure, i.e., the points for which I and P̄W cannot be improved
simultaneously. According to the requirements of the system,
the operating point can be chosen anywhere on the trade-off
curve. For different, values of pZ , we obtain similar trade-offs;
with increasing EH rate pZ , the minimum information leakage
rate decreases while the wasted energy rate increases.

B. Privacy at the expense of wasting grid energy
Next, we study the effect of wasting energy from the grid

on the privacy. We consider battery conditioned policies with
binary input/output load values, no EH unit, and an RB with
capacity of K units. Let RB be fully charged at time instant
t, i.e., bt = |B| − 1. Even if the appliances do not consume
any energy at time instant t + 1, i.e., xt+1 = 0, we allow
the EMU to demand energy from the UP, i.e., yt+1 = 1, with
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Fig. 3: Information leakage rate, I, versus average wasted
energy rate, P̄W , for pX = 0.5 and pZ = 0.5.
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Fig. 4: Information leakage rate, I, versus wasted energy rate,
P̄W , for the case of wasting grid energy.

probability pW , and yl+1 = 0 with probability (1 − pW ). In
other words, we allow wasting the grid energy with probability
pW , by which we obscure the information of the UP about
the real energy consumption. Fig. 4 illustrates the achievable
points on the

(
I, P̄W

)
trade-off, obtained for an equiprobable

input load, pX = 0.5, and for increasing RB capacity values,
1, 2, and 3. In this simulation, to keep the simulation time
reasonable we find the achievable points, by considering only
complementary transition probabilities, such that the sum of
the transition probabilities between two states is equal to 1.
We can see that the privacy can be significantly improved by
wasting more energy, i.e., by increasing pW . If we increase
the RB capacity, as we can see in Fig. 4, both the information
leakage rate and the wasted energy rate are improved for the
same energy waste probability, pW .
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IV. THE PRIVACY - AVERAGE POWER - PEAK POWER
FUNCTION

In the previous model, the existence of the RB controlled
by the EMU introduces memory to the system and prevents
us from obtaining single–letter information theoretic results.
In this section, we assume that the EMU does not have an
RB to filter out the real energy consumption, and hence, at
each time instant t, the energy demand of the appliances Xt

is provided either by the UP (Yt), or by the AES (Zt). In
this model, we assume that the AES has its own storage unit,
and hence, it is limited by the peak and average power values
it can provide, rather than instantaneous constraints as in the
previous section. The decision at each time instant is based on
the input load up to time t, Xt, as well as the output load and
the energy demanded from the AES up to the previous time
instant, Y t−1 and Zt−1, respectively. In this scenario, at each
t, we require Xt, Yt, Zt to satisfy

0 ≤ Zt ≤ P̂Z , (4a)
Xt = Yt + Zt, (4b)
0 ≤ Xt, Yt. (4c)

We measure the power requested from the AES after n time
instants as

P
(n)
Z =

1

n

n∑
t=1

(Xt − Yt) . (5)

Definition 5: A length-n energy management policy is
composed of, possibly random, power allocation functions

ft : X
t ×Zt−1 × Yt−1 → Y ×Z,

for t = 1, . . . , n, such that Xt, Yt satisfy the constrains in
(4) at each time instant. The privacy achieved by this policy
is given by the information leakage rate I in (1) while the
average power requested from the AES is given by P̄

(n)
Z �

E

[
P

(n)
Z

]
with P

(n)
Z as defined in (5). Here the expectation is

taken over the probability distributions of the input and output
loads.

Definition 6: An information leakage rate - average power
- peak power triplet (I, P̄Z , P̂Z) is said to be achievable if
there exists a sequence of energy management policies of
duration n satisfying ∀t ≤ n (4) with limn→∞ I(n) ≤ I , and
limn→∞ P̄

(n)
Z ≤ P̄Z .

Definition 7: The information leakage rate - average power
- peak power region is the closure of the set of all achievable
triplets (I, P̄Z , P̂Z).

Definition 8: The privacy - average power - peak power
function, I(P̄Z , P̂Z), is the infimum of the information leakage
rates in the information leakage rate - average power - peak
power region.

Our goal is to give a mathematically tractable expression for
the privacy–power function, and identify the optimal energy
management policy that achieves the highest level of privacy
for a given AES. In the next theorem, we show that if
input loads are chosen i.i.d. we can characterize the function
I(P̄Z , P̂Z) in a single-letter format.

Theorem 1: The privacy - average power - peak power
function I(P̄Z , P̂Z) for an i.i.d. input load X with distribution
fX(x) is given by

I(P̄Z , P̂Z) = inf
fY |X(y|x):E[X−Y ]≤P̄Z ,

0≤X−Y≤P̂Z

I(X ;Y ) (6)

Proof: See [13].
Theorem 1 implies that the optimal energy management

policy is memoryless; that is, it can be achieved by simply
looking at the instantaneous input load, and generating the
output load randomly using the optimal conditional proba-
bility. This results in a stochastic energy management policy
rather than a deterministic one. On the other hand, if the user
knew all the future energy demand over a block of n time
instants, the same privacy performance could be achieved by
a deterministic block-based energy management policy.

We note here the correspondence between the privacy–
power function in (6) and the rate-distortion function [17].
The privacy-power function in (6) is indeed a rate-distortion
function with the following difference distortion measure:

d(x, y) =

{
x− y if 0 ≤ x− y ≤ P̂Z ,
∞ otherwise.

This correspondence allows us to use various tools from rate-
distortion theory to study privacy in a SM system.

We first consider discrete input load distributions. If the
input and output alphabets were both discrete, the charac-
terization of the privacy–power function I(P̄Z , P̂Z) in (1)
would become a convex optimization problem since the mutual
information is a convex function of the conditional probability
values, fY |X(ym|xk), for ym ∈ Y , xk ∈ X , and the constraints
are linear. Then, (6) can be solved numerically e.g. using the
efficient Blahut-Arimoto (BA) algorithm [17].

The next theorem shows that the output alphabet can be
constrained to the input alphabet Y = X without loss of
optimally. This also implies that for any given discrete input
alphabet the optimal output alphabet is also discrete.

Theorem 2: Without loss of optimality the output load
alphabet Y can be constrained to the input load support set,
i.e., Y = X .

Proof: The proof is omitted. It can be found in [18]
available online.
Theorem 2 implies that the problem in (6) can always be
efficiently solved for discrete input distributions.

For a continuous input distribution, the optimal output
alphabet is potentially continuous. Consequently, efficient al-
gorithms, such as the BA algorithm, do not yield the optimal
solution. In this case, we provide the Shannon lower bound
[17] on the privacy - average power - peak power function
ISLB(P̄Z , P̂Z), and identify the power region (P̄Z , P̂Z) where
it is achievable.

We begin by presenting the distribution that maximizes the
entropy among those random variables Z with mean P̄Z and
satisfying 0 ≤ Z ≤ P̂Z . From [17, Ch. 11], we know that
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this distribution is the truncated exponential distribution Z ∼
ExpT(P̄Z , P̂Z) with

fZ(z) =

{
1
λ0

e−
z

λ1 , 0 ≤ z ≤ P̂Z ,

0 otherwise.
(7)

The variables λ0 ≥ 0 and λ1 ≥ 0 are chosen to satisfy the
constraints ∫ ∞

0

fZ(z)dz =
λ1

λ0
p = 1,

E[Z] = λ1 − P̂Z

q

p
= P̄Z ,

(8)

where q = e−
P̂Z

λ1 and p = 1 − q. This distribution has
differential entropy

h
(
ExpT(P̂Z , P̄Z)

)
= ln (λ0) +

P̄Z

λ1
,

and its Laplace transform LfZ(s) = L (fZ(z)) (s) reads

LfZ(s) =
1

p

1− qe−P̂Zs

1 + λ1s
. (9)

We denote by δ(x) the Dirac delta function and use f ′(x)
to denote the first order derivative of f(x). In next theorem,
we present the SLB on the privacy - average power - peak
power function and the achievabiliy region for any piecewise
continuous input distribution fX(x).

Theorem 3: Consider an AES with an average power con-
straint P̄Z and a peak power constraint P̂Z . The privacy -
average power - peak power function I(P̄Z , P̂Z) for an i.i.d.
input load X with differential entropy h(X) is lower bounded
by

ISLB(P̄Z , P̂Z) = h(X)− ln (λ0)−
P̄Z

λ1
, (10)

where λ0 and λ1 are obtained from (8). For any input
distribution fX(x) continuous on R+ except for a countable
number of jump discontinuities or non-differentiable points
XD = {x1, ..., xD}, the SLB (10) is achieved for all P̄Z

and P̂Z satisfying fY (y) ≥ 0 for all y ∈ R+ by using the
conditional output distribution fY |X(y|x) = fZ(x − y) fY (y)

fX (x)
where the output distribution is given by

fY (y) =

∞∑
l=0

pqlgY (y − lP̂ ), (11)

and gY (y) = gYC
(y) + gYD

(y) is a mixture of a continuous
and a discrete distribution specified as follows:

gYC
(y) = fX(y) + λ1f

′
X(y), y ∈ R+/XD,

gYD
(y) = λ1

D∑
i=0

ΔX(xi)δ(y − xi), y ∈ XD.

Proof: The SLB in (10) can be obtained from [17]. To
find the conditional distribution fY |X(y|x) that satisfies the
SLB with equality [17], we require the random variables
Z = X − Y and Y to be independent, and Z to be
distributed according to a truncated exponential distribution

Z ∼ ExpT(P̄Z , P̂Z) with mean P̄Z and peak value P̂Z . We
first obtain the output distribution fY (y) from its Laplace
transform LfY (s) = L(fY (y))(s). First, recall LfZ(s) in (9)
and that LgY (s) = L (gY (y)) (s) is given by

LgY (s) = LfX(s) (1 + λ1s) .

Then, observe that

LfY (s) =
LfX(s)

LfZ(s)
, (12)

= p
LgY (s)

1− qe−P̂Zs
, (13)

=

∞∑
l=0

pqlLgY (s)e
−lP̂Zs, (14)

=
∞∑
l=0

pqlL
(
gY (y − lP̂Z)

)
(s). (15)

It follows that fY (y) is given by (11). The conditional distri-
bution fY |X(y|x) is obtained using the fact that fX|Y (x|y) =
fZ(x − y). Finally, it can be shown that

∫∞
0

fY (y)dy = 1;
and thus, achievability is guaranteed by requiring fY (y) ≥ 0,
∀y ∈ R+.

Remark 3.1: For an AES with an unlimited peak power
constraint P̂Z → ∞, we have λ1 → P̄Z , λ0 → P̄Z , and Z
follows an exponential distribution Exp(P̄Z). Then, the SLB
reduces to

ISLB(P̄Z) = h(X)− ln(eP̄Z), (16)

and the output distribution simplifies to fY (y) = gY (y).

A. Exponential Distribution
Next we particularize Theorem 3 for an exponential input

distribution. Let X ∼ Exp(m), i.e., fX(x) = 1
m
e−

x

mu(x).
From (11) we obtain the output probability distribution as

gYC
(y) =

(
1−

λ1

m

) ∞∑
l=0

pqlfX(y − lP̂Z), (17)

gYD
(y) =

λ1

m

∞∑
l=0

pqlδ(y − lP̂Z). (18)

For Y ∈
{
lP̂Z : l = 0, 1, ...,∞

}
, Y follows a discrete geo-

metric distribution, Geom(p) = pql. Otherwise, Y follows a
mixture of weighted and shifted continuous exponential distri-
butions each with mean m. The SLB achievability condition
fY (y) ≥ 0 for all y ∈ R+ requires m ≥ λ1, or equivalently,
P̄Z ≤ P̄Z0

with q0 = e−
P̂Z

m , and

P̄Z0
= m− P̂Z

q0
1− q0

. (19)

At P̄Z0
we have

I
(
P̄Z0

, P̂
)
= h(Y ) = h(Geom(p0)). (20)

For the exponential input distribution, the SLB is achievable
for all possible peak and average power constraints.

For an exponential distribution with mean 1, we depict the
privacy - power function in Fig. 5 for different P̂Z values.
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Fig. 5: Privacy-power function for X ∼ Exp(1).

V. CONCLUSIONS

We have studied the privacy problem in SM systems for two
different yet closely related models. In both cases, we measure
the privacy of the system from an information theoretic
perspective using the information leakage rate between the
input and output loads as the privacy measure. We have shown
that the user can hide its energy consumption profile from the
UP by employing stochastic energy management policies.

In the first model, we have assumed the availability of an
EH device which generates energy at a constant rate in an i.i.d.
fashion, and an RB. In this model both the RB and the EH
source are used to filter out the real energy consumption of the
devices. Note that, due to the finite capacity of the RB and the
mismatch between the energy demand of the appliances and
the energy generated by the EH device, some of the energy
will be wasted. Since the RB can be utilized both to increase
the privacy of the user, and to decrease the amount of wasted
energy, we have studied the privacy–energy efficiency trade-
off. Due to the memory introduced by the RB obtaining closed-
form expressions for the information leakage rate is elusive.
We have used a numerical method to calculate the information
leakage rate - average wasted power trade–off. For the sake
of simplicity, we have considered binary input and output
loads and focused on battery–dependent energy management
policies. We have discussed, the effect of the battery capacity
and of wasting grid energy.

In the second part of the paper, we have considered avail-
ability of only an AES with a peak and an average power
constraint, i.e., no RB. We have characterized the optimal
information leakage rate that can be achieved for given av-
erage and peak power constraints. We have shown that, for
i.i.d. input loads, the privacy–power trade–off has a single-
letter expression. In addition, for discrete input alphabets we
have shown that the privacy-power function can be evaluated
numerically as the solution to a convex optimization problem.
For continuous input distributions, we have characterized the

Shannon lower bound on the privacy–power function, and
provided the closed–form solution for an exponential input
load.
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