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Abstract—A distributed binary hypothesis testing problem
involving three parties, a remote node, called the observer, a
legitimate decoder, called the detector, and an adversary, is
studied. The remote node observes a discrete memoryless source,
and communicates its observations over a rate-limited noiseless
public channel to the detector, which tests for the conditional
independence of its own observations from that of the remote
node, conditioned on some additional side information. The
adversary, in addition to observing the public message, has access
to its own correlated side-information. Considering the type 2
error exponent for a given type 1 error probability constraint
as the performance measure for the hypothesis test at the
detector, and equivocation of the source at the adversary as the
secrecy measure, a single-letter characterization of the rate-error
exponent-equivocation trade-off is established. Additionally, for
a general distortion measure, imposing the average distortion at
the adversary as the measure of secrecy achieved, an inner bound
on the trade-off between the rate, error exponent and average
distortion is obtained. This bound is shown to be tight under the
less noisy condition on the adversary’s side information.

I. INTRODUCTION

In a distributed learning system, the performance of the
learning algorithm depends critically on the communication
between the agents involved. Typically, agents provide infor-
mation about their data to a remote decision maker in return for
some utility based on the quality of the decisions taken. On the
other hand, security of the underlying data is becoming more
and more important due to the ever increasing capabilities of
data-mining and machine learning algorithms. An adversary
having access to the information shared over the common link
can make inferences about the underlying sensitive user data.

In distributed learning applications the goal is typically to
learn the joint probability distribution of the data available
at different locations, or nodes in the system. Usually, there
is some prior knowledge about the joint distribution, for
example, that it belongs to a certain set of known probability
distributions. In such a scenario, the detector, which tries to
infer the joint distribution, uses a hypothesis test to decide on
the joint distribution of the data based on its own observations
and the data that it receives from other nodes. Often the inter-
node communication happens over a channel, e.g., over a
wireless link, that is vulnerable to external third party attacks.
In addition to the data available over the public channel,
the eavesdropper may have access to additional correlated
data that further risks data security. While communicating
data more accurately to the detector achieves better utility in
general, it also risks data security, as the same communication
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Fig. 1: HT in the presence of an adversary.

is also observed by the adversary. Therefore, there is an
inherent trade-off between the utility of the provided data, i.e.,
the detector’s performance and the security against adversaries.

In this paper, we study the problem of distributed hypothesis
testing (HT) under a secrecy constraint imposed due to the
presence of an unintended receiver. We study a special case of
the general hypothesis testing problem known as the testing
against conditional independence (TACI) problem, in which
the detector tests whether its own observation is conditionally
independent of the data at a remote observer, conditioned on
an additional side-information available at the decision maker.
Distributed hypothesis testing from an information theoretic
perspective has been studied extensively in the past, although
many open problems remain. Testing against independence,
e.g., no side-information Z, is studied in [1] and [2], where the
best achievable type 2 error exponent (T2EE) is established, in
addition to other fundamental results for the general hypothesis
testing problem. The TACI is first studied in [3], where the
optimality of a random binning based encoding scheme is
shown. Various multi-terminal scenarios have been studied
in [4] and [5]. Recently, the optimal T2EE for TACI over a
noisy channel is established in [6]. The information theoretic
framework for analyzing secrecy is first introduced in the
seminal paper of Shannon [7]. Equivocation as a measure of
secrecy first appears in [8] and has been used extensively in
the literature to quantify the amount of information leakage
to the adversary in various communication and compression
settings (see [9], [10], [11] and references therein). A more
general rate-distortion approach to secrecy is first explored in
the work of Yamamoto for the case of a noiseless channel with
rate constraint R, where, in addition to a distortion constraint
D at the legitimate receiver, a minimum distortion requirement
∆ is enforced at the adversary [12].



In this paper, we study TACI in the presence of an adver-
sary, considering the availability of distinct side information
sequences available at the legitimate receiver and the adver-
sary. Our contributions are as follows: i) With equivocation
as the metric of secrecy, we establish a tight single-letter
characterization of the rate-error exponent-equivocation trade-
off (R, κ,Ω), where κ is the type 2 error exponent and Ω is
the equivocation enforced at the adversary; ii) when average
distortion ∆ is the metric of secrecy for an arbitrary additive
distortion measure, we obtain a single-letter inner bound on the
set of achievable (R, κ,∆) tuples; and iii) this inner bound is
shown to match with a trivial outer bound under the so-called
less noisy condition, thus establishing the optimal trade-off.

A. Notations

We denote random variables (r.v.’s) and their realizations by
upper and lower case letters (e.g., X and x), respectively. Sets
are denoted by calligraphic letters, e.g., the alphabet of r.v. X
is denoted by X . The sequence X1, . . . , Xn is denoted by
Xn. 1(·) and [a]+, a ∈ R denotes the indicator function and
max(a, 0), respectively. X − Y − Z denotes a Markov chain

between r.v.’s X , Y and Z. Notation
(n)−−→ denotes asymptotic

limit with respect to n, e.g., an
(n)−−→ 0 means the sequence

an tends to zero asymptotically with n. P(E) denotes the
probability of the event E . For positive real m, we define
[m] , {1, . . . , dme}. For set A, we denote its complement
by Ac. The values of radius of the typical set appearing in
the proofs below such as δ, δ′, δ′′ etc. are chosen such that
the probability of the coding error events decay exponentially.
The details are omitted here due to space constraints.

II. PROBLEM FORMULATION

Consider the HT setup in the presence of an adversary,
illustrated in Fig. 1. The observer observes the memoryless
source sequence Un, and using the encoding function f (n) :
Un → [2nR], sends the message index M , f (n)(Un) to
the detector over an error-free public channel, which is also
observed by the adversary. In addition, the adversary also
observes an i.i.d. side information En (correlated with Un)
and has causal access1 to samples Y i−1 for estimating Ûi,
where Y n is the output of a discrete memoryless channel PY |U
with input Un. Given its own independent and identically dis-
tributed (i.i.d.) observation V n and side-information Zn, the
detector performs TACI with null hypothesis H0 : PUV ZEY
and alternate hypothesis H1 : QUV ZEY = PUEY ZPV |Z on
the joint distribution of U , V , Z, E and Y . The adversary
is interested in the reconstruction Ûn, such that the average
distortion between Un and Ûn is minimized for a given single-
letter distortion metric d(·, ·). To summarize, our system model
comprises of:
• i.i.d. samples (Un, V n, Zn, En, Y n) generated according

to PnUV ZEY =
∏n
i=1 PUV ZEY under hypothesis H0,

1This assumption known as causal disclosure results in a generic system
model, where secrecy achieved at the adversary is measured using a single-
letter distortion metric, of which equivocation is a special case. For more
details, see [13].

and according to QnUV ZEY =
∏n
i=1QUV ZEY under

hypothesis H1.
• Stochastic encoder f (n) : Un → [2nR], M , f (n)(Un).
• Decoder g(n) : [2nR]×Zn × Vn → {0, 1}, where 0 and

1 indicate H0 and H1, respectively.
• Adversary decoding functions {PÛi|M,En,Y i−1}ni=1.
• Bounded additive distortion metric at the adversary d :
U × Û → [0, Dm] with multi-letter distortion defined as

d(un, ûn) ,
1

n

∑n

i=1
d(ui, ûi). (1)

Let A ⊆ [2nR]×Zn×Vn and Ac denote the acceptance region
for H0 and H1, respectively. The detector is then given by
g(n)(m, zn, vn) = 1 ((m, zn, vn) ∈ Ac). Let ᾱ

(
f (n), g(n)

)
,

PMZnV n(Ac) and β̄
(
f (n), g(n)

)
, PMZn × PV n|Zn(A)

denote the type 1 and type 2 error probabilities for (f (n), g(n))
pair, respectively. For a given type 1 error probability con-
straint ε, we define the minimum type 2 error probability over
all possible decoders as

β
(
f (n), ε

)
, inf
g(n)

β̄
(
f (n), g(n)

)
, (2)

such that ᾱ
(
f (n), g(n)

)
≤ ε.

Definition 1. For a given type 1 error probability constraint ε,
a rate-error exponent-distortion tuple (R, κ,∆) is achievable,
if there exists a sequence of encoding and decoding functions
f (n) : U → [2nR] and g(n) : [2nR]×Zn × Vn → {0, 1} such
that

lim sup
n→∞

log
(
β(f (n), ε)

)
n

≤ −κ, and (3)

E
[
d
(
Un, Ûn

)]
≥ ∆. (4)

The rate-error exponent-distortion region R∗(ε) is the closure
of the set of all achievable (R, κ,∆) tuples for a given ε.

Remark 2. It is well known that the equivocation constraint
can be obtained as a special case of the more general
distortion constraint considered above, using log-loss as the
distortion measure, and assuming that the source is causally
disclosed to the adversary [13]. Setting Y n = Un, and taking
d(u, û) = − log(û(u)), where û(·) is a probability distribution
on U , results in a constraint of the form

1

n
H(Un|M,En) ≥ Ω, (5)

in (4), where Ω is the equivocation constraint.

In this paper, we focus on the single-letter characterization
of the region R∗(ε), as the type 1 error probability tends to
zero, i.e., limε→0R∗(ε), which we denote by R∗. Similarly
to [1], it can be shown using Stein’s lemma that,

lim
ε→0

lim
n→∞

sup
f(n)

− log
(
β
(
f (n), ε

))
n

= θ(R), (6)

where θ(R) , sup
n

sup
f(n)

1

n
I(M ;V n|Zn),
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Fig. 2: Equivalent source-coding problem in the presence of a
helper and an adversary.

s.t (V n, Zn, En, Y n)− Un −M, M ∈ [2nR]. (7)

The n-letter characterization of R∗ is thus given by

κ ≤ 1

n
I(M ;V n|Zn), (8)

such that (7) and (4) are satisfied. Noting that I(M ;V n|Zn) =
nH(V |Z) − H(V n|Zn,M), the problem of characterizing
R∗ is equivalent to that of the set of all (R,Rs,∆) tuples
satisfying

Rs ≥
1

n
H(V n|M,Zn), (9)

such that (7) and (4) are satisfied. Eqn. (9) is the n−letter
characterization of the lossless source coding problem with a
helper and an adversary as depicted in Fig. 2. In this equivalent
problem, the helper communicates its observation Un to the
legitimate receiver through a noiseless public channel with
rate constraint R, while the main encoder transmits over a
private link of rate Rs a compressed version of its observation
of the source V n, which is to be reconstructed losslessly by
the legitimate decoder, while ensuring that (4), the average
distortion constraint at the adversary, is also satisfied. Let R∗s
denote the closure of all achievable (R,Rs,∆) pairs. Then,
the following equivalence holds.

(R, κ,∆) ∈ R∗ ⇔ (R,H(V |Z)− κ,∆) ∈ R∗s. (10)

In the next section, we obtain a single-letter inner bound
on R∗ via a bound on R∗s by exploiting the equivalence in
(10). The proof of this bound, which is omitted here due
to space constraint, relies on the soft-covering lemma and
properties of total variation [13], [14]. For the special case
of equivocation as the measure of secrecy, we obtain a single-
letter characterization of the complete (R.κ,Ω) trade-off.

III. MAIN RESULTS

The main results of the paper and the sketches of their
proofs are presented in this section. We first state the result for
the special case of equivocation2 as a measure of secrecy at
the adversary. Although the equivocation is a special case of
the distortion based framework introduced above, we provide a

2After the submission of our paper, we became aware of [15] which char-
acterizes the optimal-error exponent-equivocation region for testing against
independence, i.e., Z = ∅.

separate proof here as the inner bound for R∗ obtained below
for an arbitrary distortion measure is not tight when specialized
to the case of log-loss distortion measure and Y n = Un.

Theorem 3. For d(u, û) = − log(û(u)), where û(·) is a
probability distribution on U , and Y n = Un, (R, κ,Ω) ∈ R∗
if and only if there exist auxiliary r.v.’s W1 and W2, such that

R ≥ I(W2;U |Z) (11)
κ ≤ I(W2;V |Z) (12)
Ω ≤ H(U |W2, Z) + I(U ;Z|W1)− I(U ;E|W1) (13)

for some joint distribution PUPW2|UPW1|W2
PZEV |U .

Proof: We first obtain a characterization for R∗s , and the
proof follows from the equivalence in (10). We show that
(R,Rs,Ω) ∈ R∗s if and only if there exists auxiliary r.v.’s
W1 and W2, such that

R ≥ I(W2;U |Z) (14)
Rs ≥ H(V |W2, Z) (15)
Ω ≤ H(U |W2, Z) + I(U ;Z|W1)− I(U ;E|W1) (16)

for some joint distribution PUPW2|UPW1|W2
PZEV |U .

Achievability: We generate a codebook similarly to [16].
First, fix a joint distribution PUV EZY PW2|UPW1|W2

satisfying
(14)-(16). .

Codebook of the encoder of source Un: Fix non-
negative numbers R1, R

′
1, R2, R

′
2. Generate codewords

Wn
1 (m1,m

′
1), m1 ∈ [2nR1 ], m′1 ∈ [2nR

′
1 ] drawn

independently according to distribution
∏n
i=1 PW1

.
Denote this codebook by Cnw1

. For each (m1,m
′
1),

generate codewords Wn
2 (m1,m

′
1,m2,m

′
2), m2 ∈ [2nR2 ],

m′2 ∈ [2nR
′
2 ] independently drawn according to distribution∏n

i=1 PW2|W1
(w2i|W1i(m1,m

′
1)). Denote this codebook by

Cnw2
. Denote the two codebooks Cnw1

and Cnw2
together by Cnu .

The codebook Cnu is known to all the parties including the
adversary.

Codebook of the encoder of source V n: This codebook is
generated by performing uniform random binning on the V n

sequences, i.e., an index M̃ is assigned to each vn sequence
uniformly at random from the set [2nRs ], Rs ≥ 0. We denote
this assignment by f (n)2 (V n) = M̃ .

Encoding: The encoder of source Un uses joint-typicality
encoding, i.e., it first looks for (M1,M

′
1,M2,M

′
2) such that

(Un,Wn
1 (M1,M

′
1),Wn

2 (M1,M
′
1,M2,M

′
2)) ∈ Tn[UW1W2]δ

,
δ > 0, where Tnδ denotes the δ− typical set as defined in
[17]. If successful, the indices M = (M1,M2) are transmitted;
otherwise, it transmits a pair of indices chosen uniformly at
random from the set [2nR1 ] × [2nR2 ]. The indices (M ′1,M

′
2)

are not transmitted, but are intended to be recovered by the
legitimate decoder using its side information Zn. The encoder
of source V n sends the bin-index M̃ via its channel.

Decoding: The legitimate decoder first checks
for the unique indices (M̂ ′1, M̂

′
2) such that

(Wn
1 (M1, M̂

′
1),Wn

2 (M1, M̂
′
1,M2, M̂

′
2), Zn) ∈ Tn[W1W2Z]δ′

,
δ′ > 0. If successful, it then checks for a unique sequence



Ṽ n in bin M̃ such that (Ṽ n,Wn
2 (M1, M̂

′
1,M2, M̂

′
2), Zn) ∈

Tn[VW2Z]δ′′
, δ′′ > 0. If this is also successful, it sets the

estimate as V̂ n = Ṽ n; otherwise, a random sequence from
set Vn is chosen as the estimate.

Analysis of probability of error: The following events may
result in an error at the encoder or decoder.

EEE =

{
(Un,Wn

1 (m1,m
′
1),Wn

2 (m1,m
′
1,m2,m

′
2)) /∈ Tnδ ,

∀ m1,m
′
1,m2,m

′
2

}

ED1 =

{
∃ (M̂ ′1, M̂

′
2) 6= (M ′1,M

′
2), s.t.

(Wn
1 (M1, M̂

′
1),Wn

2 (M1, M̂
′
1,M2, M̂

′
2), Zn) ∈ Tnδ′

}

ED2 =
{

(V n,Wn
2 (M1, M̂

′
1,M2, M̂

′
2), Zn) /∈ Tnδ′′

}
ED3 =

{
∃ Ṽ n 6= V n, f(Ṽ n) = f(V n) s.t.

(Ṽ n,Wn
2 (M1, M̂

′
1,M2, M̂

′
2), Zn) ∈ Tnδ′′

}
We analyze the probability of error P(E) , P(V 6= V̂ )
averaged over the random codebook CnU and random bin-
assignment. By the union bound,

P(E) ≤ P(EEE) + P(EcEE ∩ ED1) + P(EcEE ∩ EcD1 ∩ ED2)

+ P(EcEE ∩ EcD1 ∩ EcD2 ∩ ED3).

By the covering lemma [18], P(EEE)
(n)−−→ 0, provided that

I(U ;W1) < R1+R′1 and I(U ;W2|W1) < R2+R′2. Similarly,

by the packing lemma [18], P(EcEE ∩ ED1)
(n)−−→ 0 provided

R′1 < I(W1;Z) and R′2 < I(W2;Z|W1). By the Markov

lemma [18], P(EcEE ∩ EcD1 ∩ ED2)
(n)−−→ 0. Finally, using

standard arguments, it can be shown that P(EcEE∩EcD1∩EcD2∩
ED3)

(n)−−→ 0 if Rs > H(V |W2, Z). The lower bound on the
equivocation follows similarly to the analysis in [16]. Thus,
by the standard random coding arguments, if (14)-(16) hold
(with strict inequality), there exists a deterministic codebook
such that P(E) tends to zero asymptotically, and the distortion
constraint at the adversary is satisfied. Using the equivalence in
(10), this completes the proof of the achievability of (R, κ,Ω)
satisfying (11)-(13) since R∗ and R∗s are closed sets by
definition.

Converse: The converses for (11) and (13) follow simi-
larly to [16]. Define auxiliary r.v.’s W1 , (W1Q, Q) and
W2 , (W2Q, Q), where W1i , (M,Zni+1, E

i−1) and
W2i , (M,U i−1, Zi−1, Zni+1, E

i−1), i ∈ [n], and Q is a r.v.
independent of all the other r.v.’s and uniformly distributed
over [n]. Then, for any ε′ > 0 and sufficiently large n, we
have

n(R+ ε′) ≥ H(M) = I(M ;Un, Zn, En)

≥ I(M ;Un, En|Zn) =
∑n

i=1
I(M ;Ui, Ei|U i−1, Ei−1, Zn)

=
∑n

i=1
I(M,U i−1, Zi−1, Zni+1, E

i−1;Ui, Ei|Zi) (17)

≥
∑n

i=1
I(W2i;Ui|Zi) = nI(W2;U |Z). (18)

Here, (17) follows since the sequences (Un, Zn, En) are
memoryless. Next, the equivocation of source Un at the
adversary can be bounded as follows.

H(Un|En,M) (19)
= H(Un|M,Zn) + I(Un;Zn|M)− I(Un;En|M)

= H(Un|M,Zn) + I(Un;Zn)− I(M ;Zn)

− I(Un;En) + I(M ;En) (20)

=
∑n

i=1
[H(Ui|M,U i−1, Zn) + I(Ui;Zi)− I(M,Zni+1;Zi)

− I(Ui;Ei) + I(M,Ei−1;Ei)]

+

n∑
i=1

[I(Ei;Z
n
i+1|M,Ei−1)− I(Zi;E

i−1|M,Zni+1)] (21)

=
∑n

i=1

[
H(Ui|M,U i−1, Zn, Ei−1) + I(Ui;Zi)− I(Ui;Ei)

+ I(Ei;M,Zni+1, E
i−1)− I(Zi;M,Zni+1, E

i−1)
]

(22)

=
∑n

i=1
H(Ui|W2i, Zi) + I(Ui;Zi)− I(Ui;Ei)

+ I(Ei;W1i)− I(Zi;W1i)

= n[H(U |W2, Z) + I(U ;Z|W1)− I(U ;E|W1)]. (23)

Here, (20) and (22) follow from the Markov chain relations
(En, Zn) − Un − M and Ui − (M,U i−1, Zn) − Ei−1, re-
spectively, while (21) is obtained using the Csiszar-Körner
inequality [9].

Finally, we prove the bound on Rs. First, note that

n(Rs + ε′) ≥ H(M̃ |M,Zn)

= H(M̃ |M,Zn) +H(V n|M̃,M,Zn)−H(V n|M̃,M,Zn)

≥ H(M̃, V n|Zn,M)− εn (24)

where εn
(n)−−→ 0. Eqn. (24) follows from Fano’s inequality.

Defining ε′′ , ε′ + εn
n , from (24) we get

n(Rs + ε′′) ≥ H(V n|M,Zn) +H(M̃ |V n, Zn,M)

≥ H(V n|M,Zn) ≥
∑n

i=1
H(Vi|V i−1,M,Zn, U i−1)

=
∑n

i=1
H(Vi|M,Zn, U i−1) (25)

≥
n∑
i=1

H(Vi|M,Zn, U i−1, Ei−1) = n

n∑
i=1

1

n
H(Vi|Zi,W2i)

= nH(VQ|ZQ,W2Q, Q) = nH(V |Z,W2) (26)

where (25) follows since V i−1− (M,U i−1, Zn)−V ni form a
Markov chain. Eqns. (18), (23) and (26), along with the fact
that R∗s is closed complete the proof of the converse via the
equivalence in (10).

Next, we state an achievability result for the more general
case when secrecy is measured using an arbitrary distortion
measure d(·, ·) at the adversary. Due to space constraints, the
proof of this theorem is omitted here and will be presented in
an extended version of this paper.

Theorem 4. (R, κ,∆) ∈ R∗ if there exist auxiliary r.v.’s W1



and W2, such that

R ≥ I(W2;U |Z) (27)
κ ≤ I(W2;V |Z) (28)
∆ ≤ min{ζs, ζp}min

φ(e)
E [d (U, φ(E))]

+ [ζs − ζp]+ min
φ(e,w1)

E [d (U, φ(E,W1))]

+ (1− ζs) min
φ(e,w2)

E [d (U, φ(E,W2))] , (29)

where

ζp , min

(
[I(W1;Z)− I(W1;E)]

+

I(W1;Y |E)
, 1

)
, (30)

ζs , min

(
[I(W2;Z|W1)− I(W2;E|W1)]+

I(Y ;W2|W1, E)
, 1

)
, (31)

for some distribution PUPW2|UPW1|W2
PZEV Y |U .

Remark 5. It can be shown using standard arguments based
on the Fenchel-Eggleston-Carathéodory’s theorem that, con-
sidering auxiliary r.v.’s W1 and W2 such that |W1| ≤ |U|+ 2,
|W2| ≤ (|U| + 2)(|U| + 1) and |W1| ≤ |U| + 7, |W2| ≤
(|U|+ 7)(|U|+ 4) suffices in Theorem 3 and 4, respectively.

We also have the following trivial outer-bound for R∗ for
the case when Y is constant (with probability 1).

Theorem 6. (R, κ,∆) ∈ R∗ only if there exist auxiliary r.v.’s
W1 and W2, such that

R ≥ I(W2;U |Z) (32)
κ ≤ I(W2;V |Z) (33)
∆ ≤ min

φ(e)
E [d (U, φ(E))] (34)

for some distribution PUPW2|UPW1|W2
PZEV |U .

Proof: The first two conditions follow directly from the
converse of the TACI problem considered in [6], when the
noisy channel between the source Un and the detector is
replaced by a noiseless channel of rate R. Eqn. (34) follows by
noting that the distortion at the adversary cannot be more than
that can be obtained by a symbol-by-symbol reconstruction
Ûi = φ(Ei) using only the side-information En (ignoring the
message from the observer).

Definition 7. Side information Z is said to be strictly less
noisy than E if for all r.v.’s S satisfying the Markov condition
S − U − (Z,E), we have I(S;Z) > I(S;E) whenever
I(S;E) > 0.

Corollary 8. For strictly less noisy side information Z
compared to E at the legitimate decoder, and Y constant,
(R, κ,∆) ∈ R if and only if there exist auxiliary r.v.’s W1 and
W2, such that

R ≥ I(W2;U |Z) (35)
κ ≤ I(W2;V |Z) (36)
∆ ≤ min

φ(e)
E [d (U, φ(E))] (37)

for some distribution PUPW2|UPW1|W2
PZEV |U .

Proof: For the strictly less noisy case with constant
Y , we note that I(Z;W1) > I(E;W1), I(Z;W2|W1) >
I(E;W2|W1), I(W1;Y |E) = 0 and I(W2;Y |W1, E) = 0.
This implies that ζp = ζs = 1. Substituting these values
into Theorem 4 proves the achievability, while the matching
converse follows trivially from Theorem 6.

IV. CONCLUSIONS

We have studied the TACI problem over a rate-limited noise-
less channel in the presence of an adversary. With equivocation
as the measure of secrecy, we have established a complete
characterization of the rate-exponent-equivocation trade-off.
For an arbitrary distortion measure at the adversary as the
secrecy criterion, we have provided an inner bound for the
rate-exponent-distortion region using a coding scheme that
involves superposition coding along with binning. We have
then shown this bound to be tight when the side information
at the legitimate decoder is less noisy compared to that of the
adversary.
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