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Abstract—Privacy-preserving energy management is studied in
the presence of a renewable energy source. It is assumed that
the energy demand/supply from the energy provider is tracked
by a smart meter. The resulting privacy leakage is measured
through the probabilities of error in a binary hypothesis test,
which tries to detect the consumer behavior based on the meter
readings. An optimal privacy-preserving energy management
policy maximizes the minimal Type II probability of error subject
to a constraint on the Type I probability of error. When the
privacy-preserving energy management policy is based on all
the available information of energy demands, energy supplies,
and hypothesis, the asymptotic exponential decay rate of the
maximum minimal Type II probability of error is characterized
by a divergence rate expression. Two special privacy-preserving
energy management policies, the memoryless hypothesis-aware
policy and the hypothesis-unaware policy with memory, are then
considered and their performances are compared. Further, it
is shown that the energy supply alphabet can be constrained
to the energy demand alphabet without loss of optimality for
the evaluation of a single-letter-divergence privacy-preserving
guarantee.

I. INTRODUCTION

Real-time information about energy demands and advanced

control and communication technologies enable more efficient

energy generation and distribution in smart grids [1]. Real-time

energy demand information is provided to the energy provider

(EP) by the smart meters installed at consumer premises.

While high-resolution meter readings are essential for mon-

itoring and control tasks, they also reveal sensitive private in-

formation about the consumers [2], [3]. A number of privacy-

preserving technologies have been developed for the smart

meter privacy problem in the recent years. In [4], an encryption

method is proposed to protect the privacy of an individual

consumer through data aggregation in the neighborhood. In

[5], a privacy scheme is devised by scheduling delay-tolerable

appliances to hide the energy demand profiles of others. While

most of the literature focuses on the manipulation of meter

readings to preserve privacy, there is a growing interest in

guaranteeing privacy by directly altering the energy demands

from the EP. This can be achieved by exploiting renewable

energy sources (RESs) or energy storage devices to filter

the real energy demand characteristics. Information-theoretic

approaches to these problems have been studied in [1], [6]–[9].

The work has been supported by the Swedish Research Council (VR) under
Grant 2015-06815 and the UK Engineering and Physical Sciences Research
Council (EPSRC) under Grant EP/N021738/1 within the CHIST-ERA project
COPES.

EP
Xi

EMU
Yi

Meter
Yi

h0/h1

Xi-Yi

AD

Yi

RES
h0/h1

Fig. 1. The model of the smart meter privacy problem in the presence of
a renewable energy source (RES), where energy and information flows are
represented by solid and dashed arrows, respectively.

In this paper, we consider the smart meter privacy leakage to

an informed adversary (AD), for instance the EP. In particular,

we study the optimal privacy-preserving energy management

policy in the presence of a RES following [1], [7], [9].

However, different from these works, we measure the smart

meter privacy leakage by the probability of error in a Neyman-

Pearson hypothesis test performed by the AD. Hypothesis

testing models of privacy leakage have been studied in other

contexts [10]–[15], e.g., in sensor networks and multime-

dia forensics. In this work, we characterize the asymptotic

exponential decay rate of the maximum minimal Type II

probability of error by a Kullback-Leibler divergence rate

expression. We also consider two distinct privacy-preserving

energy management policies: a memoryless hypothesis-aware

policy and a hypothesis-unaware policy with memory. We

further show that the optimal memoryless hypothesis-aware

policy cannot outperform the optimal hypothesis-unaware pol-

icy with memory.

Due to the space limitation, some proofs are omitted in this

paper. They will be presented in a journal [16] in preparation.

II. SYSTEM MODEL AND PRIVACY-PRESERVING ENERGY

MANAGEMENT POLICY

The considered smart meter privacy model is shown in Fig.

1. The private consumer behavior is modeled by the binary

hypothesis H which can be h0 or h1. In the following, we

use the short notation ·|hj for ·|H = hj , j ∈ {0, 1}, to

denote a random variable conditioned on hypothesis hj . Under

hypothesis h0 (resp. h1), the energy demand Xi at time slot

i is independently and identically distributed (i.i.d.) according

to pX|h0
(resp. pX|h1

) and defined on the finite alphabet X .

In this paper, pX|h0
and pX|h1

satisfy D(pX|h0
||pX|h1

) > 0;

minX ≥ 0; and maxX < ∞. At any time slot i, the

energy management unit (EMU) follows a random energy



management policy γi to determine the energy supply yi from

the EP based on the demands xi, the supplies yi−1, and the

correct hypothesis h as

γi : X
i × Yi−1 ×H → Y

∣

∣xi − yi ≥ 0, (1)

where Y denotes the finite energy supply alphabet from the EP

at any time slot with Y ⊇ X , minY = 0, maxY = maxX ;

the instantaneous constraint xi − yi ≥ 0 imposes nonnegative

energy supply from the RES at any time slot i. Let γn ,

{γi}
n
i=1 : Xn×H → Yn denote an energy management policy

over an n-slot time horizon. We assume that the RES has an

average energy generation rate of s and is equipped with a

sufficiently large energy storage. Therefore, we only consider

an average energy constraint as

E

[

1

n

n
∑

i=1

(Xi − Yi)

∣

∣

∣

∣

∣

hj

]

≤ s, j = 0, 1. (2)

An energy management policy over an n-slot time horizon that

satisfies (2) is denoted by γn(s).
We consider that an AD, which can be the EP, has access to

the meter readings yn, and is fully informed about the energy

demand statistics as well as the used energy management pol-

icy, i.e., the AD knows pXn|h0
, pXn|h1

, γn(s), and therefore

the corresponding pY n|h0
, pY n|h1

. The smart meter privacy

leakage is modeled as a Neyman-Pearson test by the informed

AD on the binary hypothesis. We define the minimal Type II

probability of error of the AD under an upper bound constraint

on the Type I probability of error as

β(n, ε, γn(s)) , min
An⊆Yn

{pY n|h1
(An)|pY n|h0

(Ac
n) ≤ ε},

where An denotes the decision region for h0 of the AD. The

privacy-preserving objective of the EMU is to maximize the

probability of error of the AD. More specifically, for a given

RES energy generation rate s, the EMU uses the optimal

energy management policy to achieve the maximum minimal

Type II probability of error subject to a Type I probability of

error constraint

βs(n, ε) , max
γn(s)

{β(n, ε, γn(s))}. (3)

III. ASYMPTOTIC CHARACTERISTICS OF

PRIVACY-PRESERVING ENERGY MANAGEMENT POLICY

In the following, the optimal privacy-preserving energy

management policy is characterized in the asymptotic regime

as n→∞, by focusing on the asymptotic exponential decay

rate of the maximum minimal Type II probability of error

subject to a Type I probability of error constraint.

Define θ(s) as

θ(s) , inf
k,γk(s)

{

1

k
D(pY k|h0

||pY k|h1
)

}

, (4)

where the infimum is taken over all k ∈ Z+, and for each k,

over all energy management policies that satisfy the average

energy constraint over a k-slot time horizon.

Lemma 1.

θ(s) = lim
k→∞

inf
γk(s)

{

1

k
D(pY k|h0

||pY k|h1
)

}

.

The proof of Lemma 1 is presented in [16]. It

follows from the subadditivity of the sequence of

infγk(s)

{

D(pY k|h0
||pY k|h1

)
}

and Fekete’s lemma [17,

Lemma 11.2].

Next, it is shown that the asymptotic exponential decay rate

of the maximum minimal Type II probability of error subject

to a Type I probability of error constraint can be characterized

by θ(s).

Theorem 1. Given s > 0,

lim sup
n→∞

1

n
log

1

βs(n, ε)
≤ θ(s), ∀ε ∈ (0, 1), (5)

and

lim
ε→1

lim inf
n→∞

1

n
log

1

βs(n, ε)
≥ θ(s). (6)

Proof: Given any k ∈ Z+, γk(s), and the resulting

pY k|h0
, pY k|h1

, let γkl(s) denote an energy management

policy which repeatedly uses γk(s) for l times. From the

definition in (3) and Stein’s lemma [18, Theorem 11.8.3], it

follows

lim sup
l→∞

1

kl
log

1

βs(kl, ε)
≤ lim

l→∞

1

kl
log

1

β(kl, ε, γkl(s))

=
1

k
D(pY k|h0

||pY k|h1
),

for all ε ∈ (0, 1). Since for k(l − 1) < n ≤ kl we have

βs(kl, ε) ≤ βs(n, ε) ≤ βs(k(l − 1), ε),

it follows

lim sup
n→∞

1

n
log

1

βs(n, ε)
≤

1

k
D(pY k|h0

||pY k|h1
),

for all ε ∈ (0, 1), k ∈ Z+, and γk(s). Therefore, we have

lim sup
n→∞

1

n
log

1

βs(n, ε)
≤ θ(s), ∀ε ∈ (0, 1).

Given any n ∈ Z+, suppose that γn∗(s) leads to p∗
Y n|h0

,

p∗
Y n|h1

, and achieves βs(n, ε
′), where the Type I probability

of error upper bound ε′ is equal to

max
γn(s)

{

pY n|h0

{

yn
∣

∣

∣

∣

log
pY n|h0

(yn)

pY n|h1
(yn)

< D
(

pY n|h0
||pY n|h1

)

}}

.

If the AD uses the following hypothesis test strategy

An =

{

yn

∣

∣

∣

∣

∣

1

n
log

p∗
Y n|h0

(yn)

p∗
Y n|h1

(yn)
≥ t

}

, (7)

where the test threshold t is

t =
1

n
D(p∗Y n|h0

||p∗Y n|h1
), (8)



from the definition of ε′, the corresponding Type I probability

of error satisfies the upper bound constraint

p∗Y n|h0
(Ac

n) ≤ ε′.

Since the hypothesis test strategy in (7) is not necessarily

optimal for the AD, the definition of the maximum minimal

Type II probability of error implies that

βs(n, ε
′) ≤ p∗Y n|h1

(An). (9)

Let ε→ 1 such that ε ≥ ε′. We have

lim
ε→1

βs(n, ε) ≤ βs(n, ε
′). (10)

In [19, Lemma 4.1.1], it has been shown that

p∗Y n|h1
(An) ≤ exp(−nt). (11)

The inequalities (9), (10), and (11) jointly lead to

lim
ε→1

βs(n, ε) ≤ exp(−nt)

≤ exp

(

−n inf
γn(s)

{

1

n
D(pY n|h0

||pY n|h1
)

})

,

i.e., for all n ∈ Z+, we have

lim
ε→1

1

n
log

1

βs(n, ε)
≥ inf

γn(s)

{

1

n
D(pY n|h0

||pY n|h1
)

}

.

In the asymptotic regime as n→∞, we have

lim
ε→1

lim inf
n→∞

1

n
log

1

βs(n, ε)

≥ lim
n→∞

inf
γn(s)

{

1

n
D(pY n|h0

||pY n|h1
)

}

= θ(s),

where the last equality follows from Lemma 1.

When ε is close to one, the bounds of the asymptotic

exponential decay rate of the maximum minimal Type II

probability of error are tight, which is made more concrete

in the following corollary.

Corollary 1. Given s > 0,

lim
ε→1

lim
n→∞

1

n
log

1

βs(n, ε)
= θ(s).

Remark 1. Given s > 0, letting ε → 1 represents the worst

privacy leakage scenario.

In the following, we characterize the asymptotic perfor-

mances of two special privacy-preserving energy management

policies in the worst case scenario, i.e., ε→ 1.

IV. ASYMPTOTIC CHARACTERISTICS OF SPECIAL

PRIVACY-PRESERVING POLICIES

A. Memoryless Hypothesis-Aware Policy

In practice, the EMU might have a limited processing

capability, and at time slot i, applies a random memoryless

hypothesis-aware energy management policy πi to determine

the energy supply yi based on the current demand xi and the

hypothesis information h as

πi : X ×H → Y|xi − yi ≥ 0. (12)

Let πn , {πi}
n
i=1 : Xn × H → Yn denote a memoryless

hypothesis-aware energy management policy over an n-slot

time horizon. If πn satisfies the average energy constraint in

(2), it is denoted by πn(s). When the EMU uses the optimal

privacy-preserving memoryless hypothesis-aware policy, the

achieved maximum minimal Type II probability of error sub-

ject to a Type I probability of error upper bound ε is denoted

by

βL(n, ε, s) , max
πn(s)

{β(n, ε, πn(s))}. (13)

We similarly define θL(s) as

θL(s) , inf
k,πk(s)

{

1

k
D(pY k|h0

||pY k|h1
)

}

. (14)

The following corollary of Theorem 1 specifies the asymptotic

exponential decay rate of the maximum minimal Type II prob-

ability of error by the divergence rate expression θL(s) when

the EMU uses the optimal privacy-preserving memoryless

hypothesis-aware policy.

Corollary 2. Given s > 0,

lim
ε→1

lim
n→∞

1

n
log

1

βL(n, ε, s)
= θL(s). (15)

We next show that the asymptotic exponential decay rate of

the maximum minimal Type II probability of error can also be

characterized by a single-letter divergence expression. Given

s̄, s̃ > 0, we define φ(s̄, s̃) as

φ(s̄, s̃) , min

pY |X,h0

pY |X,h1

∣

∣

∣

∣

∣

∣

∣

∣

E[X − Y |h0] ≤ s̄

E[X − Y |h1] ≤ s̃

pY |X,h0
(y|x) = 0, if y > x

pY |X,h1
(y|x) = 0, if y > x

{

D(pY |h0
||pY |h1

)
}

,

(16)

where E[X−Y |h0] ≤ s̄ denotes the single-slot average energy

constraint under hypothesis h0; E[X − Y |h1] ≤ s̃ denotes the

single-slot average energy constraint under hypothesis h1; and

pY |X,h0
(y|x) = pY |X,h1

(y|x) = 0 for all y > x corresponds

to the instantaneous constraint of the nonnegative energy

supply from the RES at a single slot under both hypotheses.

Lemma 2. φ(s̄, s̃) is a non-increasing, continuous, and convex

function for s̄ > 0 and s̃ > 0.

The non-increasing property of φ(s̄, s̃) is self-evident. Its

convexity follows from the convexity of D(·||·) and the def-

inition of φ(s̄, s̃). The continuity of φ(s̄, s̃) follows from its

convexity [20]. The complete proof is given in [16].

Theorem 2. Given s > 0,

θL(s) = φ(s, s). (17)



Proof: For any k ∈ Z+, πk(s), and the resulting pY k|h0
,

pY k|h1
, we have

1

k
D
(

pY k|h0
||pY k|h1

)

(a)
=

1

k

k
∑

i=1

D
(

pYi|h0
||pYi|h1

)

(b)

≥
1

k

k
∑

i=1

φ (E[Xi − Yi|h0],E[Xi − Yi|h1])

(c)

≥φ

(

E

[

1

k

k
∑

i=1

(Xi − Yi|h0)

]

,E

[

1

k

k
∑

i=1

(Xi − Yi|h1)

])

(d)

≥φ(s, s),

where (a) follows since the policy πk(s) leads to pY k|hj
=

∏k

i=1 pYi|hj
for j = 0, 1; (b) follows from the definition of

φ(s̄, s̃); (c) and (d) follow from the convexity and the non-

increasing property of φ(s̄, s̃), respectively.

Therefore, we have

θL(s) = inf
k,πk(s)

{

1

k
D(pY k|h0

||pY k|h1
)

}

≥ φ(s, s). (18)

The proof of the opposite direction is straightforward. Let

(p∗
Y |X,h0

, p∗
Y |X,h1

) be the solution which achieves φ(s, s). It

can be seen as a single-slot memoryless hypothesis-aware

policy π1(s). From the definition of θL(s) in (14), it follows

that

θL(s) ≤ φ(s, s). (19)

Alternatively, the inequality (19) follows since φ(s, s) is the

asymptotic exponential decay rate of the minimal Type II

probability of error achieved by a memoryless hypothesis-

aware policy by using the single-slot policy (p∗
Y |X,h0

, p∗
Y |X,h1

)
at all slots.

The inequalities (18) and (19) jointly lead to Theorem 2.

B. Hypothesis-Unaware Policy with Memory

We now consider the case when the EMU does not know

the correct hypothesis but has a large memory storage and

a powerful processing capability. At time slot i, the EMU

follows a random hypothesis-unaware energy management

policy with memory ρi to determine the energy supply yi from

the EP based on the demands xi and the past supplies yi−1

as

ρi : X
i × Yi−1 → Y|xi − yi ≥ 0. (20)

Let ρn , {ρi}
n
i=1 : Xn → Yn denote a hypothesis-unaware

energy management policy with memory over an n-slot time

horizon. If ρn satisfies the average energy constraint in (2),

it is denoted by ρn(s). When the EMU uses the optimal

privacy-preserving hypothesis-unaware policy with memory,

the achieved maximum minimal Type II probability of error

subject to a Type I probability of error upper bound ε is

denoted by

βM(n, ε, s) , max
ρn(s)

{β(n, ε, ρn(s))}. (21)

We similarly define θM(s) as

θM(s) , inf
k,ρk(s)

{

1

k
D(pY k|h0

||pY k|h1
)

}

. (22)

As specified in the following corollary of Theorem 1, the

asymptotic exponential decay rate of the maximum minimal

Type II probability of error can be characterized by the diver-

gence rate expression θM(s) when the EMU uses the optimal

privacy-preserving hypothesis-unaware policy with memory.

Corollary 3. Given s > 0,

lim
ε→1

lim
n→∞

1

n
log

1

βM(n, ε, s)
= θM(s). (23)

Compared with the privacy-preserving memoryless

hypothesis-aware policy, the privacy-preserving hypothesis-

unaware policy with memory has all past demands and

supplies while it does not know the correct hypothesis. We

next compare the asymptotic privacy-preserving performances

of the two policies.

Theorem 3. Given s > 0,

θM(s) ≤ φ(s, s). (24)

The proof of Theorem 3 is presented in [16]. The proof

idea is to show that a constructed two-phase hypothesis-

unaware policy with memory can achieve the same asymptotic

performance as the optimal privacy-preserving memoryless

hypothesis-aware policy.

Remark 2. The optimal privacy-preserving memoryless

hypothesis-aware policy cannot outperform the optimal

privacy-preserving hypothesis-unaware policy with memory.

That is because the EMU having no direct access to the

hypothesis information can learn the hypothesis with an arbi-

trarily small probability of error after observing a sufficiently

long energy demand process.

V. ASYMPTOTIC PRIVACY-PRESERVING GUARANTEE AND

NUMERICAL EXAMPLE

In Corollaries 1-3, we have characterized the asymptotic

exponential decay rate of the maximum minimal Type II

probability of error in the worst privacy leakage scenario

by a divergence rate expression. However, the numerical

evaluation of θ(s) or θM(s) is difficult. On the other hand,

φ(s, s) provides an upper bound on the optimal asymptotic

exponential decay rate. Hence, we use the single-letter diver-

gence expression φ(s, s) as an asymptotic privacy-preserving

guarantee in this work.

While solving the optimization problem in (16) leads to the

asymptotic privacy-preserving guarantee, the energy supply

alphabet Y can be arbitrarily large which means a highly

complex optimization problem. Moreover, the energy demand

alphabet X is determined by a number of operation modes

of the appliances and is typically finite. We show in the next
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Fig. 2. Asymptotic privacy-preserving guarantee φ(s, s) for a binary demand
model under different settings of p̄, p̃.

theorem that the alphabet Y can be limited to the alphabet X .

This result can greatly simplify the numerical evaluation of

the asymptotic privacy-preserving guarantee.

Theorem 4. The energy supply alphabet can be limited to the

energy demand alphabet under both hypotheses without loss

of optimality.

The proof of Theorem 4 can be found in [16]. It follows

from the optimality in the definition of φ(s, s) and the data

processing inequality of Kullback-Leibler divergence [21].

Here, we present a simple example with binary energy

demands, i.e., X = {0, 1}. Based on Theorem 4, we only

need to consider Y = {0, 1}. Denote pX|h0
(0) by p̄ and

pX|h1
(0) by p̃. The asymptotic privacy-preserving guarantee,

φ(s, s), is shown in Fig. 2 for different values of p̄ and p̃.

Confirming the claim in Lemma 2, we observe that φ(s, s)
is convex and non-increasing. When s = 0, x = y under

both hypotheses and φ(0, 0) = D(pX|h0
||pX|h1

). Intuitively, it

is more difficult for the AD to identify the hypotheses when

they lead to more similar energy demand profiles. It can be

observed in Fig. 2 that φ(s, s) decreases as p̃ (resp. p̄) gets

closer to the fixed p̄ (resp. p̃). Another interesting observation

is that φ(s, s) curves for different settings of energy demand

statistics (p̄, p̃) might intersect. This means that, to achieve

a privacy-preserving guarantee, a lower RES average energy

generation rate is required for (p̄, p̃)(A) than that for (p̄, p̃)(B);

while to achieve anther privacy-preserving guarantee, a higher

RES average energy generation rate is required for (p̄, p̃)(A)

than that for (p̄, p̃)(B).

VI. CONCLUSION

We have modeled the smart meter privacy problem as a

Neyman-Pearson test on the consumer behavior, and character-

ized different privacy-preserving energy management policies

in the asymptotic regime by divergence rate expressions. In

the worst case scenario where the Type I probability of

error upper bound is close to one, we obtained a single-

letter divergence expression for the asymptotic exponential

decay rate of the maximum minimal Type II probability of

error if the privacy-preserving memoryless hypothesis-aware

policy is used; and we showed that the privacy-preserving

memoryless hypothesis-aware policy cannot outperform the

privacy-preserving hypothesis-unaware policy with memory.

Furthermore, we have proved that the energy supply alphabet

can be constrained to the energy demand alphabet without loss

of optimality for the evaluation of the single-letter-divergence

privacy-preserving guarantee, which can simplify the problem

and the numerical simulation. More importantly, we have

shown that the proposed two-phase hypothesis-unaware energy

management policy with memory, where the EMU first learns

the consumer behavior, can achieve the same asymptotic

performance as the privacy-preserving memoryless hypothesis-

aware policy.
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