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Abstract—This paper considers the zero-delay transmission of a
Gaussian source over an additive white Gaussian noise (AWGN)
channel with a one-bit analog-to-digital converter (ADC) front
end. The optimization of the encoder and decoder is tackled
under both the mean squared error (MSE) distortion and the
outage distortion criteria with an average power constraint. For
MSE distortion, the optimal transceiver is identified over the
space of symmetric encoders. This result demonstrates that the
linear encoder, which is optimal with a full-precision front end,
approaches optimality only in the low signal-to-noise ratio (SNR)
regime; while, digital transmission is optimal in the high SNR
regime. For the outage distortion criterion, the structure of the
optimal encoder and decoder are obtained. In particular, it is
shown that the encoder mapping is piecewise constant and can
take only two opposite values when it is non-zero.

Index Terms-Joint source channel coding, zero-delay transmis-
sion, average distortion, outage distortion, one-bit ADC.

I. INTRODUCTION

An important practical constraint on the implementation of
digital receivers in communication systems is the power con-
sumed by analog-to-digital converters (ADCs) [1]. Therefore,
a practical solution to reduce the power consumption is to keep
the ADC resolution low. Motivated by this observation, in [2]–
[7], communication systems with a one-bit ADC front end have
been studied for different scenarios such as low-power sys-
tems, ultra-wideband links, millimetre-wave communication,
and massive multiple-input multiple-output (MIMO) systems.
For example, for an AWGN channel with a one-bit ADC, it
is shown in [2] that bipolar (BPSK) transmission achieves the
capacity.

While the previous literature focuses on the reliable trans-
mission of digital information over long blocks, in applications
such as the Internet of Things, cyber-physical systems or
wireless sensor networks, low-delay transfer of analog mea-
surements is a more relevant communication task [8]. In light
of this, here we consider the zero-delay transmission of an
analog Gaussian source over an AWGN channel in the presence
of a one-bit ADC (see Fig. 1). As a reference, we note that, for
this problem, in the presence of a full resolution front end, and
under the mean squared error (MSE) distortion measure, linear
transmission and minimum MSE (MMSE) estimation are the
optimal encoder and decoder, respectively [9].
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Figure 1. System model for the transmission of a single Gaussian source over
an AWGN channel with a one-bit ADC receiver front end.

We study the optimization of encoding and decoding func-
tions under two different criteria, namely MSE and distortion
outage probability. Among other results, we show that, under
MSE distortion, linear transmission only approaches optimality
in the low signal-to-noise ratio (SNR) regime. Also, for the
outage distortion criterion, structure of the optimal encoder and
decoder are obtained, and it is shown that the encoder mapping
is piecewise constant, taking only two opposite values when it
is non-zero.

The paper is organized as follows. In Section II, we introduce
the system model. In Section III, we consider the transmission
under the MSE distortion criterion. As reference, we also
compare the resulting performance with linear and digital
encoders. In Section IV, we consider the transmission under
the outage distortion criterion. In Section V, numerical results
are provided, followed by conclusions in Section VI. Details
of the proofs are omitted due to space limitations, and will be
provided in a longer version of this paper.

II. SYSTEM MODEL

We consider the system in Fig. 1, in which a single sample of
Gaussian source V ∼ N (0, σ2

v), is transmitted to a receiver that
makes a single quantized observation over an AWGN channel.
The encoded signal is given as X = f(V ), where f : R→ R
is a mapping from the source sample to the channel input,
whose average transmission power is constrained by P , i.e.,
E[f(V )2] ≤ P . The noisy signal

Z = f(V ) +W, (1)

with noise W ∼ N (0, σ2
w), is quantized with a one-bit ADC,

Γ(·), producing the single observed bit

Y = Γ(Z), (2)

where Γ(x) = 1 if x < 0, and Γ(x) = 0 otherwise. We
define SNR = P/σ2

w. From the quantized signal Y , the
decoder produces an estimate V̂ of V using a decoding function
g : {0, 1} → R, i.e., V̂ = g(Y ).



Two performance criteria are considered, namely, the MSE

D̄ = E[(V − V̂ )2], (3)

and the distortion outage probability, defined as

ε(D) = Pr((V − V̂ )2 ≥ D), (4)

for some specified target distortion D. In either case, we
aim at identifying the optimal function f(·) along with the
corresponding estimator at the receiver.

III. AVERAGE DISTORTION

In this section, we study the design of the encoder and
decoder under the MSE criterion (3). We first derive the
optimal encoder and decoder mappings under the constraint
that the encoder mapping f(·) be symmetric. We then consider
the conventional linear transmission and digital modulation
schemes as reference.

A. Optimal Symmetric Encoder and Decoder

We consider the problem of minimizing the MSE under an
average power constraint

minimize
f,g

D̄

subject to E[f(V )2] ≤ P.
(5)

Without loss of generality, we write the receiver mapping as

V̂ = g(Y ) =

{
v̂0 if Y = 0

v̂1 if Y = 1
, (6)

which is defined by the pair of parameters (v̂0, v̂1). We observe
that, for any encoder mapping f(·), the MMSE estimator at
the receiver is optimal for problem (5). Therefore, we can set
v̂0 = E[V |Y = 0] and v̂1 = E[V |Y = 1] without loss of
optimality.

Due to the symmetry of the problem, we limit the transmitter
to odd mapping functions f(·), i.e., −f(v) = f(−v). We leave
it as an open issue to assess whether odd mappings are optimal
(see [10] for a counterexample in a related problem). Under
this restriction, we can calculate the optimal decoder (6) as

v̂0 = E[V |Y = 0] (7a)

=

1
σv

∞∫
−∞

vΦ
(
v
σv

)
Pr(Y = 0

∣∣V = v)dv

Pr(Y = 0)
(7b)

=
2

σv
− 4

σv

∞∫
0

vΦ

(
v

σv

)
Q

(
f(v)

σw

)
dv, (7c)

where Φ(·) and Q(·) represent the probability density function
(PDF) and complementary cumulative distribution function
(CCDF) of a standard Gaussian random variable N (0, 1),
respectively. We also have v̂0 = −v̂1. Moreover, we can restrict
without loss of generality the optimization space to mapping
functions f(v) that satisfy v̂0 ≥ 0. The average distortion can
be written as

D̄
(a)
= σ2

v − E[V V̂ ] (8a)

(b)
= σ2

v −
1

2

(
v̂0E[V |V̂ = v̂0] + v̂1E[V |V̂ = v̂1]

)
(8b)

(c)
= σ2

v − v̂20 , (8c)

where (a) is due to the orthogonality property of MMSE
estimation; (b) follows from the discussed symmetry of the
encoder; and (c) is due to the chain of equalities E[V |V̂ =
v̂0] = E[V |Y = 0] = v̂0 = −v̂1 = −E[V |V̂ = v̂1]. Given (8c)
and the non-negativity of v̂0, minimizing D̄ is equivalent to
maximizing v̂0.

In light of the discussion above, we propose to tackle
problem (5) by minimizing the following Lagrangian function:

minimize
f

− v̂0 + λE[f(V )2]. (9)

where λ > 0 is a Lagrange multiplier. The next proposition
provides the optimal encoder mapping that solves problem (9).

Proposition III.1. The optimal odd mapping f(·) for problem
(9) is unique1 and is defined by the implicit equation

f(v)e
f(v)2

2σ2w =
v√

2πσwλ
. (10)

Proof : The problem (9) satisfies the conditions under which
the Weierstrass’ theorem applies, since the objective function is
continuous and coercive (see [11, Section A.2] for definitions).
Therefore, there exists a function f(·) that solves problem
(9). By applying the Euler-Lagrange equations [12, Section
7.5], we obtain the necessary condition in (10) for the optimal
f(·). Finally, we observe that, due to the monotonicity of the
left-hand side of (10) as a function of f(·), there is only
one function f(v) that satisfies the necessary Euler-Lagrange
equation (10). This, along with the existence of an optimal
solution, completes the proof.

From Proposition III.1, it can be verified that, in the low
SNR regime, namely for σ2

w → ∞ (or SNR → 0), the
optimal mapping for problem (9) is linear, i.e., f(v) ∝ v.
This conclusion is in line with the results obtained in [13,
Theorem 8]. Examples of the optimal encoding functions
obtained numerically from (10) are provided in Section V.

B. Linear transmission

The encoder mapping for linear transmission is given by

f(v) =
√
P/σ2

vv. (11)

As seen in Sec. III-A, linear transmission is optimal in the
low-SNR regime. Here we obtain its performance for any
given channel SNR. The MSE distortion D̄l achieved by
linear transmission can be found by substituting (11) in (8c).
Since the resulting expression is not in closed form, we
now derive analytical upper and lower bounds that can be
useful to obtain additional insights. Using the lower bound
in [14] for the CCDF Q(·), namely Q(x) ≥ βe−

kx2

2 , where

1We have uniqueness if we constrain the mapping to be monotone increas-
ing.



β = e(π(k−1)+2)−1

2k

√
1
π (k − 1)(π(k − 1) + 2) for any k ≥ 1,

the distortion of linear transmission can be lower bounded as

D̄l ≥ σ2
v

(
1− 2

π

(
1− 2β

1 + k · SNR

)2
)
. (12)

Instead, using the inequality Q(x) ≤ 1
4 (e−x

2

+ e−
x2

2 ) [15] we
have the upper bound

D̄l ≤ σ2
v

(
1− 1

2π

(
SNR(3 + 8SNR)

(SNR + 1)(2SNR + 1)

))
. (13)

Using these bounds we observe that, in the asymptotic limit
of low SNR, when SNR → 0, we have the average distortion
D̄l = σ2

v , while, when SNR → ∞, we obtain D̄l = σ2
v(1 −

2/π). Both distortions can be argued to be the minimal in
the low SNR and high SNR regimes, respectively. In fact, for
zero SNR, the MMSE estimate, even with an infinite-resolution
front end, is given by V̂ = 0 which yields D̄ = σ2

v . Instead,
for infinite SNR, the best mapping is given by the optimal
binary quantizer, which yields D̄ = σ2

v(1 − 2/π) (see, e.g.,
[16, Section 10.1]).

C. Digital Transmission

Here we consider a scheme based on source quantization
and mapping to a discrete constellation for transmission. Ac-
cordingly, the source is quantized to one of M levels, each
characterized by the intervals (di−1, di] for i = 1, ...,M , where
d0 = −∞, dM = ∞, and di−1 ≤ di for all i = 1, ...,M .
Each interval (di−1, di] is mapped to the corresponding channel
input X = xi. We take the constellation of possible trans-
mission points to be {xi = (2i − 1 − M)A, i = 1, ...,M},
for some parameter A ≥ 0. Note that, when M is even,
this corresponds to the M-ary pulse amplitude modulation
(M -PAM), while if M is odd, the constellation includes the
zero-power signal xM+1

2
= 0. The transmission power can

be written as E[X2] =
∑M
i=1 x

2
i · Pr(X = xi), where

Pr(X = xi) = 1
σv

∫ di
di−1

Φ
(
v
σv

)
dv. The MSE distortion D̄d,M

achieved by this scheme is given by (8c), where

v̂0 =
2σv√

2π

M∑
i=1

(
e
−
d2i−1

2σ2v − e−
d2i
2σ2v

)
Q

(
−xi
σw

)
. (14)

As a special case, when M = 2, setting the quantization
threshold d1 = 0, the scheme simplifies to BPSK transmission,
and the achievable distortion can be computed as

D̄d,2 = σ2
v

(
1− 2

π

(
1− 2Q

(√
SNR

))2)
. (15)

We observe that, as for linear transmission, for SNR → ∞,
we have D̄d,2 = σ2

v(1 − 2/π), and, for SNR = 0, we have
D̄d,2 = σ2

v .

IV. OUTAGE DISTORTION

In this section we study the optimal encoder and decoder
under the outage distortion criterion (4). We specifically focus
on the minimization of the Lagrangian functional below

minimize
f,g

ε(D) + λE[f(V )2], (16)
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Figure 2. Illustration of the intervals I0, I1 and (I0 ∩ I1) that characterize
the optimal encoder for the outage distortion criterion, for two different cases
depending on the (v̂0, v̂1) values.

where λ > 0 is a Lagrange multiplier, and the decoder is given,
with no loss of generality, as in (6). We first assume that the
reconstruction points (v̂0, v̂1) are fixed arbitrarily, and focus
on the optimization of the encoder mapping f(·) for a given
decoder in (6). We then tackle the problem of minimizing the
outage probability over the reconstruction points (v̂0, v̂1).

To elaborate, we define the intervals

Ii = {v : (v − v̂i)2 ≤ D} (17)

for i = 0, 1, which are depicted in Fig. 2. Each interval
Ii, corresponds to the set of source values that are within
the allowed distortion D of the reconstruction point v̂i. The
following claims hold: (i) For all source outputs v in the set
(I0 ∪ I1)C = {v : mini=0,1(v − v̂i)

2 > D}, outage occurs
(superscript C denotes the complement set). We refer to this
event as source outage. (ii) For all source values in the interval
I0∩I1, either of the reconstruction points yield a distortion no
more than the target value D. Therefore, regardless of which
value (v̂0, v̂1) is selected by the receiver, no outage occurs.
From observations (i) and (ii), it easily follows that, for all
source values v inside the intervals (I0 ∪ I1)C and (I0 ∩ I1),
the optimal mapping is f(v) = 0, since, for both intervals, the
occurrence of an outage event is independent of the transmitted
signal.

From the discussion above, we only need to specify the
optimal mapping for the intervals I0\I1 and I1\I0. This should
be done by accounting not only for the source outage event
mentioned above, but also for the channel outage events. In
particular, the distortion outage probability ε(D) can be written
as

ε(D) = Pr
(
V ∈ (I0 ∪ I1)C

)
+ Pr

(
V ∈ (I0 \ I1), V̂ = v̂1

)
+ Pr

(
V ∈ (I1 \ I0), V̂ = v̂0

)
, (18)

where the first term accounts for the source outage event, while
the second and third terms are the probabilities of outage due
to channel transmission errors. For instance, the second term
is the probability that the decoder selects V̂ = v̂1 while V
is in the interval I0 \ I1, see Fig. 2. The next proposition
characterizes the optimal encoder mapping.
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Proposition IV.1. Given a target distortion D, and arbitrary
reconstruction points v̂0 and v̂1, the optimal mapping f(·) for
problem (16) is given by

f(v) =

 0 if v ∈ (I0 ∪ I1)C ∪ (I0 ∩ I1)
−u if v ∈ (I1\I0)
u if v ∈ (I0\I1)

(19)

where u is the unique solution of

ue
u2

2σ2w =
1

2
√

2πσwλ
. (20)

We note here that, for given λ, the optimal u is independent
of the values of v̂0 and v̂1. Examples of optimal encoders will
be provided in Section V. In the next proposition, we turn to
the optimization of the reconstruction levels (v̂0, v̂1).

Proposition IV.2. The optimal reconstruction points (v̂0, v̂1),
are given by

v̂0 =
√
D − a∗ (21a)

v̂1 = −v̂0 (21b)

where a∗ is obtained from

a∗ = arg min

a ∈ [0,
√
D]

2Q

(
2
√
D − a
σv

)
+ 2

(
Q

(
u

σw

)
+ λu2

)

·

(
Q

(
a

σv

)
−Q

(
2
√
D − a
σv

))
, (22)

where u is obtained by solving (20).

To summarize, the optimal encoder and decoder are obtained
as follows. First, given the Lagrange multiplier λ, the value of
u is obtained by solving (20). Then the decoder’s reconstruc-
tion points (v̂0, v̂1) are computed from (21)-(22). Finally, the
optimal encoder mapping is given by (19).

The next remark elaborates on the optimal encoder and
decoder in two asymptotic SNR regimes.
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Figure 4. Complement of the MSE 1 − D̄ (dB), versus the SNR (dB) for
the optimal symmetric encoder obtained in Proposition III.1 as well as for the
linear and digital schemes (σ2
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Remark IV.1. If λ is large, i.e., in the low-SNR regime, we
have u ≈ 0 from (20), and hence, from (22) we obtain

a∗ ≈ arg min

a ∈ [0,
√
D]

Q

(
a

σv

)
+Q

(
2
√
D − a
σv

)
, (23)

yielding v̂0 = v̂1 = 0, that is, I0 = I1 and ε(D) = 2Q
(√

D
σv

)
.

On the other hand, for small values of λ, corresponding to the
high-SNR regime, we have that u is large and

a∗ ≈ arg min

a ∈ [0,
√
D]

2Q

(
2
√
D − a
σv

)
, (24)

which yields distinct intervals I0 and I1 with v̂0 = −v̂1 =
√
D,

and ε(D) = 2Q
(

2
√
D

σv

)
.

V. NUMERICAL RESULTS

Here we provide some illustrations of the results derived
above by means of numerical examples. We start by plot-
ting in Fig. 3 the optimal mapping functions obtained from
Proposition III.1 under the MSE criterion for different values
of P , with σ2

w = 1. The value of the Lagrange multiplier
λ in (10) is obtained by means of bisection so as to satisfy
the power constraint E[f(V )2] = P . As discussed in Section
III-A, the optimal mapping function for low SNR tends to
linear transmission. This is reflected in Fig. 3 by the fact
that for smaller values of P the function f(v) approaches a
straight line. Instead, for larger values of P , which corresponds
to larger SNR, the mapping function tends to resemble a
step function, which corresponds to digital transmission with
M = 2, as discussed in Section III-C.

In Fig. 4, the MSE of optimal, linear and digital transmission
schemes is plotted versus the SNR for σ2

w = 1 and σ2
v = 1.

For clarity of illustration, we plot the accuracy measure 1−D̄,
where we note that D̄ = σ2

v = 1 is achievable by setting
V̂ = 0 irrespective of the received signal. As discussed, linear
transmission approaches optimality at low SNR, whereas, for
higher SNR, digital schemes outperform linear transmission.
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Also, it is seen that for digital transmission, increasing the
number of constellation points improves the performance,
while in the high SNR regime binary transmission is sufficient
to achieve the optimal performance.

In Fig. 5, the optimal encoding function f(·) and the
corresponding reconstruction points (v̂0, v̂1) are shown under
the distortion outage criteria for four different values of the
power constraint P . It is seen that, as P decreases, the optimal
reconstruction points v̂0 and v̂1, tend to zero as discussed
in Remark IV.1. This can be explained, since, for low P ,
the optimal solution aims at minimizing the probability of
source outage events, rather than the probability of error due to
channel noise (recall (18)). In contrast, for significantly large
P , as for Remark IV.1, we obtain v̂0 = −v̂1 =

√
D.

Finally, in Fig. 6, the complement of the outage probability
1 − ε(D) is plotted with respect to SNR for different values
of D. As the SNR decreases, the distortion outage probability
tends to the source outage term in (23), which decreases with
D.

VI. CONCLUSIONS

In this paper, we considered the zero-delay transmission of
a single sample of a Gaussian source over an AWGN channel
followed by a one-bit ADC at the receiver. We studied this sce-
nario under an average power constraint for two performance
criteria; namely, the MSE, and distortion outage probability.
For the MSE, over the space of symmetric encoder mappings,
we obtained the optimal encoder structure. We observed that
in the low SNR regime linear transmission approaches the
optimal performance whereas digital transmission becomes
optimal in the high SNR regime. For the outage distortion
criterion, we first obtained the optimal structure of the encoder
given arbitrary reconstruction points. Then, we optimized the
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SNR regime for the corresponding distortion target.

reconstruction points for a given power constraint. We showed
that the optimal encoder function is symmetric, and partially
constant with respect to the value of the reconstruction points.
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