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Abstract—We study lossy communication of correlated sources
over a multiple access channel. In particular, we provide a
joint source-channel coding scheme for transmitting correlated
sources with decoder side information, and study the conditions
under which separate source and channel coding is optimal. For
the latter, the encoders and/or the decoder have access to a
common observation conditioned on which the two sources are
independent. By establishing necessary and sufficient conditions,
we show the optimality of separation when the encoders and the
decoder both have access to the common observation. We also
demonstrate that separation is optimal when only the encoders
have access to the common observation whose lossless recovery
is required at the decoder. As a special case, we study separation
for sources with a common part. Our results indicate that side
information can have significant impact on the optimality of
source-channel separation in lossy transmission.

I. INTRODUCTION

We consider the transmission of two correlated memoryless
sources over a multiple access channel with fidelity crite-
ria. The encoders and/or the decoder may have access to
side information correlated with the sources. We propose an
achievable joint source-channel coding scheme in the presence
of correlated decoder side information. We then focus on
the case when the two sources are conditionally independent
given the side information available at the encoders and/or
the decoder. First, we identify the necessary and sufficient
conditions under which separation is optimal when the side
information is shared between the encoders and the decoder.
Next, we consider the case when the decoder is required to
recover some common observation shared by both encoders
losslessly, but can tolerate some distortion for the parts known
only at a single encoder. We show that separation is also
optimal for this case. Lastly, we consider the transmission
of sources with a common part in the sense of Gács-Körner
[1], and investigate the conditions under which separation is
optimal in the absence of side information.

Related Work: Shannon proved the optimality of separate
source and channel coding for transmitting a source through a
noisy channel [2], known as the separation theorem. Separation
was shown to be optimal for the lossy transmission of a source
with decoder side information, in [3]. The point-to-point
scenario was extended in [4] to transmission of correlated
sources through a multiple access channel, and separation
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Fig. 1. Communication of correlated sources over a multiple access channel.

was shown to be optimal when one of the sources is shared
between the two encoders. For the lossless case, the optimality
of separation was established in [5] for transmitting correlated
sources through a multiple access channel, whenever the
decoder has access to some side information conditioned on
which the two sources are independent. A joint source-channel
coding scheme was proposed in [6] for the transmission of
correlated sources over a multiple access channel based on
hybrid coding.

In the remainder of the paper, X is a random variable, and
x is its realization. Xn = (X1, . . . , Xn) is a random vector of
length n, and xn = (x1, . . . , xn) denotes its realization. X is
a set with cardinality |X |. E[X] is the expected value of X .

II. SYSTEM MODEL

Consider the transmission of two discrete memoryless
sources S1 and S2 in Fig. 1. Encoder 1 observes Sn

1 =
(S11, . . . , S1n). Encoder 2 observes Sn

2 = (S21, . . . , S2n). If
switch SW2 in Fig. 1 is closed, the two encoders also have
access to a common observation Zn correlated with Sn

1 and
Sn
2 . Encoders 1 and 2 map their observations to the channel

inputs Xn
1 and Xn

2 , respectively. A discrete memoryless mul-
tiple access channel (DM-MAC) exists between the encoders
and the decoder, characterized by the distribution p(y|x1, x2).
If switch SW1 in Fig. 1 is closed, the decoder has access to
side information Zn. Upon observing the channel output Y n

and side information Zn whenever it is available, the decoder
constructs Ŝn

1 , Ŝn
2 , and Ẑn such that

1

n

n∑
i=1

E[dj(Sji, Ŝji)] ≤ Dj for j = 1, 2 (1)

where Dj is the maximum average distortion allowed for
Sj , given a distortion measure dj(sji, ŝji) for j = 1, 2, and
P (Zn 6= Ẑn) → 0 as n → ∞. Random variables S1, S2,
Z, X1, X2, Y , Ŝ1, Ŝ2, Ẑ are defined over the corresponding



alphabets S1, S2, Z , X1, X2, Y , Ŝ1, Ŝ2, Ẑ . Note that, when
the switch SW1 is closed, error probability in decoding Zn

becomes irrelevant since it is readily available at the decoder,
and serves as side information.

We use the following notation from [3], [4]. Define the
minimum average distortion for Sj given Q as

E(Sj |Q) = min
f :Q→Ŝj

E[dj(Sj , f(Q))], j = 1, 2, (2)

and the conditional rate distortion function [7] for source Sj

when side information Z is shared between the encoder and
the decoder as

RSj |Z(Dj) = min
p(uj |sj ,z)

E(Sj |Uj ,Z)≤Dj

I(Sj ;Uj |Z), j = 1, 2. (3)

III. JOINT SOURCE-CHANNEL CODING WITH DECODER
SIDE INFORMATION

We first assume that only SW1 is closed, and present a
general achievable scheme for the lossy communication of
correlated sources in the presence of decoder side information.

Theorem 1. The distortion pair (D1, D2) is achievable
for sending two discrete memoryless correlated sources
S1 and S2 over a DM-MAC with p(y|x1, x2) and de-
coder side information Z if there exists a joint distribution
p(u1, u2, s1, s2, z) = p(u1|s1)p(u2|s2)p(s1, s2, z), and func-
tions xj(uj , sj), gj(u1, u2, y, z) for j = 1, 2, such that

I(U1;S1|U2, Z) < I(U1;Y |U2, Z) (4)
I(U2;S2|U1, Z) < I(U2;Y |U1, Z) (5)

I(U1, U2;S1, S2|Z) < I(U1, U2;Y |Z) (6)

where E[dj(Sj , gj(U1, U2, Y, Z))] ≤ Dj for j = 1, 2.

Proof. Our achievable scheme builds upon the hybrid coding
framework of [6], by generalizing it to the case with decoder
side information.

For the remainder of the paper, we assume that the sources
are independent when conditioned on the side information,
i.e., the Markov condition S1 − Z − S2 holds.

A. Optimality of Separation
We now focus on the conditions under which separation is

optimal when sources S1 and S2 are independent given the
side information Z. We first consider that both switches in
Fig. 1 are closed. We show that whenever the two sources are
independent given the side information that is shared between
the encoders and the decoder, separation is optimal. The next
theorem states the necessary and sufficient conditions.

Theorem 2. Consider the communication of two correlated
sources S1 and S2 with side information Z shared between
the encoders and the decoder. If S1 − Z − S2, then separate
source and channel coding is optimal, and a distortion pair
(D1, D2) is achievable if

RS1|Z(D1) < I(X1;Y |X2, Q) (7)
RS2|Z(D2) < I(X2;Y |X1, Q) (8)

RS1|Z(D1) +RS2|Z(D2) < I(X1, X2;Y |Q) (9)

for some p(x1, x2, y, q) = p(y|x1, x2)p(x1|q)p(x2|q)p(q).
Conversely, for any achievable (D1, D2) pair, (7)-(9) should

hold with < replaced with ≤.

Proof. (Achievability) The source coding part is based on
lossy source coding at the two encoders conditioned on side
information Z shared between the encoder and decoder [7],
after which the conditional rate distortion functions given in
(3) can be achieved for S1 and S2, respectively. Channel
coding is performed based on classical multiple access channel
coding with independent channel inputs [8].

(Converse) Suppose there exist encoding functions ej : Snj ×
Zn → Xn

j for encoder j = 1, 2, and decoding functions gj :

Yn × Zn → Ŝnj such that 1
n

∑n
i=1E[dj(Sji, Ŝji)] ≤ Dj + ε

for j = 1, 2, where ε→ 0 as n→∞.
Define Uji = (Y n, Si−1

j , Zc
i ) for j = 1, 2, where Zc

i =
(Z1, . . . , Zi−1, Zi+1, . . . , Zn). Then,
1

n
I(Xn

1 ;Y
n|Xn

2 , Z
n) (10)

≥ 1

n
I(Sn

1 ;Y
n|Xn

2 , Z
n) (11)

=
1

n
I(Sn

1 ;Y
n, Xn

2 |Zn) (12)

≥ 1

n
I(Sn

1 ;Y
n|Zn) (13)

=
1

n

n∑
i=1

I(S1i;Y
n|Si−1

1 , Zn) (14)

=
1

n

n∑
i=1

(I(S1i;Y
n, Si−1

1 , Zc
i |Zi)−I(S1i;S

i−1
1 , Zc

i |Zi)) (15)

=
1

n

n∑
i=1

I(S1i;U1i|Zi) (16)

=
1

n

n∑
i=1

RS1|Z(E(S1i|U1i, Zi)) (17)

≥ 1

n

n∑
i=1

RS1|Z(E(S1i|Zn, Y n)) (18)

≥ 1

n

n∑
i=1

RS1|Z(E[d1(S1i, Ŝ1i)]) (19)

≥ RS1|Z(D1 + ε) (20)

(11) is from Y n − Xn
1X

n
2 − Sn

1Z
n and conditioning cannot

increase entropy, and (12) from Xn
2 − Zn − Sn

1 :

p(xn2 , s
n
1 |zn) =

∑
sn2

p(xn2 , s
n
1 , s

n
2 |zn) (21)

=
∑
sn2

p(xn2 |sn1 , sn2 , zn)p(sn1 |zn)p(sn2 |zn) (22)

= p(sn1 |zn)
∑
sn2

p(xn2 |sn2 , zn)p(sn2 |zn) (23)

= p(xn2 |zn)p(sn1 |zn) (24)

where (22) is from Sn
1 −Zn−Sn

2 ; (23) is from Xn
2 −Sn

2Z
n−

Sn
1 ; (13) is from the nonnegativity of mutual information; (14)

is from the chain rule; (16) is from the memoryless property of



the sources and the side information; (17) is from (2) and (3);
(18) is from the fact that further conditioning cannot increase
(2); (19) follows since Ŝ1i is a function of (Y n, Zn); (20)
holds as RS1|Z(D1) is convex and monotone in D1.

By defining a discrete random variable Q̃ uniformly dis-
tributed over {1, . . . , n} independent of everything else,

1

n
I(Xn

1 ;Y
n|Xn

2 , Z
n) (25)

≤ 1

n

n∑
i=1

(H(Yi|X2i, Z
n)−H(Yi|X1i, X2i, Z

n)) (26)

=
1

n

n∑
i=1

I(X1i;Yi|X2i, Q̃ = i, Zn) (27)

= I(X1Q̃;YQ̃|X2Q̃, Q̃, Z
n) = I(X1;Y |X2, Q) (28)

where we let X1 = X1Q̃, X2 = X2Q̃, Y = YQ̃ and Q =

(Q̃, Zn). Combining (10) and (20) with (28) yields (7).
Following similar steps, we obtain (8). Lastly, we have

1

n
I(Xn

1,X
n
2 ;Y

n|Zn)=
1

n
(I(Xn

1 ;Y
n|Xn

2,Z
n)+I(Xn

2 ;Y
n|Zn))

≥RS1|Z(D1+ε)+
1

n
I(Sn

2 ;Y
n|Zn) (29)

≥RS1|Z(D1+ε)+RS2|Z(D2 + ε) (30)

the first term in (29) is from (10)-(20), and (30) is from (13)-
(20) with the role of S1 replaced with S2. To obtain the second
term in (29), we first show that Y n − ZnXn

2 − Sn
2 :

p(yn, sn2 |zn, xn2 )
= p(sn2 |zn, xn2 )p(yn|sn2 , zn, xn2 ) (31)

= p(sn2 |zn, xn2 )
∑
sn1 ,x

n
1

p(yn, sn1 , x
n
1 |sn2 , zn, xn2 ) (32)

= p(sn2 |zn, xn2 )
∑
sn1 ,x

n
1

p(yn|xn1 , xn2 )p(xn1 |sn1 , zn)p(sn1 |zn) (33)

= p(sn2 |zn, xn2 )
∑
xn
1

p(yn|xn1 , xn2 )p(xn1 |zn) (34)

(33) is from Y n−Xn
1X

n
2 −Sn

1 S
n
2Z

n and Xn
1 −Sn

1Z
n−Sn

2X
n
2

as well as Sn
1 − Zn − Sn

2X
n
2 which holds since

p(sn1 , s
n
2 , x

n
2 |zn) = p(xn2 |sn1 , sn2 , zn)p(sn2 |zn)p(sn1 |zn) (35)

= p(xn2 |sn2 , zn)p(sn2 |zn)p(sn1 |zn) (36)
= p(xn2 , s

n
2 |zn)p(sn1 |zn) (37)

(35) is from Sn
1 −Zn−Sn

2 and (36) is from Xn
2 −Sn

2Z
n−Sn

1 .
Note that

p(yn|zn, xn2 ) =
∑
sn1 ,x

n
1

p(yn, sn1 , x
n
1 |zn, xn2 ) (38)

=
∑
sn1 ,x

n
1

p(yn|xn1 , xn2 )p(xn1 |sn1 , zn)p(sn1 |zn) (39)

=
∑
xn
1

p(yn|xn1 , xn2 )p(xn1 |zn). (40)

(39) is from Y n−Xn
1X

n
2 −Sn

1 S
n
2Z

n and Xn
1 −Sn

1Z
n−Xn

2

as well as Sn
1 −Zn−Xn

2 which holds since Sn
1 −Zn−Sn

2X
n
2 .

Combining (40) and (34), we have

p(yn, sn2 |zn, xn2 ) = p(sn2 |zn, xn2 )p(yn|zn, xn2 ) (41)

hence Y n − ZnXn
2 − Sn

2 . Then, (29) follows from,

I(Xn
2 ;Y

n|Zn) = H(Y n|Zn)−H(Y n|Xn
2 , Z

n) (42)
= H(Y n|Zn)−H(Y n|Xn

2 , Z
n, Sn

2 ) (43)
≥ H(Y n|Zn)−H(Y n|Zn, Sn

2 ) (44)
= I(Sn

2 ;Y
n|Zn) (45)

(43) is from Y n−ZnXn
2 −Sn

2 and (44) holds as conditioning
cannot increase entropy. Lastly,
1

n
I(Xn

1 , X
n
2 ;Y

n|Zn)

≤ 1

n

n∑
i=1

(H(Yi|Zn)−H(Yi|X1i, X2i, Z
n)) (46)

=
1

n

n∑
i=1

I(X1i, X2i;Yi|Q̃ = i, Zn) = I(X1, X2;Y |Q) (47)

Combining (30) with (47) recovers (9).
We show p(x1, x2|q) = p(x1|q)p(x2|q) for q = (i, zn),

P (X1 = x1, X2 = x2|Q = q)

=P (X1i = x1, X2i = x2|Q̃ = i, Zn = zn) (48)

=P (X1i=x1|Q̃= i, Zn=zn)P (X2i=x2|Q̃= i, Zn=zn)
(49)

=P (X1 = x1|Q = q)P (X2 = x2|Q = q) (50)

as in [5], (49) is from X1i−Zn−X2i as Sn
1 −Zn−Sn

2 .
For the case when side information Z is available only at

the decoder, i.e., when only switch SW1 is closed, separation
is known to be optimal for the lossless transmission of sources
S1 and S2 whenever S1 −Z − S2 [5]. In light of Theorem 2,
we show that a similar result holds for the lossy case whenever
the Wyner-Ziv rate distortion function of each source is equal
to its conditional rate distortion function.

Corollary 1. Consider communication of two correlated
sources S1 and S2 with decoder only side information Z. If

RSj |Z(Dj) = RWZ
Sj |Z(Dj) (51)

and S1 − Z − S2, where

RWZ
Sj |Z(Dj) = min

p(uj |sj),g(uj ,z)
E[dj(Sj ,g(Uj ,Z))]≤Dj

Uj−Sj−Z

I(Sj ;Uj |Z) for j = 1, 2

is the (Wyner-Ziv) rate distortion function of Sj with decoder
side information Z [9], then separation is optimal, with the
necessary and sufficient conditions stated as in (7)-(9).

Corollary 1 follows from the fact that whenever (51) holds,
conditional rate distortion functions in Theorem 2 are achiev-
able by relying only on decoder side information.

Remark 1. Gaussian sources are an example for (51).

IV. SEPARATION IN THE PRESENCE OF COMMON
OBSERVATION

In this section, we assume that only switch SW2 is closed in
Fig.1, and show the optimality of separation whenever lossless
reconstruction of the common observation is required.



Theorem 3. Consider the communication of correlated
sources S1, S2, and Z where Z is observed by both encoders.
If S1−Z −S2 and that Z is to be reconstructed in a lossless
fashion, then, separate source and channel coding is optimal,
and the distortion pair (D1, D2) is achievable if

RS1|Z(D1) < I(X1;Y |X2,W ) (52)
RS2|Z(D2) < I(X2;Y |X1,W ) (53)

RS1|Z(D1) +RS2|Z(D2) < I(X1, X2;Y |W ) (54)
H(Z) +RS1|Z(D1) +RS2|Z(D2) < I(X1, X2;Y ) (55)

for some p(x1, x2, y, w) = p(y|x1, x2)p(x1|w)p(x2|w)p(w).
Conversely, if a distortion pair (D1, D2) is achievable, then

(52)-(55) should hold with < replaced with ≤.

Proof. We provide an outline of our proof in the sequel.
(Achievability) The source coding part is based on [10,

Theorem 1]. We let Y0 ← Z, Yj ← (Sj , Z) for j = 1, 2,
and X ← Z in [10, Fig. 3] and observe that any achievable
rate for this system is also achievable by our system, since
Y0 is known by both encoders in our system as Y0 ← Z.
Hence, the encoders can cooperate to transmit Y0 and realize
any achievable scheme in [10].

Letting U = X in [10, Theorem 1] and substituting X ← Z,
Y0 ← Z, Ŷ0 ← Ẑ, Yj ← (Sj , Z), Vj ← Uj , Ŷj ← Ŝj ,
and dj(Yj , Ŷj) ← dj(Sj , Ŝj) for j = 1, 2, we can show that
a distortion pair (D1, D2) is achievable for the rate triplet
(R0, R1, R2) if

R1 ≥ I(S1;U1|Z) (56)
R2 ≥ I(S2;U2|Z) (57)

R1 +R2 ≥ I(S1;U1|Z) + I(S2;U2|Z) (58)
R0 +R1 +R2 ≥ H(Z)+I(S1;U1|Z) + I(S2;U2|Z) (59)

and E[dj(Sj , Ŝj)] ≤ Dj for j = 1, 2, for some distribution

p(z, s1, s2)p(u1|s1, z)p(u2|s2, z)p(ŝ1, ŝ2|z, u1, u2). (60)

We then show that one can set Ŝj = fj(Z,U1, U2) for
j = 1, 2 without loss of optimality, and that for any func-
tion fj(Z,U1, U2) such that E[dj(Sj , fj(Z,U1, U2))] ≤ Dj ,
there is a function gj(Z,Uj) with E[dj(Sj , gj(Z,Uj))] ≤
E[dj(Sj , fj(Z,U1, U2))]≤Dj , along the lines of [11]. Using
this result, we restate (56)-(59) as follows.

A distortion pair (D1, D2) is achievable for (R0, R1, R2) if

R1 ≥ RS1|Z(D1) (61)
R2 ≥ RS2|Z(D2) (62)

R1 +R2 ≥ RS1|Z(D1) +RS2|Z(D2) (63)
R0 +R1 +R2 ≥ H(Z) +RS1|Z(D1) +RS2|Z(D2) (64)

since for any p(sj , uj , z) = p(uj |sj , z)p(sj |z)p(z) and
gj(z, uj) such that E[dj(Sj , gj(Z,Uj))] ≤ Dj ,

I(Sj ;Uj |Z) ≥ RSj |Z(Dj), j = 1, 2, (65)

with RSj |Z(Dj) from (3), completing the source coding part.
Our channel coding scheme is based on multiple access

channel coding with a common message [12], for which any
triplet of rates (R0, R1, R2) is achievable if

R1 ≤ I(X1;Y |X2,W ) (66)
R2 ≤ I(X2;Y |X1,W ) (67)

R1 +R2 ≤ I(X1, X2;Y |W ) (68)
R0 +R1 +R2 ≤ I(X1, X2;Y ) (69)

for a p(x1, x2, y, w) = p(y|x1, x2)p(x1|w)p(x2|w)p(w).
(Converse) Our proof is along the lines of [3] and [4].

Suppose there exist encoding functions ej : Snj × Zn → Xn
j

for j = 1, 2, decoding functions gj : Yn → Ŝnj for j = 1, 2

and g0 : Yn → Ẑn such that 1
n

∑n
i=1E[dj(Sji, Ŝji)] ≤ Dj+ε

for j = 1, 2 and P (Zn 6= Ẑn) ≤ Pe where ε → 0, Pe → 0
as n → ∞. Define Uji = (Y n, Si−1

j , Zc
i ) for j = 1, 2 where

Zc
i = (Z1, . . . , Z(i−1), Z(i+1), . . . , Zn). Then,
1

n
I(Xn

1 ;Y
n|Xn

2 , Z
n) (70)

≥ 1

n
I(Sn

1 ;Y
n|Xn

2 , Z
n) (71)

=
1

n
I(Sn

1 ;Y
n, Xn

2 |Zn) (72)

≥ 1

n
I(Sn

1 ;Y
n|Zn) (73)

≥ 1

n

n∑
i=1

RS1|Z(E(S1i|U1i, Zi)) (74)

≥ 1

n

n∑
i=1

RS1|Z(E(S1i|Y n)) (75)

≥ 1

n

n∑
i=1

RS1|Z(E[d1(S1i, Ŝ1i)]) ≥ RS1|Z(D1 + ε) (76)

(71) is from Y n−Xn
1X

n
2 −ZnSn

1 and that conditioning cannot
increase entropy, and (72) is from I(Sn

1 ;X
n
2 |Zn) = 0 since

Sn
1 − Zn −Xn

2 as follows.

p(xn2 , s
n
1 |zn) =

∑
sn2

p(xn2 , s
n
2 , s

n
1 |zn) (77)

=
∑
sn2

p(xn2 |sn2 , zn)p(sn2 |zn)p(sn1 |zn) (78)

= p(xn2 |zn)p(sn1 |zn) (79)

(78) holds since Xn
2 −Sn

2Z
n−Sn

1 and Sn
1 −Zn−Sn

2 . Equation
(74) is from (2) and (3); (75) is from the fact that conditioning
cannot increase (2); (76) follows as Ŝ1i is a function of Y n

and that RS1|Z(D1) is convex and monotone in D1.

By replacing Q with W = (Q̃, Zn) in (25)-(28) we have
1

n
I(Xn

1 ;Y
n|Xn

2 , Z
n) ≤ I(X1;Y |X2,W ) (80)

which, when combined with (70) and (76), leads to (52).
Similar steps lead to (53). Next, we show that
1

n
I(Xn

1 , X
n
2 ;Y

n) (81)

≥ 1

n
I(Sn

1 , S
n
2 , Z

n;Y n) (82)

=
1

n
(I(Zn;Y n) + I(Sn

1 ;Y
n|Zn) +H(Sn

2 |Zn)

−H(Sn
2 |Y n, Sn

1 , Z
n)) (83)



≥ 1

n
(I(Zn;Y n) + I(Sn

1 ;Y
n|Zn) + I(Sn

2 ;Y
n|Zn) (84)

≥ H(Z)+RS1|Z(D1+ε)+RS2|Z(D2+ε)− δ(Pe) (85)

(82) is from Y n −Xn
1X

n
2 − Sn

1 S
n
2Z

n, (83) from Sn
2 −Zn −

Sn
1 , (85) from (73)-(76), the memoryless property of Zn, and

Fano’s inequality,

H(Zn|Y n) ≤ H(Zn|Ẑn) ≤ nδ(Pe) (86)

where δ(Pe)→ 0 as Pe → 0 [8]. We lastly show that

1

n
I(Xn

1 , X
n
2 ;Y

n) ≤ 1

n

n∑
i=1

I(X1i, X2i;Yi|Q̃ = i) (87)

≤ I(X1, X2;Y |Q̃) (88)
≤ H(Y )−H(Y |X1, X2)=I(X1, X2;Y )

which, when combined with (85), leads to (55). From similar
steps, we can derive (54), and show that p(x1, x2|w) =
p(x1|w)p(x2|w) as in (50) and complete the proof.

Corollary 2. A special case of Theorem 3 is the transmission
of two sources over a DM-MAC with one distortion criterion,
when one source is available at both encoders as considered in
[4], which corresponds to when S2 is a constant in Theorem 3.

V. SEPARATION FOR SOURCES WITH A COMMON PART

In this section, we assume that both switches in Fig. 1 are
open, Z = constant, and study the conditions under which
separate source and channel coding is optimal for transmitting
sources with a common part. We first review two notions that
quantify common information between correlated sources.

Definition 1. (Gács-Körner common information) [1], [13]
Define the function fj : Sj → {1, . . . , k} for j = 1, 2 with
the largest integer k such that P (fj(Sj) = u0) > 0 for u0 ∈
{1, . . . , k}, j = 1, 2 and P (f1(S1) = f2(S2)) = 1. Then,
U0 = f1(S1) = f2(S2) is defined as the common part between
S1 and S2, and the Gács-Körner common information is

CGK(S1, S2) = H(U0). (89)

Definition 2. (Wyner’s common information) [14] Wyner’s
common information between S1 and S2 is defined as,

CW (S1, S2) = min
p(v|s1,s2)
S1−V−S2

I(S1, S2;V ). (90)

Remark 2. CGK(S1, S2) = CW (S1, S2) if and only if there
exists a random variable U0 such that U0 is the common part
of S1 and S2 from Definition 1, and S1−U0−S2, [1], [14].

We first state a separation result when common information
is available as side information at the decoder.

Corollary 3. Consider the transmission of two sources S1

and S2 with a common part U0 = f1(S1) = f2(S2) from
Definition 1. Then, separation is optimal whenever

CGK(S1, S2) = CW (S1, S2), (91)

and the common part U0 is available at the decoder.
We know from Remark 2 that whenever (91) holds, then

S1 − U0 − S2, where U0 is the common part of S1 and
S2 as in Definition 1. Since the two encoders can extract

U0 individually, each encoder can achieve the corresponding
conditional rate distortion function in which U0 is shared
between the encoder and the decoder. Corollary 3 then follows
from Theorem 2 by letting Z ← U0.

Our next result states that whenever Gács-Körner common
information between two sources is equal to Wyner’s common
information, then separate source and channel coding is opti-
mal if lossless reconstruction of the common part is required.
Corollary 4. Consider the transmission of two correlated
sources S1 and S2 with a common part U0 = f1(S1) = f2(S2)
from Definition 1. Let CGK(S1, S2) = CW (S1, S2) and the
common part U0 of S1 and S2 is to be recovered losslessly.
Then, separate source and channel coding is optimal.

We have from Definition 1 that the two encoders can sepa-
rately reconstruct U0, and from Remark 2 that S1 −U0 − S2.
Then, the result follows from letting Z ← U0 in Theorem 3.

VI. CONCLUSION

We have considered lossy transmission of correlated sources
over a multiple access channel. We have investigated the
conditions under which separate source and channel coding
is optimal when the encoder and/or decoder has access to side
information. Current and future directions include identifying
further multiple access scenarios for which separation is
(sub)optimal as well as other multi-terminal scenarios with
side information.
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