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Abstract—Caching the most popular contents at Small Base
Stations (SBSs) is envisioned as a promising solution to reduce
both the load and energy consumption of the backhaul link
connecting the SBSs to the core network. This paper considers
a set of users whose demands are served by an SBS connected
through a wireless backhaul link to a Macro Base Station (MBS).
The SBS is capable of caching content in its limited cache
memory. The transmission policy at the MBS and the caching
policy at the SBS are jointly optimized in order to minimize the
energy consumption in the backhaul link. The numerical results
show significant improvements with respect to prior works.

Index Terms—Proactive caching, wireless backhaul, energy-
efficiency.

I. INTRODUCTION

The fifth generation (5G) cellular communication system is
aimed to cope with the wireless traffic explosion providing
fast, reliable, and sustainable wireless connectivity. Small cell
densification, i.e., the deployment of a large number of SBSs
with different cell sizes (micro, pico, and femtocells), is widely
accepted as a potential solution to achieve these goals. The
traffic that can be served by an SBS is limited by the capacity
of the backhaul link providing connection to the core network.
This link is preferably wireless for various reasons such as,
rapid deployment, self-configuration, and cost. Consequently,
the backhaul link has limited capacity and, due to its relatively
long range, consumes a significant amount of energy.

Caching the most popular contents (e.g., popular Youtube
videos) in SBSs has been proposed both to alleviate the
backhaul link congestion and to reduce its energy consumption
[1]. As the storage capacity at the SBSs is limited (albeit
large), efficient caching policies must be designed to meet the
system requirements by taking into account, among others, the
stochastic but predictable nature of users’ file demand.

Caching policies can be classified into two groups according
to the prior knowledge of the different system parameters
(users’ file demand, channel state information, etc.): (i) of-
fline caching policies that assume non-causal and complete
knowledge of these parameters, e.g., [2], [3]; and (ii) online
caching policies that consider causal knowledge only [1], [4],
[5]. The optimal offline policy is extremely useful because i)
it serves as a theoretical bound on any online policy; and ii) it
can be instrumental in designing low-complexity near-optimal
online policies.
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In a popular approach to wireless caching, [5], [6], the sys-
tem design is performed in two separated phases. First, in the
content placement phase, each cache is filled with appropriate
data, exploiting periods with low traffic. Then, in the delivery
phase, the non-cached contents are transmitted when requested
by users. In this setup, two types of caching gains have been
identified, namely, the local and global caching gains [6].
The local caching gain is obtained when a requested file is
locally available at the SBS cache. This reduces the traffic
in the wireless backhaul link [5] and improves the quality
of experience [6]. The global caching gain is obtained by
multicasting network-coded information in the delivery phase
[6]. However, this underlying separation between the caching
(content placement) and transmission (delivery) phases has
two limiting assumptions: i) the energy consumption of the
content placement phase is not accounted for; and ii) cache
content is never updated during the delivery phase. As a result,
the benefits of proactive caching are inherently limited.

In this work, we consider a different approach to wireless
caching by combining the content placement and delivery
phases. Pre-downloading data in periods with low traffic is
still allowed, but we now account for its energy consumption.
As a result, an additional caching gain is obtained, which
we call pre-downloading caching gain. This gain is obtained
when the cache is used to pre-download data, which can be
beneficial both to avoid non-favourable channel conditions,
and to equalize the rate in the backhaul link, improving its
energy efficiency. In this context, the authors of [2] and [3]
derive joint caching and transmission policies that minimize
the bandwidth and energy consumption, respectively. These
works assume that the cache is solely used to pre-download
content for a single user; thus, content is removed from the
cache as soon as it is consumed by the user, ignoring any
possible future requests. Consequently, the policies in [2] and
[3] only exploit the pre-downloading caching gain. To the best
of our knowledge, this is the first work that proposes jointly
optimal transmission and caching policies by accounting for
the local and pre-downloading caching gains.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider U users served by an SBS in a Time Division
Multiple Access (TDMA) fashion. As depicted in Fig. 1, the
SBS has a finite cache memory of capacity C units of data,
and is connected through a wireless backhaul channel to an
MBS, which has access to the core network.
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Fig. 1. System model.

t

d(t)
d1

d2

d3 = 0 d4

s1 s2 s3 s4 T
t1
f1

t2
f2

t3
f3 = ∅

t4
f1

T

Fig. 2. The users request the files f1, f2 and f1, while f3 denotes a period
of time without any requests. Since the file f1 is requested in the first and
fourth epochs, we have d1 = d4 and t1 = t4.

The instantaneous transmission power of the MBS, de-
noted by p(t), is modeled by a generic power-rate function
p(t) = g(r(t)), where r(t) stands for the transmission rate of
the MBS. We assume that the function g(·) is time invariant,
strictly convex, increasing, continuously differentiable, and
g(0) = 0. It is worth noting that these conditions are satisfied
by common power-rate functions. For example, in the case
of Gaussian signaling, we have p(t) = exp(r(t)) − 1, which
satisfies the above conditions.

We define T as the optimization time horizon, and F =
{f1, . . . , f|F|} as the set of all possible file requests, where fj
denotes a specific file. During this time, the SBS must serve
sequentially, in a TDMA fashion, a total of N files to the users.
We assume a known user schedule. The n-th file request has a
specific duration of tn seconds; this period of time is denoted
as the n-th epoch. Define sn as the starting time of the n-th
epoch, i.e., sn =

∑n−1
i=1 tn.

In the sequel, we define the variables needed to formulate
the problem following the system model in Fig. 1.

Definition 1 (Instantaneous demand rate). The demand rate,
d(t) ≥ 0, t ∈ [0, T ], is the rate at which the SBS must serve
data to the users to fulfill their demands.

For simplicity and mathematical tractability, we consider
that each file has associated a fixed duration and a constant
demand rate, which depends on the rate at which data is
consumed by upper layers in the protocol stack (e.g., a video
file requires a higher rate than a news article). Accordingly,
the demand rate can be written as d(t) =

∑N
n=1 dn rect((t−

(sn+tn/2))/tn), where rect((t−a)/b) denotes the rectangular
function centered at a with duration b. Thus, if a certain file
is requested both in epochs n and n′, these epochs must
have tn = tn′ and dn = dn′ . Fig. 2 shows an example of
the instantaneous demand rate. Without loss of generality, we
represent periods with no request as having a request for a file
whose demand rate is equal to zero. As in [2], [3], we assume
a known file demand profile (offline approach, see Section I).

As shown in Fig. 1, data is downloaded in the backhaul link

t

ρ(t)

f1 f2 f3 = ∅ f1

T−1
0

t1

t1

Fig. 3. Since the file f1 is requested in the first and fourth epochs, the
function ρ(t) maps the instants in the fourth epoch to the corresponding time
in the first epoch.

at a rate r(t) and stored at the SBS cache until it is served to
the users at a rate d(t) (which, without loss of generality, can
be immediately). Finally, the served data is locally cached at
the SBS at a rate c(t), which is formally defined next.

Definition 2 (Local caching rate). The local caching rate, c(t),
with 0 ≤ c(t) ≤ d(t), t ∈ [0, T ], is the rate at which user’s
consumed data is stored in the cache for future file requests.

Note that we represent the locally cached data as a feedback
link from the output to the input; however, in practice it is not
necessary to remove the data from the cache to be stored again.
Consequently, the SBS deletes the users’ consumed data at rate
d(t)− c(t).

As argued in the introduction, the cache offers two different
gains to save energy in the backhaul link, namely, pre-
downloading and local caching gains. As shown in Fig. 1,
the contents in the cache have two data sources: (i) pre-
downloaded data, which is controlled by the transmission
policy at the MBS, r , r(t)|Tt=0, and contributes to the
pre-downloading caching gain; and (ii) locally cached data,
which is controlled by the local caching policy at the SBS,
c , c(t)|Tt=0, and contributes to the local caching gain. Note
that given the tuple (r, c, d(t)|Tt=0), the contents in the cache
can be identified at any time t.

Definition 3 (Data departure curve). The data departure curve,
D(t, r), is the amount of data cumulatively served by the MBS
by time t ≥ 0 and can be obtained from the transmission policy
as D(t, r) =

∫ t
0
r(τ)dτ .

Similarly, we describe the feasible region of the transmis-
sion policy by means of the following cumulative curves.

Definition 4 (Maximum data departure curve). The maximum
data departure curve, B(t, c), limits the maximum amount of
data that can be cumulatively transmitted by time t ≥ 0 such
that no data overflow is caused at the cache memory. Thus, it
is given by B(t, c) = C +

∫ t
0
d(τ) − c(τ)dτ and depends on

the caching policy c.

The amount of data that must be downloaded from the MBS
is given by the amount of data that is not locally available at
the SBS. If the file had been previously served by the SBS,
the net demand can be computed from the rate at which data
was deleted during the previous request, d(t)− c(ρ(t)), where
ρ : [0, T ]→ [0, T ]∪{−1} is a function that maps a certain time
instant to the corresponding instant of the previous request of
the same file, or takes the value −1 if the file has not been
requested yet. We define c(−1) , 0. An example of ρ(t) is
depicted in Fig. 3 given the demand profile in Fig. 2. Since



non-causal knowledge of the user demands is assumed (offline
approach), the function ρ(t) is also known, ∀t. Now, we can
introduce a lower bound on the data departure curve.

Definition 5 (Minimum data departure curve). The minimum
data departure curve, A(t, c), is the minimum amount of
data that must be cumulatively transmitted by time t ≥ 0 to
satisfy the demand, and depends on the caching policy, c, i.e.,
A(t, c) =

∫ t
0
d(τ)− c(ρ(τ))dτ .

Bearing all the above in mind, our aim is to jointly design
the transmission policy at the MBS and the caching policy
at the SBS to minimize the energy consumption at the MBS.
In this work, we do not account for the energy consumption
at the SBS because generally the distance between the users
and the SBS is much shorter compared to the backhaul link
(due to different cell radii); thus, the energy consumption at
the MBS dominates the total consumption. Furthermore, if the
SBS consumption were to be included in the optimization, then
it would be required to estimate the channel between the users
and the SBS, which is challenging due to user mobility. Thus,
the problem is mathematically formulated as follows:

min
r,c

∫ T
0
g(r(τ))dτ (1a)

s. t. D(t, r) ≥ A(t, c), ∀t ∈ [0, T ], (1b)
D(t, r) ≤ B(t, c), ∀t ∈ [0, T ], (1c)

r(t) ≥ 0, ∀t ∈ [0, T ], (1d)
0 ≤ c(t) ≤ d(t), ∀t ∈ [0, T ], (1e)

where the constraint in (1b) imposes the fulfillment of the user
demands, and (1c) prevents cache overflows. The constraints
(1d) and (1e) restrict feasible transmission and caching rates.
Note that a feasible caching policy, c, must satisfy B(t, c) ≥
A(t, c) ∀t ∈ [0, T ], and any feasible data departure curve must
lie within the tunnel between B(t, c) and A(t, c).
Remark 1. In the problem formulation, we have assumed
that cached data can only be removed from the cache during
the subsequent requests for the same data. As a result, by
caching data, the demand from the MBS is reduced. Note that
this assumption is without loss of optimality. Contrarily, if
cached data were to be deleted prior to subsequent requests,
the maximum data departure curve would be decreased while
the minimum data departure curve remains the same, which
would unnecessarily tighten the constraints.

This problem accepts a graphical representation once the
local caching policy is fixed. For example, given the demand
profile in Fig. 2 and a cache capacity C = d1t1, the problem
is represented in Fig. 4 for two different caching policies:

Policy 1: The policy c1 in Fig. 4-a removes the data from
the cache as soon as it is served, ignoring any possible future
demands for the same file, i.e., c1(t) = 0, ∀t. Thus, it exploits
only the pre-downloading caching gain (this policy is proposed
in [3]). Note that having c1(t) = 0, ∀t, does not imply that
the cache is always empty; indeed, it implies that there is a
constant gap between the lower and upper bounds given by
the cache capacity, C, which can be used by the optimal data
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Fig. 4. Representation of the problem for two different caching policies.

departure curve to pre-download data.
Policy 2: The policy c2 in Fig. 4-b caches the first file as

it is later requested in the fourth epoch, i.e., c2(t) = d1 if
t ∈ [0, t1] and c2(t) = 0 otherwise. As a result, no data needs
to be transmitted by the MBS in the fourth epoch. This policy
exploits only the local caching gain.
Remark 2 (Constant rate transmission saves energy). Given
c(t) for all t ∈ [0, T ], the optimal data departure curve is
given in [7] and can be visualized as the tightest string whose
ends are tied to the origin and the point (T,A(T, c)), which is
represented in Fig. 4 with the dashed lines. The conclusion is
that, as far as the constraints allow, constant rate transmission
saves energy due to the convexity of the power rate function.

Note that at any time instant, the free space in the cache
can be obtained as B(t, c) − D(t, r). Focusing on Policy 1
(see Fig. 4-a), the cache is full at t = t1, and all the data
in the cache belongs to f2, which has been pre-downloaded
to equalize the rates in the first and second epochs. As for
Policy 2 (see Fig. 4-b), the cache is full at t ∈ [t1, t1 +t2 +t3],
and exclusively contains f1. Note that the local caching policy
adopted for file f1 in the first epoch (upper bound) determines
the demand (lower bound) of file f1 in the fourth epoch.

From the previous discussion, two questions arise: (i)
“which of the two caching policies achieves the lowest energy
consumption?”; and (ii) “is any of these policies the optimal
one?”. One might think that the caching policy c2 consumes
less energy since fewer data has to be transmitted; however,
this is not always true as the caching policy c1 might achieve
a lower consumption by equalizing the rate across epochs.
In practice, the jointly optimal transmission and local caching
policies must be designed by solving (1), which is challenging
as it is an infinite-dimensional optimization problem.

III. JOINTLY OPTIMAL STRATEGY

To solve the infinite-dimensional problem in (1), we first
derive some structural properties of the jointly optimal strat-
egy. Then, thanks to these properties, we will formulate (1) as
a finite-dimensional convex optimization problem. As shown
next, the optimization variables of the resulting problem are
the number of data units to be deleted by the local caching
policy in each epoch, qn, and the transmission rate in that
epoch, rn, n = 1, . . . , N .
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First, we study the optimal local caching rate within an
epoch, in which a file of size tndn data units is served by
assuming that qn data units must be deleted from the cache
(0 ≤ qn ≤ tndn), and the remaining tndn − qn units will be
locally cached for future demands. This problem is formally
stated as follows:

Problem 1. Consider that at the n-th epoch the file fj is
requested and the next request for this file appears at epoch
n′ > n. Assume that the optimal local caching policy, c?, is
known ∀t ∈ [0, sn) and t ∈ [sn+1, T ] (accordingly, we know
bn , B(sn, c

?) and A(sn′ , c?)). Consider that the optimal
policy stores tndn−qn data units of file fj at the n-th request
to reduce the net demand at epoch n′. Which is the optimal
local caching rate, c?(t), in the interval t ∈ [sn, sn+1)?

This problem is represented in Fig. 5 for three possible
solutions among infinite options: (i) the dotted strategy, which
caches the tndn − qn first data units of the file; (ii) the solid
strategy, which caches data at a constant rate (for example,
if the caching rate is c(t) = 1/3 one data unit out of every
three is cached); and (iii) the dashed strategy, which has a
continuous variation of the caching rate, storing at a lower
rate at the beginning than at the end. Note that the local
caching rate c(t) for t ∈ [sn, sn+1) determines the shape of
the maximum data departure curve at epoch n and the shape of
the minimum data departure curve at epoch n′, both being the
same but properly shifted. Next lemma shows that the strategy
(ii) is optimal.

Lemma 1. Given qn, the optimal local caching policy (not
necessarily the unique one) in Problem 1 is to cache data at
a constant rate, i.e., c?(t) = (tndn− qn)/tn, ∀t ∈ [sn, sn+1).

Proof: Let bn = B(sn, c
?), which is known since we

know c?(t), ∀t < sn. From the problem statement, a valid
caching policy, c, must satisfy B(sn+1, c) = bn + qn. Thus, a
feasible data departure curve must satisfy (among others): (i)
D(sn, r) ≤ bn; and (ii) D(sn+1, r) ≤ bn + qn.

To show that constant rate caching, c?, is optimal, we need
to show that (a) B(t, c?) does not constrain from above the
optimal data departure curve for all t ∈ (sn, sn+1), and (b)
A(t, c?) does not constrain it from below for t ∈ (sn′ , sn′+1).
We prove (a) by contradiction. Assume that B(t, c?) limits
from above, at some tx ∈ (sn, sn+1), the optimal data
departure curve under the optimal caching policy (not nec-
essarily c?), namely, D(t, r†), i.e., D(tx, r

†) > B(tx, c
?).

Then, to satisfy (i) and (ii) above, there exist tx1, tx2 such that

sn ≤ tx1 < tx < tx2 ≤ sn+1 with D(tx1, r
†) = B(tx1, c

?)
and D(tx2, r

†) = B(tx2, c
?). Then, this implies that D(t, r†)

necessarily changes the rate for some t ∈ (tx1, tx2), which
contradicts the optimality assumption of D(t, r†) since we
can construct a data departure curve that consumes less than
D(t, r†) by following B(t, c?) in the interval t ∈ [tx1, tx2].
The proof of (b) follows similarly.

Corollary 1. The optimal local caching rate (not necessarily
the unique one) can be written as c?(t) =

∑N
n=1(tndn −

q?n)/tn rect((t − (sn + tn/2))/tn), where q?n denotes the
optimal number of deleted data units at epoch n.

Since d(t) and c(t) are step-wise functions whose value
changes only at some epoch transition, we know that A(t, c)
and B(t, c) are piece-wise linear functions whose slope
changes only at some epoch transition. Consequently, we can
obtain the following properties of the optimal transmission
strategy, whose proof follows similarly to [8, Lemmas 5-6].

Lemma 2. The optimal data departure curve, D(t, r?), is a
piece-wise linear function, whose slope can only change at
time instants sn, i.e., the optimal transmission rate of the MBS
is r?(t) =

∑N
n=1 r

?
n rect(t−(sn+tn/2)/tn), where r?n denotes

the transmission rate at the n-th epoch. Additionally, if the rate
increases at time instant sn (r?n < r?n+1), then the cache is
full, D(sn, r

?) = B(sn, c
?); and if if the rate decreases at

time instant sn (r?n > r?n+1), then the demand is met with
equality, D(sn, r

?) = A(sn, c
?).

Thanks to Corollary 1 and Lemma 2, we can equivalently
write the original problem in (1) as a function of the rates, rn,
and deleted data units, qn:

min
{qn,rn}Nn=1

N∑
n=1

tng(rn) (2)

s. t.

n∑
i=1

tiri ≤ C +

n∑
i=1

qi, n = 1, . . . , N,

n∑
i=1

tiri ≥
∑
i∈An

tidi +
∑
i∈Bn

qρ̄(i), n = 1, . . . , N,

rn ≥ 0, 0 ≤ qn ≤ tndn, n = 1, . . . , N,

where An , {1, . . . , n}\P, Bn , {1, . . . , n}∩P, and the set
P contains the epoch indexes in which the associated files have
been previously requested, and ρ̄(i), i ∈ P, is a function that
returns the epoch index of the previous request. For example,
given the demand profile in Fig. 2, we have P = {4} and
ρ̄(4) = 1.
Remark 3. In the problem in (2), we have not included a
constraint to force the number of deleted data units, qn, to be
integer. If we introduce an integer constraint, then (2) becomes
an integer programming problem with its inherent complexity.
In practice, as the data unit granularity (e.g., bit) is sufficiently
small in comparison to the files sizes (of several mega bits),
the integer constraint can be relaxed without affecting the
performance. Consequently, (2) is a convex program (since
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Fig. 6. Energy consumption at the MBS for different percentages, Ĉ, of cache
capacity over total transmitted data for γ = 0.67.

the objective function is convex and the constraints are linear),
and can be readily solved.

IV. RESULTS

In this section, we assess the performance of the proposed
caching and transmission policies. We consider N = 50
epochs in which different files of size 1 Mnat are requested
from a set of 100 possible files |F| = 100. The file duration
is distributed uniformly over [1/3, 20] seconds, which implies
demand rates in the interval [0.05, 3] Mnat/s. We consider
that the probability of requesting file fj , θj , is independent
and identically distributed across epochs and follows the Zipf
distribution, i.e., θj = j−γ/(

∑|F|
q=1 q

−γ), where γ models the
skewness of the file popularity; when γ = 0, the popularity
is uniform and the popularity becomes skewed when γ grows
[4]. We consider the Shannon power-rate function g(r(t)) =
exp(r(t)/W )− 1, where W = 1 MHz is the bandwidth.

We compare the proposed jointly optimal transmission and
caching solution, obtained by solving (2), with three sub-
optimal solutions: the Least Recently Used (LRU) caching
algorithm that always keeps in the cache the most recently
requested files [9]; the Pre-Downloading Caching Algorithm
(PDCA), c1, proposed in [3] that only uses the cache to pre-
download data (see Policy 1 in Section II and Fig. 4-a); and the
Local Caching Algorithm (LCA) that caches the most popular
files the first time they are served and keeps these files in the
cache for the whole transmission duration.

In this setup, Fig. 6 evaluates the energy consumption at
the MBS for different sizes of the cache capacity, which
is depicted as the percentage over the total requested data
50 Mnat, i.e., Ĉ = (100C)/(50 Mnat), for a Zipf parameter
γ = 0.67. It is observed that, if only the pre-downloading
caching gain is exploited (PDCA), the curve saturates and an
increase in the cache capacity does not lead to a decrease
in the total energy consumption. This saturation point occurs
when the optimal data departure curve under caching policy
c1 does not touch the maximum data departure curve. On
the contrary, LRU, LCA, and the optimal caching policy can
further decrease the energy consumption. For small values of
the cache capacity, PDCA outperforms LRU and LCA. The
proposed optimal policy significantly outperforms all the other
policies.

Fig. 7 evaluates the impact of the file popularity distribution
over the energy consumption at the MBS. Thus, we vary
the parameter γ in the x-axis and set the cache capacity
to Ĉ = 1.5. It is clearly observed that, while variations
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Fig. 7. Energy consumption at the MBS for different values of the Zipf
parameter γ for Ĉ = 1.5.

on the popularity does not have an impact on PDCA, they
dramatically affect the consumption of the other policies,
which exploit the local caching gain. Under uniform pop-
ularity distribution (γ = 0), PDCA outperforms LRU and
LCA as file repetitions are unlikely. Finally, we observe that
the energy consumption is dramatically reduced when the
popularity distribution becomes skewed as more file repetitions
are encountered.

V. CONCLUSIONS

This paper has investigated the problem of minimizing the
energy consumption in the backhaul link that connects an
MBS to an SBS, which has a cache memory. It has been
argued that the cache offers two possible energy saving gains,
namely, the pre-downloading and local caching gains. The
jointly optimal transmission strategy at the MBS and caching
policy at the SBS have been obtained by demonstrating that
constant rate caching within an epoch is optimal, which al-
lows a reformulation of the energy consumption minimization
problem as a convex program. The jointly optimal solution
correctly balances the tradeoff between pre-downloading and
local caching gains, which has been verified by the conducted
numerical simulations. To conclude, this offline policy will
serve as a benchmark to evaluate online policies with only
causal knowledge of the users’ file demand, which is left as
an open problem that will be addressed in our future work.
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