
Minimum Expected Distortion in Gaussian Layered
Broadcast Coding with Successive Refinement
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Abstract—A transmitter without channel state information
(CSI) wishes to send a delay-limited Gaussian source over a
slowly fading channel. The source is coded in superimposed
layers, with each layer successively refining the description in the
previous one. The receiver decodes the layers that are supported
by the channel realization and reconstructs the source up to
a distortion. In the limit of a continuum of infinite layers, the
optimal power distribution that minimizes the expected distortion
is given by the solution to a set of linear differential equations
in terms of the density of the fading distribution. In the optimal
power distribution, as SNR increases, the allocation over the
higher layers remains unchanged; rather the extra power is
allocated towards the lower layers. On the other hand, as the
bandwidth ratio b (channel uses per source symbol) tends to
zero, the power distribution that minimizes expected distortion
converges to the power distribution that maximizes expected
capacity. While expected distortion can be improved by acquiring
CSI at the transmitter (CSIT) or by increasing diversity from
the realization of independent fading paths, at high SNR the
performance benefit from diversity exceeds that from CSIT,
especially whenb is large.

I. I NTRODUCTION

We consider the transmission of a delay-limited Gaussian
source over a slowly fading channel in the absence of channel
state information (CSI) at the transmitter. As the channel
is non-ergodic, source-channel separation is not necessarily
optimal. We consider the layered broadcast coding scheme
in which each superimposed source layer successively refines
the description in the previous one. The receiver decodes
the layers that are supported by the channel realization and
reconstructs the source up to a distortion. We are interested in
minimizing the expected distortion of the reconstructed source
by optimally allocating the transmit power among the layers
of codewords.

The broadcast strategy is proposed in [1] to characterize
the set of achievable rates when the channel state is unknown
at the transmitter. In the case of a Gaussian channel under
Rayleigh fading, [2], [3] describe the layered broadcast coding
approach and derive the optimal power allocation that maxi-
mizes the expected capacity. In the transmission of a Gaussian
source over a Gaussian channel, uncoded transmission is opti-
mal [4] in the special case when the source bandwidth equals
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the channel bandwidth [5]. For other bandwidth ratios, hybrid
digital-analog joint source-channel transmission schemes are
studied in [6]–[8], where the codes are designed to be optimal
at a target SNR but degrade gracefully should the realized
SNR deviate from the target.

The distortion exponent, defined as the exponential decay
rate of the expected distortion in the high SNR regime,
is investigated in [9] in the transmission of a source over
two independently fading channels. For quasi-static multiple-
antenna Rayleigh fading channels, distortion exponent upper
bounds and achievable joint source-channel schemes are stud-
ied in [10]–[12]. The expected distortion of the layered source
coding with progressive transmission (LS) scheme proposed
in [11] is analyzed in [13] for a finite number of layers at
finite SNR. Concatenation of broadcast channel coding with
successive refinement [14], [15] source coding is shown in
[10], [11] to be optimal in terms of the distortion exponent for
multiple input single output (MISO) and single input multiple
output (SIMO) channels. Numerical optimization of the power
allocation with constant rate among the layers is examined
in [16], while [17] considers the optimization of power and
rate allocation and presents approximate solutions in the high
SNR regime. The optimal power allocation that minimizes the
expected distortion at finite SNR in layered broadcast coding
is derived in [18] when the channel has a finite number of
discrete fading states. This work extends [18] and considers
the minimum expected distortion for channels with continuous
fading distributions. In a related work in [19], the optimal
power distribution that minimizes the expected distortion is
derived using the calculus of variations method.

The remainder of the paper is organized as follows. Sec-
tion II presents the system model, and Section III describes the
layered broadcast coding scheme with successive refinement.
The optimal power distribution that minimizes the expected
distortion is derived in Section IV. Section V considers
Rayleigh fading channels with diversity, followed by conclu-
sions in Section VI.

II. SYSTEM MODEL

Consider the system model illustrated in Fig. 1: A transmit-
ter wishes to send a Gaussian source over a wireless channel to
a receiver, at which the source is to be reconstructed with a dis-
tortion. Let the source be denoted bys, which is a sequence of
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Fig. 1. Source-channel coding without CSI at the transmitter.

independent identically distributed (iid) zero-mean circularly
symmetric complex Gaussian (ZMCSCG) random variables
with unit variance:s ∈ C ∼ CN (0, 1). The transmitter and
the receiver each have a single antenna and the channel is
described by:y = Hx + n, where x ∈ C is the transmit
signal, y ∈ C is the received signal, andn ∈ C ∼ CN (0, 1)
is iid unit-variance ZMCSCG noise.

Suppose the distribution of the channel power gain is
described by the probability density function (pdf)f(γ), where
γ , |h|2 and h ∈ C is a realization ofH. The receiver has
perfect CSI but the transmitter has only channel distribution
information (CDI), i.e., the transmitter knows the pdff(γ) but
not its instantaneous realization. The channel is modeled by a
quasi-static block fading process:H is realized iid at the onset
of each fading block and remains unchanged over the block
duration. We assume decoding at the receiver isdelay-limited;
namely, delay constraints preclude coding across fading blocks
but dictate that the receiver decodes at the end of each block.
Hence the channel is non-ergodic.

Suppose each fading block spansN channel uses, over
which the transmitter describesK of the source symbols. We
define thebandwidth ratio as b , N/K, which relates the
number of channel uses per source symbol. At the transmitter
there is a power constraint on the transmit signalE

[
|x|2

]
≤ P ,

where the expectation is taken over repeated channel uses over
the duration of each fading block. We assume a short-term
power constraint and do not consider power allocation across
fading blocks. We assumeK is large enough to consider the
source as ergodic, andN is large enough to design codes that
achieve the instantaneous channel capacity of a given fading
state with negligible probability of error.

At the receiver, the channel outputy is used to reconstruct
an estimatês of the source. The distortionD is measured by
the mean squared errorE[(s− ŝ)2] of the estimator, where the
expectation is taken over theK-sequence of source symbols
and the noise distribution. The instantaneous distortion of the
reconstruction depends on the fading realization of the chan-
nel; we are interested in minimizing the expected distortion
EH [D], where the expectation is over the fading distribution.

III. L AYERED BROADCAST CODING WITH

SUCCESSIVEREFINEMENT

We build upon the power allocation framework derived in
[18], and first assume the fading distribution hasM discrete
states: the channel power gain realization isγi with probability
pi, for i = 1, . . . , M , as depicted in Fig. 2. Accordingly there
areM virtual receivers and the transmitter sends the sum ofM
layers of codewords. Let layeri denote the layer of codeword

Receivers
Virtual

Transmitter

Reconstruction

Decodable
Layers

Source

p1 : γ1

p2 : γ2

pM : γM

(P1, R1)

(P2, R2)

(PM , RM)

sK

ŝK

Fig. 2. Layered broadcast coding with successive refinement.

intended for virtual receiveri, and we order the layers asγM >
· · · > γ1 ≥ 0. We refer to layerM as the highest layer and
layer 1 as the lowest layer. Each layer successively refines the
description of the sources from the layer below it, and the
codewords in different layers are independent. LetPi be the
transmit power allocated to layeri, then the transmit symbol
x can be written as

x =
√

P1 x1 +
√

P2 x2 + · · ·+
√

PM xM , (1)

where x1, . . . , xM are iid ZMCSCG random variables with
unit variance. Suppose the layers are evenly spaced, with
γi+1−γi = ∆γ. In Section IV we consider the limiting process
as∆γ → 0 to obtain the power distribution:

ρ(γ) , lim
∆γ→0

1
∆γ

Pdγ/∆γe, (2)

where for discrete layers the power allocationPi is referenced
by the integer layer indexi, while the continuous power
distributionρ(γ) is indexed by the channel power gainγ.

With successive decoding [20], each virtual receiver first
decodes and cancels the lower layers before decoding its own
layer; the undecodable higher layers are treated as noise. Thus
the rateRi intended for virtual receiveri is

Ri = log
(

1 +
γiPi

1 + γi

∑M
j=i+1 Pj

)
, (3)

where the termγi

∑M
j=i+1 Pj represents the interference

power from the higher layers. Supposeγk is the realized
channel power gain, then the original receiver can decode
layer k and all the layers below it. Hence the realized rate
Rrlz(k) at the original receiver isR1 + · · ·+ Rk.

From the rate distortion function of a complex Gaussian
source [20], the mean squared distortion is2−bR when the
source is described at a rate ofbR per symbol. Thus the
realized distortionDrlz(k) of the reconstructed sourcês is

Drlz(k) = 2−bRrlz(k) = 2−b(R1+···+Rk), (4)

where the last equality follows from successive refinability
[14], [15]. The expected distortionEH [D] is obtained by
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Fig. 3. Power allocation between two adjacent layers.

averaging over the fading distribution:

EH [D] =
M∑

i=1

piDrlz(i) =
M∑

i=1

pi

( i∏

j=1

1 + γjTj

1 + γjTj+1

)−b

, (5)

where Ti represents the cumulative power in layersi and
above:Ti ,

∑M
j=i Pj, for i = 1, . . . , M ; TM+1 , 0. In the

next section we derive the optimal cumulative power allocation
T ∗

2 , . . . , T ∗
M to find the minimum expected distortionEH [D]∗.

IV. OPTIMAL POWER DISTRIBUTION

To derive the minimum expected distortion, we factor the
sum of cumulative products in (5) and rewrite the expression
as a set of recurrence relations:

D∗
M ,

(
1 + γMTM

)−b
pM (6)

D∗
i = min

0≤Ti+1≤Ti

( 1 + γiTi

1 + γiTi+1

)−b(
pi + D∗

i+1

)
, (7)

where i runs from M − 1 down to 1. The termD∗
i can

be interpreted as the cumulative distortion from layersi and
above, withD∗

1 equal to the minimum expected distortion
EH [D]∗. Note thatDi depends on only two adjacent power
allocation variablesTi andTi+1; therefore, in each recurrence
stepi in (7), we solve for the optimalT ∗

i+1 in terms ofTi.
Specifically, consider the optimal power allocation between

layer γ and its lower layerγ − ∆γ as shown in Fig. 3. Let
T (γ −∆γ) denote the available transmit power for layersγ −
∆γ and above, of whichT (γ) is allocated to layersγ and
above; the remaining powerT (γ) − T (γ − ∆γ) is allocated
to layerγ −∆γ. Under optimal power allocation, it is shown
in [18] that the cumulative distortion from layersγ and above
can be written in the form:

D∗(γ) =
(
1 + γT (γ)

)−b
W (γ), (8)

whereW (γ) is interpreted as an equivalent probability weight
summarizing the aggregate effect of the layersγ and above.
For the lower layer in Fig. 3,f(γ)∆γ represents the proba-
bility that layerγ − ∆γ is realized.

In the next recurrence step as prescribed by (7), the cumu-
lative distortion for the lower layer is

D∗(γ − ∆γ) = min
0≤T (γ)≤T (γ−∆γ)

D(γ − ∆γ) (9)

= min
0≤T (γ)≤T (γ−∆γ)

(1 + (γ − ∆γ)T (γ − ∆γ)
1 + (γ − ∆γ)T (γ)

)−b

·
[
f(γ)∆γ +

(
1 + γT (γ)

)−b
W (γ)

]
.

(10)

We solve the minimization by forming the Lagrangian:

L(T (γ), λ1, λ2) =
D(γ − ∆γ) + λ1

(
T (γ) − T (γ − ∆γ)

)
− λ2T (γ).

(11)

The Karush-Kuhn-Tucker (KKT) conditions stipulate that the
gradient of the Lagrangian vanishes at the optimal power
allocationT ∗(γ), which leads to the solution:

T ∗(γ) =
{

U (γ) if U (γ) ≤ T (γ − ∆γ) (12a)

T (γ − ∆γ) else, (12b)

where

U (γ) ,





0 if γ ≥ W (γ)/f(γ) + ∆γ (13a)
1
γ

([ W (γ)
f(γ)(γ − ∆γ)

] 1
1+b − 1

)
else. (13b)

We assume there is a region ofγ where the cumulative
power allocation is not constrained by the power available
from the lower layers, i.e.,U (γ) ≤ U (γ−∆γ) andU (γ) ≤ P .
In this region the optimal power allocationT ∗(γ) is given by
the unconstrained minimizerU (γ) in (12a). In the solution
to U (γ) we need to verify thatU (γ) is non-increasing in
this region, which corresponds to the power distributionρ∗(γ)
being non-negative. With the substitution of the unconstrained
cumulative power allocationU (γ) in (10), the cumulative
distortion at layerγ − ∆γ becomes:

D∗(γ − ∆γ) =
(1 + (γ − ∆γ)T (γ − ∆γ)

1 + (γ − ∆γ)U (γ)

)−b

·
[
f(γ)∆γ +

(
1 + γU (γ)

)−b
W (γ)

]
,

(14)

which is of the form in (8) if we defineW (γ − ∆γ) by the
recurrence equation:

W (γ − ∆γ) =
(
1 + (γ − ∆γ)U (γ)

)b

·
[
f(γ)∆γ +

(
1 + γU (γ)

)−b
W (γ)

]
.

(15)

Next we consider the limiting process as the spacing be-
tween the layers condenses. In the limit of∆γ approaching
zero, the recurrence equations (14), (15) become differential
equations. The optimal power distributionρ∗(γ) is given by
the derivative of the cumulative power allocation:

ρ∗(γ) = −T ∗′(γ), (16)

whereT ∗(γ) is described by solutions in three regions:

T ∗(γ) =





0 γ > γo (17a)

U (γ) γP ≤ γ ≤ γo (17b)

P γ < γP . (17c)

In region (17a) whenγ > γo, corresponding to cases (12a) and
(13a), no power is allocated to the layers and (15) simplifies
to W (γ) = 1 − F (γ), where F (γ) ,

∫ γ

0
f(s) ds is the

cumulative distribution function (cdf) of the channel power
gain. The boundaryγ0 is defined by the condition in (13a)
which satisfies:

γof(γo) + F (γo) − 1 = 0. (18)



Under Rayleigh fading whenf(γ) = γ̄−1e−γ/γ̄ , where γ̄ is
the expected channel power gain, (18) evaluates toγo = γ̄. For
other fading distributions,γo may be computed numerically.

In region (17b) whenγP ≤ γ ≤ γo, corresponding to cases
(12a) and (13b), the optimal power distribution is described
by a set of differential equations. We apply the first order
binomial expansion(1+∆γ)b ∼= 1+ b∆γ, and (15) becomes:

W ′(γ) = lim
∆γ→0

W (γ) − W (γ − ∆γ)
∆γ

(19)

= b
W (γ)

γ
− (1 + b)

[
f(γ)

( W (γ)
γ

)b] 1
1+b

, (20)

which we substitute in (13b) to obtain:

U ′(γ) = −
(2/γ + f ′(γ)/f(γ)

1 + b

)[
U (γ) + 1/γ

]
. (21)

HenceU (γ) is described by a first order linear differential
equation. With the initial conditionU (γo) = 0, its solution is
given by

U (γ) =
−

∫ γ

γo

1
s

(2
s

+
f ′(s)
f(s)

)[
s2f(s)

] 1
1+b ds

(1 + b)
[
γ2f(γ)

] 1
1+b

, (22)

and condition (12b) in the lowest active layer becomes the
boundary conditionU (γP ) = P . In [19], the power distribu-
tion in (22) is derived using the calculus of variations method.

Similarly, as ∆γ → 0, the evolution of the expected
distortion in (14) becomes:

D′(γ) = − bγU ′(γ)
1 + γU (γ)

D(γ) − f(γ) (23)

=
[ b

1 + b

( 2
γ

+
f ′(γ)
f(γ)

)]
D(γ) − f(γ), (24)

which is again a first order linear differential equation. With
the initial conditionD(γo) = W (γo) = γof(γo), its solution
is given by

D(γ) =
−

∫ γ

γo

f(s)
[( s

γo

)2 f(s)
f(γo)

] −b
1+b

ds + γof(γo)

[( γ

γo

)2 f(γ)
f(γo)

] −b
1+b

. (25)

Finally, in region (17c) whenγ < γP , corresponding to
case (12b), the transmit powerP has been exhausted, and no
power is allocated to the remaining layers. Hence the minimum
expected distortion is

EH [D]∗ = D(0) = F (γP ) + D(γP ), (26)

where the last equality follows from whenγ < γP in region
(17c),ρ∗(γ) = 0 andD(γ) =

∫ γP

γ
f(s) ds + D(γP ).

V. RAYLEIGH FADING WITH DIVERSITY

In this section we consider the optimal power distribution
and the minimum expected distortion when the wireless chan-
nel undergoes Rayleigh fading with a diversity order ofL
from the realization of independent fading paths. Specifically,
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we assume the fading channel is characterized by the Erlang
distribution:

fL(γ) =
(L/γ̄)LγL−1e−Lγ/γ̄

(L − 1)!
, γ > 0, (27)

which corresponds to the average ofL iid channel power
gains, each under Rayleigh fading with an expected value
of γ̄. The L-diversity system may be realized by having
L transmit antennas using isotropic inputs, by relaxing the
decode delay constraint overL fading blocks, or by having
L receive antennas under maximal-ratio combining when the
power gain of each antenna is normalized by1/L.

Fig. 4 shows the optimal power distributionρ∗(γ), which is
concentrated over a range of active layers. A higher SNRP or
a larger bandwidth ratiob extends the span of the active layers
further into the lower layers but the upper boundaryγo remains
unperturbed. It can be observed that a smaller bandwidth ratio
b reduces the spread of the power distribution. In fact, asb
approaches zero, the optimal power distribution that minimizes
expected distortion converges to the power distribution that
maximizes expected capacity. To show the connection, we
take the limit in the distortion-minimizing cumulative power
distribution in (22):

lim
b→0

U (γ) =
1 − F (γ) − γf(γ)

γ2f(γ)
, (28)

which is equal to the capacity-maximizing cumulative power
distribution as derived in [3]. Essentially, from the first order
expansioneb ∼= 1+ b for small b, EH [D] ∼= 1− bEH [C] when
the bandwidth ratio is small, whereEH [C] is the expected
capacity in nats/s, and hence minimizing expected distortion
becomes equivalent to maximizing expected capacity. For
comparison, the capacity-maximizing power distribution is
also plotted in Fig. 4. Note that the distortion-minimizing
power distribution is more conservative, and it is more so as
b increases, as the allocation favors lower layers in contrast to
the capacity-maximizing power distribution.

Fig. 5 shows the minimum expected distortionEH [D]∗

versus SNR for different diversity orders. With infinite diver-
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sity, the channel power gain becomes constant atγ̄, and the
distortion is given by

D|L=∞ = (1 + γ̄P )−b. (29)

In the case when there is no diversity (L = 1), a lower bound
to the expected distortion is also plotted. The lower bound
assumes the system has CSI at the transmitter (CSIT), which
allows the transmitter to concentrate all power at the realized
layer to achieve the expected distortion:

EH [DCSIT] =
∫ ∞

0

e−γ (1 + γP )−b dγ. (30)

Note that at high SNR, the performance benefit from diversity
exceeds that from CSIT, especially when the bandwidth ratio
b is large. In particular, in terms of the distortion exponent
∆ [9], it is shown in [11] that in a MISO or SIMO channel,
layered broadcast coding achieves:

∆ , − lim
P→∞

log EH [D]
log P

= min(b, L), (31)

whereL is the total diversity order from independent fading
blocks and antennas. Moreover, the layered broadcast coding
distortion exponent is shown to be optimal and CSIT does not
improve∆, whereas diversity increases∆ up to a maximum
as limited by the bandwidth ratiob.

VI. CONCLUSION

We considered the problem of source-channel coding over
a delay-limited fading channel without CSI at the transmitter,
and derived the optimal power distribution that minimizes the
end-to-end expected distortion in the layered broadcast coding
transmission scheme with successive refinement. In the case
when the channel undergoes Rayleigh fading with diversity
orderL, the optimal power distribution is congregated around
the middle layers, and within this range the lower layers are
assigned more power than the higher ones. As SNR increases,
the power distribution of the higher layers remains unchanged,
and the extra power is allocated to the idle lower layers.
Furthermore, increasing the diversityL concentrates the power

distribution towards the expected channel power gainγ̄, while
a larger bandwidth ratiob spreads the power distribution
further into the lower layers. On the other hand, in the limit as
b tends to zero, the optimal power distribution that minimizes
expected distortion converges to the power distribution that
maximizes expected capacity. While the expected distortion
can be improved by acquiring CSIT or increasing the diversity
order, it is shown that at high SNR the performance benefit
from diversity exceeds that from CSIT, especially when the
bandwidth ratiob is large.
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