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Abstract— We consider discrete memoryless compound mul-
tiple access and interference channels with correlated sources
and correlated side information at the receivers, and investigate
necessary and sufficient conditions for lossless transmission. We
first give sufficient conditions for the most general setting, and
then show that these conditions are also necessary for both
channels under certain assumptions on the side information
and the interference. In particular, we generalize the notion of
strong interference to take into account the correlation among
the sources and side information. We prove the optimality of
‘informational’ or ‘operational’ source-channel separation for
certain special cases. While informational separation results
in independent source and channel encoding and decoding;
operational separation corresponds to separation at the encoder,
while decoding is done jointly. To our knowledge, these results
constitute the first source-channel separation results for inter-
ference and compound multiple access channels with correlated
sources and side information.

I. INTRODUCTION

Consider two wireless sensors observing correlated data,
where each wants to transmit its measurement either to its
private collection node, or to both of the collection nodes.
Furthermore, each collection node may have its own observa-
tion correlated with either or both of the sensor data. These
scenarios can be modeled as interference channel (IC) or
compound multiple access channels (MAC) with correlated
sources and correlated side information depending on whether
data is only intended for the private collection node or both.

It is known that, Shannon’s source-channel separation the-
orem breaks down in most multi-user networks. Characteri-
zation of the necessary and sufficient conditions for lossless
transmission is an open problem for many multiuser scenarios,
in particular for compound MAC and interference channels.
On the other hand, optimality of source-channel separation is
desirable as it provides modularity in system design without
any loss in the performance. Motivated by the potential ben-
efits of separate source and channel coding, in this paper, we
investigate scenarios under which separation either only at the
encoder or at both the encoder and the decoder is optimal for
IC and compound MAC.

It is shown in [1] that separating source and channel coding
is not optimal when transmitting correlated sources over MAC.
Sufficient conditions for achievability are provided in [1] using
a ‘correlation preserving mapping’ technique. Optimality of
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separation for a network with independent, non-interfering
channels is proved in [2]. In [3], we consider transmission
of correlated sources over MAC, where the receiver has a
side information given which the sources are independent,
and show the optimality of source-channel separation under
this assumption. Tuncel considers Slepian-Wolf coding over
broadcast channels in [4], and shows that ‘operational separa-
tion’, in which source and channel encoding is done separately,
while decoding is joint, is optimal, while ‘informational sepa-
ration’, the classical source-channel separation, fails to achieve
optimality. Coleman et al. extended this joint decoding idea
to transmitting correlated sources over a broadcast network
without multiple access interference [5].

In this paper, we first provide general sufficient condi-
tions for lossless transmission of correlated sources over a
compound MAC with receiver side information, which are
also sufficient for the corresponding IC. We then provide
converse results under certain assumptions on the source
and side information structure. Our results show that, for
certain scenarios, it is possible to achieve optimality either by
informational separation, or by operational separation. Based
on the results of this paper, we argue that, in multi-user
networks, even though informational separation fails through
operational separation, we might still achieve a certain degree
of modularity without performance loss.

II. SYSTEM MODEL

Let {S1t, S2t,W1t,W2t}∞t=0 be a discrete memoryless se-
quence generated according to the joint probability distribution
pS1,S2,W1,W2 over the alphabet S1 × S2 × W1 × W2. Here,
S1 and S2 are the two correlated source sequences available
at transmitter 1 and 2, respectively, where the source Si is
intended for either only receiver i, or both receivers (i = 1, 2).
Receiver i has access to correlated side information Wi.
Let {Sm

1 , Sm
2 ,Wm

1 ,Wm
2 } denote length-m vectors of source

and side information sequences. Each transmitter wants to
transmit its source sequence Sm

i losslessly to its respective
receiver(s). The underlying channel is characterized by the
probability density function pY1,Y2|X1,X2(y1, y2|x1, x2) with
input alphabets Xi and output alphabets Yi, i = 1, 2 (see
Fig. 1). Depending on whether receiver i is interested in
only source Si or both sources, the channel corresponds to
a discrete memoryless (DM) interference channel (IC), or
compound multiple access channel (MAC), respectively.
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Fig. 1. IC with correlated sources and correlated side information at the
receivers. When both decoders are interested in obtaining estimates for both
sources, this model corresponds to compound MAC.

For our setup the notion of compound MAC is generalized
to take into account correlated sources and receiver side
information. Note that, in regular compound MAC we are
only concerned with channel coding and both receivers are
interested in the same message set. However, in the source-
channel coding scenario with side information, the messages
received can be different as long as the lossless reconstruction
of the sources is possible, as the side information are different
in general.

Definition 2.1: A rate b is said to be achievable for the DM
IC, if there exist sequences of encoders

f
(m,n)
i : Sm

i → Xn
i , (1)

with Xn
i = f

(m,n)
i (Sm

i ), and sequences of decoders

g
(m,n)
i : Yn

i ×Wm
i → Sm

i , (2)

with Ŝm
i = g

(m,n)
i (Y n

i ,Wm
i ), such that for the probability of

error at each receiver, defined as

P
(m,n)
i : Pr{Sm

i 6= Ŝm
i }, (3)

we have limm,n→∞ P
(m,n)
i = 0 for i = 1, 2, while n/m = b.

In the compound MAC case, we replace the decoder func-
tions with

g
(m,n)
i : Yn

i ×Wm
i → (Sm

1 ,Sm
2 ), (4)

where (Ŝm
i1 , Ŝm

i2 ) = g
(m,n)
i (Y n

i ,Wm
i ), and the probability of

error expression with

P
(m,n)
i = Pr{(Sm

1 , Sm
2 ) 6= (Ŝm

i1 , Ŝm
i2 )}, (5)

while the achievability definition remains same.
For IC, even in the case of independent messages at the

transmitters, and no side information at the receivers, the
capacity region in general is not known. The most general
case for which the exact capacity region can be characterized is
the so-called strong interference channel [6], where the region
coincides with the capacity region of a compound MAC [8].
In this case, it is optimal for both receivers to decode both
messages. In Section III we present necessary and sufficient
conditions for achievability of rate b for compound MAC and
then in Section IV we extend these conditions to IC under
‘strong source-channel interference’ condition.

III. COMPOUND MULTIPLE ACCESS CHANNEL

We first give an achievability result for transmitting cor-
related sources over compound MAC with correlated side
information.

Theorem 3.1: For lossless transmission of arbitrarily corre-
lated sources (S1, S2) over a compound MAC with receiver
side information (W1,W2), rate b = 1 is achievable if, for
k = 1, 2,

H(S1|S2,Wk) < I(X1;Yk|X2, S2, Wk),
H(S2|S1,Wk) < I(X2;Yk|X1, S1, Wk),
H(S1, S2|Wk) < I(X1, X2; Yk|Wk),

for some input distribution of the form p(s1, s2, x1, x2) =
p(s1, s2) p(x1|s1)p(x2|s2).

Proof: The proof follows from a generalization of
the ‘correlation preserving mapping’ technique of [1] and is
skipped for brevity.

When S1−W1−S2 and S1−W2−S2 constitute two Markov
chains, that is, the sources are independent given either of the
side information, we have the following result.

Theorem 3.2: For lossless transmission of arbitrarily corre-
lated sources (S1, S2) over DM compound MAC with side
information W1 and W2 at the receivers satisfying S1−W1−
S2 and S1 −W2 − S2, rate b is achievable if, for k = 1, 2

H(S1|Wk) ≤ bI(X1;Yk|X2, Q),
H(S2|Wk) ≤ bI(X2;Yk|X1, Q),

H(S1|Wk) + H(S2|Wk) ≤ bI(X1, X2; Yk|Q),

for some |Q| ≤ 4 and input distribution of the form
p(q, x1, x2) = p(q) p(x1|q)p(x2|q).

Proof: Proof is given in Appendix I.
The achievability scheme used in Theorem 3.2 uses channel

codebooks independent of source realizations and follows the
‘operational separation’ idea of [4], where we have separate
source and channel coding at the encoders, while decoding is
done jointly. We remark here that, this is not a straightforward
extension of the compound MAC capacity region [8], as due to
the existence of side information at the receivers, transmitters
do not necessarily send the same message to both receivers.

We next prove that the conditions in Theorem 3.2 are
also necessary for the compound MAC when (S1,W2) is
independent of (S2,W1). This might model a scenario where
receiver 1 (2) and transmitter 2 (1) are located close to each
other, hence they have correlated observations, while two
transmitters are far away.

Theorem 3.3: For lossless transmission of arbitrarily corre-
lated sources (S1, S2) over a DM compound MAC with side
information W1 and W2, where (S1,W2) is independent of
(S2, W1), if rate b is achievable, then conditions of Theorem
3.2 are satisfied.

Proof: Proof is given in Appendix II.
Theorems 3.2 and 3.3 together form the necessary and

sufficient conditions for lossless transmission of independent
sources over a compound MAC when each receiver has side



information correlated with one of the sources. Note that, this
also proves the optimality of operational separation in this
setting. Since we need to transmit each source to two receivers
one with correlated side information and the other without
any side information following [4], in general, informational
separation does not hold.

Finally, we consider the special case where W1 = W2 = W
and S1 −W − S2 form a Markov chain. This corresponds to
the case where two receivers are close to each other, hence
have the same side information.

Theorem 3.4: For lossless transmission of correlated
sources S1 and S2 over a DM compound MAC with common
receiver side information W1 = W2 = W satisfying S1−W−
S2, if rate b is achievable, then conditions of Theorem 3.2 are
satisfied.

Proof: Proof follows similar to [3], and is skipped for
brevity.

In this case of common side information at the receivers,
informational separation turns out to be optimal, where, each
transmitter compresses its source conditioned on the receiver
side information W , and transmits its compressed data using
an optimal compound MAC channel code.

IV. INTERFERENCE CHANNEL

In this section, we extend the results in Section III to
interference channels (IC). We first note that the conditions of
Theorem 3.1 and Theorem 3.2 provide sufficient conditions
for achievability of IC as well, under the source and side
information structures stated in the theorems. Our main goal
is to extend the necessary conditions of Theorem 3.3 and
Theorem 3.4 to IC. This will require defining a ‘strong source-
channel interference’ condition.

The regular strong interference conditions given in [9]
corresponds to the case that, for all input distributions at
transmitter 1, the rate of information flow to receiver 2 is
higher than the information flow to the intended receiver 1. A
similar condition holds for transmitter 2 as well. This leads to
the observation that, no performance is lost if both receivers
decode the messages of both transmitters. Consequently, under
strong interference condition, the capacity region of the IC is
equivalent to the capacity region of compound MAC. However,
in the joint source-channel coding scenario, the receivers have
access to correlated side information. Thus while calculating
the total rate of information flow to a particular receiver, we
should not only consider the information flow through the
channel, but also the mutual information that already exists
between the source and the receiver side information. This idea
is reflected in the following strong source-channel interference
conditions stated for the setup of Theorem 3.3 where the
two sources are independent while the side information W1

is correlated with source S2, and the side information W2 is
correlated with source S1.

b · I(X1; Y1|X2) ≤ b · I(X1;Y2|X2) + I(S1;W2), (6)
b · I(X2; Y2|X1) ≤ b · I(X2;Y1|X1) + I(S2;W1), (7)

for all distributions of the form p(w1, w2, s1, s2, x1, x2) =
p(w1, w2, s1, s2)p(x1|s1)p(x2|s2). Then we can obtain the
following theorem.

Theorem 4.1: Consider lossless transmission of S1 and S2

over a DM IC with side information W1 and W2, where
(S1, W2) is independent of (S2,W1). Under strong source-
channel interference conditions of (6)-(7), rate b is achievable
if and only if conditions in Theorem 3.2 hold.

Proof: Proof is given in Appendix III.
Next, we consider the case in Theorem 3.4, where the two

receivers have access to the same side information W given
which the sources are independent. In this case, while we
still have correlation between the sources and the common
receiver side information, the amount of mutual information
arising from this correlation is equivalent at both receivers
since W1 = W2. This means that the usual strong interference
channel conditions suffice to obtain the converse result. We
have the following theorem for this case.

Theorem 4.2: For lossless transmission of correlated
sources S1 and S2 over the strong IC with common receiver
side information W1 = W2 = W satisfying S1−W −S2, rate
b is achievable if and only if, conditions in Theorem 3.4 hold.

Proof: Proof follows similar to the proof of Theorem
3.4 and [3] where we incorporate the strong source-channel
interference conditions.

V. CONCLUSION

We consider transmission of correlated sources over inter-
ference and compound multiple access channels where the
receivers also have correlated side information. For compound
MAC, while informational separation (separation of source
and channel coding in the usual sense) is suboptimal in the
most general setting, we show that, under certain assumptions
on sources and side information, it is possible to prove the
optimality of either the informational separation or operational
separation, a less constraining separation theorem, where
source and channel encoders act as independent components,
while decoding is done jointly. Under the strong source-
channel interference conditions we define, we can extend
this optimality result to interference channels as well. Our
results show that, in many multi-user network scenarios, while
informational separation does not apply, it might be possible
to achieve optimality by only separating source and channel
encoding. This separation of encoding can bring modularity
to the transmitter design which might be invaluable especially
in low complexity sensor network applications.

APPENDIX I
PROOF OF THEOREM 3.2

We will use the coding technique introduced in [4], where
we use separate encoding at the transmitters and joint source-
channel decoding at the receivers. We fix δk > 0 and γk > 0
for k = 1, 2, and PX1 and PX2 such that

H(S1|Wk) ≤ bI(X1; Yk|X2)− ε,

H(S2|Wk) ≤ bI(X2; Yk|X1)− ε,

H(S1|Wk) + H(S2|Wk) ≤ bI(X1, X2; Yk)− ε, .



are satisfied for k = 1, 2. For b = n/m and k = 1, 2, at
transmitter k, we generate Mk = 2m[H(Sk)+ε/2] i.i.d. length-m
source codewords and i.i.d. length-n channel codewords using
probability distributions PSk

and PXk
, respectively. These

codewords are revealed to the receivers as well, and denoted
by sm

k (i) and xn
k (i) for 1 ≤ i ≤ Mk.

Encoder: Each source outcome is directly mapped to a
channel codeword as follows: Given a source outcome Sm

k at
transmitter m, we find the smallest ik such that Sm

k = sm
k (ik),

and transmit the codeword xn
k (ik). An error occurs if no such

ik is found at either of the transmitters k = 1, 2.
Decoder: At receiver k, we find the unique pair (i∗1, i

∗
2) that

simultaneously satisfies

(xn
1 (i∗1), x

n
2 (i∗2), Y

n
k ) ∈ A(n)

[X1,X2,Y ]δk
,

(sm
1 (i∗1), s

m
2 (i∗2),W

m
k ) ∈ A(m)

[S1,S2,Wk]γk
,

where A(n)
[X]δ

is the set of weakly δ-typical sequences. An error
is declared if (i∗1, i

∗
2) pair is not uniquely determined.

Probability of error: We define the following error events:

E1 =
⋃

k=1,2

{Sm
k 6= sm

k (i),∀i}

E2(k) = {(sm
1 (i1), sm

2 (i2),Wm
k ) /∈ A(m)

[S1,S2,Wk]γk
}

E3(k) = {(Xn
1 , Xn

2 , Y n
k ) /∈ A(n)

[X1,X2,Y ]δk
}

E4(k) = {∃(j1, j2) 6= (i1, i2) :

(sm
1 (j1), sm

2 (j2),Wm
k ) ∈ A(m)

[S1,S2,Wk]γk
}

E5(k) = {∃(j1, j2) 6= (i1, i2) :

(xn
1 (j1), xn

2 (j2), Y n
k ) ∈ A(n)

[X1,X2,Y ]δk
}

Here, E1 denotes the error event where either of the
encoders fails to find a unique source codeword in its codebook
that corresponds to its current source outcome. When such a
codeword can be found, E2(k) denotes the error event that the
sources Sm

1 , Sm
2 and the side information Wk at receiver k are

not jointly typical, whereas E4(k) denotes the error event that
a source codeword pair different from the current realization
is jointly typical with Wk. On the other hand, E3(k) denotes
the error event that channel codewords that match the current
source realizations are not jointly typical with the channel
output at receiver k, while E5(k) is the event that some other
channel codeword pair is jointly typical with Y n

k .
Using the union bound, we have

P
(m,n)
k ≤ Pr(E1) + Pr(E2(k)) + Pr(E3(k))

+
∑

j1 6=i1,
j2=i2

Pr
{

(sm
1 (j1), sm

2 (j2),Wm
k ) ∈ A(m)

[S1,S2,Wk]γk

}

· Pr
{

(xn
1 (j1), xn

2 (j2), Y n
k ) ∈ A(n)

[X1,X2,Y ]δk

}

+
∑

j1=i1,
j2 6=i2

Pr{·}+
∑

j1 6=i1,
j2 6=i2

Pr{·} (8)

It can be shown that Pr(Ei) → 0 for i = 1, 2, 3 as m,n →∞.
We can also obtain:

∑

j1 6=i1,
j2=i2

Pr
{

(sm
1 (j1), sm

2 (j2),Wm
k ) ∈ A(m)

[S1,S2,Wk]γk

}

· Pr
{

(xn
1 (j1), xn

2 (j2), Y n
k ) ∈ A(n)

[X1,X2,Y ]δk

}

≤ 2m[H(S1)+
ε
2 ]−m[I(S1;S2,Wk)−λ]−n[I(X1;Yk|X2)−λ]

= 2−m[H(S1|Wk)−bI(X1;Yk|X2)−(b+1)λ− ε
2 ]

= 2−m[ ε
2−(b+1)λ].

A similar bound can be found for the second sum in (8). On
the other hand, we also have

∑

j1 6=i1,
j2 6=i2

Pr
{

(sm
1 (j1), sm

2 (j2),Wm
k ) ∈ A(m)

[S1,S2,Wk]γk

}

· Pr
{

(xn
1 (j1), xn

2 (j2), Y n
k ) ∈ A(n)

[X1,X2,Y ]δk

}

≤ 2m[H(S1)+ε/2]+m[H(S2)+ε/2]

· 2−m[I(S1;S2,Wk)+I(S2;S1,Wk)−I(S1;S2|Wk)]−λ]

· 2−n[I(X1,X2;Yk)−λ]

≤ 2−m[H(S1|Wk)+H(S2|Wk)−bI(X1,X2;Yk)−(b+1)λ−ε]

= 2−m[ε−(b+1)λ].

Choosing λ < ε
2(b+1) , we can make sure that all these three

terms also vanish as m,n →∞. Any rate pair in the convex
hull can be achieved by time sharing, hence the time-sharing
random variable Q.

APPENDIX II
PROOF OF THEOREM 3.3

We have

1
n

I(Xn
1 ;Y n

1 |Xn
2 ) ≥ 1

n
I(Sm

1 ;Y n
1 |Xn

2 ), (9)

=
1
n

[H(Sm
1 |Xn

2 )−H(Sm
1 |Y n

1 , Xn
2 )],

(10)

≥ 1
n

[H(Sm
1 )−H(Sm

1 |Y n
1 )], (11)

≥1
b
H(S1)− ε, (12)

for any ε > 0 and large enough m,n, where (9) follows from
the conditional data processing inequality since Sm

1 −Xn
1 −Y n

1

forms a Markov chain given Xn
2 ; (11) from the independence

of Sm
1 and Xn

2 and the fact that conditioning reduces entropy;
(12) from the memoryless source assumption, and from Fano’s
inequality.

For the joint mutual information, we can write the following



set of inequalities.

1
n

I(Xn
1 , Xn

2 ; Y n
1 ) ≥ 1

n
I(Sm

1 , Sm
2 ; Y n

1 ), (13)

=
1
n

I(Sm
1 , Sm

2 ,Wm
1 ; Y n

1 ), (14)

≥ 1
n

I(Sm
1 , Sm

2 ; Y n
1 |Wm

1 ), (15)

=
1
n

[H(Sm
1 , Sm

2 |Wm
1 )−H(Sm

1 , Sm
2 |Y n

1 ,Wm
1 )],

=
1
n

[H(Sm
1 ) + H(Sm

2 |Wm
1 )−H(Sm

1 , Sm
2 |Y n

1 ,Wm
1 )],

(16)

≥ 1
b

[
H(S1) + H(S2|W1)

]
− ε, (17)

for any ε > 0 and large enough m,n, where (13) follows from
the data processing inequality since (Sm

1 , Sm
2 )− (Xn

1 , Xn
2 )−

Y n
1 form a Markov chain; (14) from the Markov relation

Wm
1 − (Sm

1 , Sm
2 ) − Y n

1 ; (15) from the chain rule and the
non-negativity of the mutual information; (16) from the inde-
pendence of Sm

1 and (Sm
2 ,Wm

1 ); (17) from the memoryless
source assumption and Fano’s inequality.

It is also possible to show that

n∑

i=1

I(X1i; Y1i|X2i) ≥ I(Xn
1 ; Y n

1 |Xn
2 ), (18)

and similarly for other mutual information terms. Then, using
the above set of inequalities and letting ε → 0, we obtain

1
b
H(S1) ≤ 1

n

n∑

i=1

I(X1i; Y1i|X2i),

1
b
H(S2|W1) ≤ 1

n

n∑

i=1

I(X2i; Y1i|X1i),

1
b
(H(S1) + H(S2|W1)) ≤ 1

n

n∑

i=1

I(X1i, X2i;Y1i),

for any product distribution on X1×X2. We can write similar
expressions for the second receiver as well. Then the necessity
of the conditions of Theorem 3.2 can be argued simply by
inserting the time-sharing random variable Q following the
same steps as in [10].

APPENDIX III
PROOF OF THEOREM 4.1

We only write the bound involving I(Xn
1 , Xn

2 ; Y n
1 ), the

others follow similar to the proof of Theorem 3.3. First,
we prove the following lemma which will be critical in our
converse proof.

Lemma 3.1: If (S1,W2) is independent of (S2, W1) and
strong source-channel interference conditions (6)-(7) hold,
then we have

I(Xn
2 ; Y n

2 |Xn
1 ) ≤ I(Xn

2 ; Y n
1 |Xn

1 ) + I(Sm
2 ; Wm

1 ),
for all m,n satisfying n/m = b.

Proof: Condition (7) implies

I(X2; Y2|X1, U)− I(X2; Y1|X1, U) ≤ 1
b
I(S2;W1), (19)

for all U satisfying U − (X1, X2)− (Y1, Y2).
Using this and following the technique of the Lemma in

[7], we can obtain

I(Xn
2 ; Y n

2 |Xn
1 )− I(Xn

2 ; Y n
1 |Xn

1 )

=I(X2n; Y2n|Xn
1 , Y n−1

2 )− I(X2n; Y1n|Xn
1 , Y n−1

2 )

+ I(Xn−1
2 ; Y n−1

2 |Xn
1 , Y1n)− I(Xn−1

2 ; Y n−1
1 |Xn

1 , Y1n)

≤ n

b
I(S2; W1) = I(Sm

2 ; Wm
1 ).

Then we can obtain
1
n

I(Xn
1 , Xn

2 ; Y n
1 ) =

1
n

[I(Xn
1 ; Y n

1 ) + I(Xn
2 ; Y n

1 |Xn
1 )],

≥ 1
n

[I(Sm
1 ; Y n

1 ) + I(Xn
2 ; Y n

2 |Xn
1 )− I(Sm

2 ; Wm
1 )], (20)

≥ 1
n

[H(Sm
1 )−H(Sm

1 |Y n
1 ) + I(Sm

2 ;Y n
2 |Xn

1 )

+ H(Sm
2 |Wm

1 )−H(Sm
2 )], (21)

≥ 1
n

[H(Sm
1 )− ε + H(Sm

2 |Xn
1 )−H(Sm

2 |Y n
2 , Xn

1 )

+ H(Sm
2 |Wm

1 )−H(Sm
2 )], (22)

≥ 1
b
[H(S1) + H(S2|W1)]− 2ε, (23)

for any ε > 0 and large enough m,n, where (20) follows from
the data processing inequality and Lemma 3.1; (21) from data
processing inequality since Sm

2 − Xn
2 − Y n

2 form a Markov
chain given Xn

1 ; (22) from data processing inequality and
Fano’s inequality; (23) from independence of Sm

2 and Xn
1

and again from Fano’s inequality.
The rest of the proof closely resembles the proof of Theorem

3.3.
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