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Abstract— We consider the end-to-end distortion achieved by
transmitting a continuous amplitude source over A/ parallel,
independent quasi-static fading channels. We analyze the high
SNR expected distortion behavior characterized by the distortion
exponent. We first give an upper bound for the distortion
exponent in terms of the bandwidth ratio between the channel
and the source assuming the availability of the channel state
information at the transmitter. Then we propose joint source-
channel coding schemes based on layered source coding and
multiple rate channel coding. We show that the upper bound
is tight for large and small bandwidth ratios. For the rest, we
provide the best known distortion exponents in the literature.
By suitably scaling the bandwidth ratio, our results would also
apply to block fading channels.

I. INTRODUCTION

Transmitting continuous amplitude sources such as voice,
video, sensor measurements, over randomly varying wireless
channels is one of the key problems of wireless communica-
tions systems. In a point-to-point channel, when we are not
constrained by complexity or delay, we can apply Shannon’s
source-channel separation theorem which states that there is no
loss by separate design of source and channel coders. However,
this is not the case for time-sensitive applications where the
delay requirement is short compared to the channel coherence
time, for example the quasi-static fading channel or the block
fading channel with small number of blocks. In that case we
need to take a joint source-channel approach and design the
overall system by considering the source and channel coder
parameters jointly. The performance measure we use in this
paper is the end-to-end distortion.

We assume that M parallel channels are available between
the transmitter and the receiver where each of these channels
can be modeled as having independent quasi-static Rayleigh
fading. We assume that the fading states are constant for a
block of N channel uses and change independently from one
block to another. The transmitter wishes to send K source
samples in N channel uses over M parallel channels. We
define the corresponding bandwidth ratio as b = N/K, and
analyze the system performance with respect to b. We assume
that K is large enough to consider the source as ergodic and
N is large enough to design codes that can achieve all rates
below the instantaneous channel capacity.

We assume that the receiver can track the channels perfectly
while the transmitter only has access to the statistics of
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the fading process. Lack of channel state information at the
transmitter prevents the design of a channel code that achieves
the instantaneous channel capacity and requires a code that
performs well on the average. We aim to design a joint source-
channel code that achieves the minimum expected end-to-end
distortion. Our main focus is the high SNR behavior of this
expected distortion (ED). This behavior is characterized by the
distortion exponent denoted by A and defined as

log ED
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When we consider digital transmission strategies that first
compress the source and then transmit over the channel at
a specific channel rate, we need to decide the transmission
rate that gives the best average performance. However, digital
transmission in general suffers from the threshold effect, i.e.,
when the channel quality falls under a certain threshold,
channel code can no longer recover the transmitted informa-
tion reliably which leads to maximal distortion. Furthermore,
digital transmission lacks the ability to utilize the increased
channel quality when it is above the target threshold.

In order to overcome the threshold effect and achieve a
graceful degradation with varying channel quality, we propose
layered source coding concatenated with multi-rate channel
coding. Using successive refinement of the source, we divide
the source code into layers and transmit each layer over
the channel at a different rate. We allocate system resources
among the layers such that the reliability of transmission over
the channel decreases from the first layer to the last, hence
increasing the reliability of the first layers at the expense of
the succeeding layers. We argue that, this strategy improves the
average distortion performance due to the exponential decay
of the distortion-rate function in general.

We consider two different channel coding schemes. In the
first scheme, which we call layered source with progressive
coding (LS), we divide the channel block of N channel
uses among the layers and transmit them progressively in
time within their respective portions at full power. In the
second scheme, we allocate transmit power among the layers
and transmit a superposition of the codewords of all layers
simultaneously spanning the whole N channel uses. We name
this scheme as broadcast strategy with layered source (BS).

Another possible strategy that would result in graceful
degradation is hybrid digital-analog transmission [1], where
an analog (uncoded) portion is transmitted together with the



digital (coded) portion. We consider this analog approach
together with the LS scheme and hence call it hybrid-LS
(HLS).

In [2], we analyzed the single quasi-static fading channel
case and showed that BS scheme can achieve the optimal
performance in the limit of infinite layers. We also showed
that pure analog transmission is optimal in the distortion
exponent sense when the bandwidth ratio is greater than 1, i.e.,
the channel bandwidth is greater than the source bandwidth.
However, pure analog transmission results in A = 0 when
b < 1. Later in [3], authors showed that a hybrid digital-analog
scheme can achieve the optimal performance for b < 1 case
using only a single digital layer superimposed with analog
transmission.

In this paper, we first find an upper bound to the distortion
exponent for parallel channels. We then characterize the dis-
tortion exponents achieved by LS and HLS schemes. For the
BS strategy we show that a specific resource allocation policy
we use is optimal for bandwidth ratios greater than the number
of channels. Comparison of our results with single rate coding,
single-layer hybrid scheme of [3] and hybrid scheme of [7]
for 2-parallel channels and pure analog transmission is given
in Section VIII. Distortion exponent analysis for block fading
MIMO systems can be found in [5], [6]. In a concurrent work
[4], authors have also extended their hybrid scheme to parallel
channels.

II. SYSTEM MODEL

We consider an analog source denoted by s. For the analysis,
we focus on a memoryless, complex Gaussian source with in-
dependent real and imaginary components each with variance
1/2. Generalizations to other memoryless sources follows as
discussed in [6]. The distortion-rate function for the complex
Gaussian source with unit variance is D(R) = 2~ . Here we
use compression strategies that meet the distortion-rate bound.

We assume the availability of M parallel independent quasi-
static Rayleigh fading channels. The channel model is

SNR
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where X € CM*N is the transmitted codeword, Z € CM*N
is the complex Gaussian noise with i.i.d entries CA(0,1),
and H € CM*M g the diagonal channel matrix which has
i.i.d. entries with CA(0,1). This models a channel which is
constant over a block of N channel uses while independent
from block to block. H is assumed to be known by the receiver
and unknown by the transmitter. The transmitted codeword is
normalized in power so that it satisfies tr(E[XX]) < M N.

The decoder maps the received output of each block Y to an
estimate § € C¥ of the source. Average distortion ED(SNR)
is defined as the average mean squared error between s and §
where the expectation is taken with respect to s, H and Z. Note
that this average distortion is due to both the lossy compression
of the source and errors that occur over the channel.

Since we are interested in the high SNR regime, we use out-
age probability, P,,;, instead of the channel error probability

Y =

as it forms a tight lower bound and has the same exponential
behavior [8]. For a family of codes with rate R = rlog SN R,
r is defined as the multiplexing gain of the family, and
) log P,ut+(SNR)
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as the diversity advantage. The diversity gain d*(r) is defined
as the supremum of the diversity advantage over all possible
code families with multiplexing gain r. The tradeoff between
multiplexing and diversity gains for the parallel channel model
is characterized as follows.

Theorem 1: ([9]) Consider M -parallel channels with i.i.d.
Rayleigh coefficients. The optimal diversity- multiplexing gain
tradeoff curve d*(r) for 0 < r < M is given by d*(r) =
M —r.

III. DISTORTION EXPONENT UPPER BOUND

In this section we find an upper bound for the distortion
exponent. In the general case there is no channel state informa-
tion at the transmitter, and due to the delay limitations imposed
by the application, it is not possible to transmit long codewords
to average out the effects of fading. Hence Shannon’s source-
channel separation theorem is not applicable here. However,
if we assume that the instantaneous channel state information
is available to the transmitter, then source-channel separation
applies to each block of transmission, and the minimum source
distortion at the receiver is obtained by transmitting at the
instantaneous channel capacity. We would have no outage in
this case, and the distortion at the receiver would be due to
the lossy compression of the source only. The average of
this distortion over the channel state distribution obviously
constitutes an upper bound to the minimum average end-to-
end distortion we are interested in.

Consider the channel matrix H in Section II where HHT ¢
RMX*M g a diagonal matrix with entries 1 < pp < ... <
uas. For the instantaneous channel capacity C(H), we can
write

CH) = sup  logdet (I + SNRHQH*) ,
Q0,tr(Q)<M M
< logdet (I+ SNRHH),
M
= logH(1+SNRui). 4)
i=1
Let @; = —Inp;/InSNR. Then we can bound the min-

imum distortion that can be achieved transmitting at the
instantaneous channel capacity as

D(bC(H)),

M
[H(l + SNR'™™)
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D(H) =
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Y
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We consider E[D(H)], where the expectation is taken over
all channel realizations and analyze its high SNR exponent to
find the corresponding distortion exponent upper bound. The



result is expressed in the following theorem whose proof can
be found in the Appendix.

Theorem 2: For transmission of memoryless, complex
Gaussian source over M independent quasi-static Rayleigh
fading channels, the distortion exponent is upper bounded by

bM
s

IV. LAYERED SOURCE WITH PROGRESSIVE
TRANSMISSION (LS)

if b<1,
if b > 1. ©)

The main idea here is to do source coding in layers, where
each layer is a refinement of the previous ones, and to transmit
layers successively in time over M parallel channels using
codes at different rates. For n layers, each layer is transmitted
at rate R; bits per channel use in ¢;/N channel uses for ¢ =
1,2, ..., n. Transmission power is kept constant across layers.
Each layer utilizes all M parallel channels. This rate allocation
corresponds to source coding rates of bt; R; bits per sample.
The ith layer is composed of the successive refinement bits
for the previous ¢ — 1 layers. This enables the receiver to get
as many layers as it can depending on the current fading state.

Let P, denote the outage probability when the transmis-

out

sion rate is R, i.e., P, = Pr{C(H) > R}. The distortion

achieved when ¢ layers are successfully decoded is found as

DFS = D(bZthk>, (7)
k=1

with DES = 1. Due to successive refinement source coding, a
layer is useless unless all the preceding layers are received
successfully. This imposes a non-decreasing rate allocation
among the layers, i.e., R; < R; for ¢ < j. Then the expected
distortion (ED) for such a rate allocation can be written as

ED(R,t,SNR) = En: D{* - (PO’ZQ“ - Pﬁi’g) ;o ®
1=0

where we define P75 =0 and P(Z"t“ =1 and = is used for
exponential equality as defined in [8].

As can be seen from the expected distortion expression,
there is a tradeoff between the outage probability and the
distortion of the corresponding layer. There exists an optimal
rate vector R = [Ry, ..., R,]T and a time allocation vector t
which result in the lowest average distortion for any specific
SNR. In the high SNR regime, to get the optimal distortion
exponent we need R = rlog SNR, where r = [r1,...,7,]T
is the multiplexing gain vector.

It is possible to prove that the more layers we have, the
higher the distortion exponent is. For the highest possible
distortion exponent achievable by this strategy we consider
the limit of infinite layers. In the limit, we can prove that
equal channel allocation among the layers gives us the best
asymptotic performance, i.e., we take t; = 1/n Vi. Then the
following set of equations are the necessary conditions for the
optimal multiplexing gain vector. Note that these equations

make SN R exponents equal in all the terms of Eqn. (8).

b .
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d*(rn) + Ern—l - d*(rn—l)a (10)
. b «
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where A = d*(r1). This corresponds to each layer operating
at a different point on the diversity-multiplexing tradeoff of
Theorem 1. Solving these equations for infinite layers, we find

A=M(1-e"). (12)

The distortion exponent achieved by LS with single and
infinite layers with respect to bandwidth ratio for 2-parallel
channels can be seen in Fig. 1. The distortion exponent of
single layer (n = 1) case is found to be A =2b/(b+ 1) and
is also included in the figure for comparison.

V. HYBRID DIGITAL-ANALOG TRANSMISSION WITH
LAYERED SOURCE

A natural compromise between digital and analog trans-
mission is using an hybrid scheme, which can better adapt
to various bandwidth ratios due to the digital portion, and
has a graceful degradation due to the analog portion [1]. We
combine our LS scheme with uncoded (analog) transmission
and call it hybrid-LS (HLS). We consider two cases depending
on the bandwidth ratio.

When b > 1/M, the channel bandwidth is large enough to
transmit an analog signal corresponding to each source sample.
We allocate K/M channel uses for analog transmission. We
divide the rest of the N — K /M channel uses to transmit digital
source layers progressively as in LS scheme.

Let § € CK be the reconstruction of the source s upon
successful reception of all layers of LS scheme. We denote the
reconstruction error as e € CX where e = s —s. We map this
error to the M parallel channels where each component of the
error vector is transmitted in an analog fashion. Receiver first
tries to decode all the digital layers, and in case of successful
reception of all the layers, it forms the estimate § = § +
e, where e is the linear MMSE estimate of e based on the
received signal during the K/M channel uses reserved for
analog transmission. This analog portion is neglected unless all
digitally transmitted layers can be decoded at the destination.

For n layers, effect of the analog portion on the analysis in
Eqn.(9-11) is to change the slopes of the curves from % to (b—
)2, and replace the first equation with 1+ 2r,, = d*(r,,).
We find the following distortion exponent for b > 1/M in the
limit of infinite layers as

A=1+(M-1) (1—exp(1—b)>. (13)
M
For n = 1 this strategy boils down to the hybrid scheme of
[3], whose performance can also be seen in Figure 1 together
with infinite layer case.



For the b < 1/M case, we use the hybrid scheme introduced
in [3], where M N source samples are transmitted uncoded
in N channel uses, and the rest K — MN samples are
compressed, channel coded at rate R, and superimposed on
the uncoded signals. Analysis of this scheme for M parallel
channels results in the following distortion exponent ([6]).

A =bM. (14)

Comparing this with the upper bound given by (6), we see that
HLS scheme is optimal for b < 1/M. However, the region of
optimality of the distortion exponent decreases with increasing
number of parallel channels.

VI. BROADCAST STRATEGY WITH LAYERED SOURCE (BS)

We combine the broadcast strategy of [10] with layered
source coding and call it ‘broadcast strategy with layered
source’ (BS). Similar to LS, information is sent in layers using
successive refinability. The codes corresponding to different
layers are superimposed, assigned different power levels and
sent throughout the whole transmission block over all M
channels. We consider successive decoding at the receiver,
where the layers are decoded in order from 1 to n although
this may be suboptimal in terms of end-to-end distortion.

As in LS we need to scale the transmission rate as
rlog SN R. The distortion achieved by BS when first ¢ layers
are received is

k
DES =D (bZ&) .
=1

We allocate power among layers such that the received
SNR of layer i is SNR; and define SNR; = >_7_, SNR;
for i = 1,...,n with SNR; = SNR. Then for this power
allocation we define the following outage events which corre-
spond to outage when decoding the ith layer after decoding
and subtracting the first 7 — 1 layers.

I+ SNR;HH'
A; =< H:log | +7 |T
I+ SNR;  HH'|

<1 logSNR} . (15

Let P¥, = Pr{H : H € A}. For successive decoding, the
overall outage event of layer i, denoted by 5; can be written
in terms of A;’s as below.

Bi = |JA, fori=1,....n. (16)

j=1

Although it might not be optimal, for tractable expected
distortion expression in the high SNNR limit, we constrain
the multiplexing gains as r; + --- + r, < 1 and let the
power allocation be SNR; = SNR'~(mit-+ricitei-1) with

O0<e <" <epqgfori=2,...,n.
Lemma 1: With the above multiplexing gain and power
allocation among the layers, for k = 1,...,n we have P¥, =

SNR~%_ where

a7

{a[061,...701”]20[1>'~-204M20,

M

Z(l — 71— =T — g1 — )

%

M
—Z(l—r1—~-~—rk—ek—ai)+<7‘k}.

Proof: Thezproof follows along the lines of the proof of

Theorem 4 in [8]. |
Note that the constraint on the multiplexing gain allocation
makes the sequence {1 —r; —--- —ri}}_, decreasing and

bounded above zero. Thus the outage probabilities of the layers
PF . constitute an increasing sequence which in the high SN R
regime leads to Pr{H : H € B} = Pt ,.

The minimizing & of Eqn. (17) for each layer can be
explicitly found as
Qfek, fori=1,..., M,

1*7”1*"'*7’1@—1*M

o; =
This results in the following diversity gains as €, — 0.

dk ZM(l—Tl—-”—Tk_l)—’Fk. (18)

High SN R approximation for the expected distortion expres-
sion can be written as follows.

ED =Y DPSpPki!

out
k=0

19)

where P! = 1, and DfS = 1. We now find the max-

imum distortion exponent for the above expected distortion
expression by properly choosing the multiplexing gains. For
b< M-1wehave A =bforri+---+r, =1.Forb > M-1
the optimal multiplexing gains can be found as below.

M(b— M)
= 2
" b(b— M +1)" — M’ (20)
ri = (b—M+1)"1rq, fori=2,...,n. (21)

Here we note that it is possible to prove these multiplexing
gains satisfy vy + 79 4+ --- 4+ 7, < 1 for any bandwidth ratio
b > M — 1. The above multiplexing gain assignment makes
SN R exponents of all the terms equal which, in the end, gives
us the distortion exponent we are looking for. We find

M(b— M)

A = M- . 22
bb—M+1)"—M (22)
In the limit as n — oo, the overall distortion exponent is
M ifb> M,
A_{b if b < M. @3)

Distortion exponent vs. bandwidth ratio results of BS for
2 parallel channels are illustrated in Fig. 1 along with the
previous results.
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VII. BLOCK FADING CHANNEL

The results we obtained for M parallel channels can be
equivalently used for multiple block fading within a single
channel. Consider the channel model with a single link be-
tween the transmitter and the receiver, which experiences M
independent fading blocks in N channel uses. Now if we scale
the bandwidth ratio of this channel with M, we obtain the
same model as in the parallel channel case. Thus, by scaling
the bandwidth ratio by 1/M in the M-parallel channel results,
we obtain the corresponding distortion exponents for M block
fading channel.

VIII. DI1SCUSSION AND CONCLUSION

In Fig. 1 we present the distortion exponent vs. bandwidth
ratio for the upper bound, BS, LS and HLS schemes all in the
infinite layer limit, together with single layer LS, HLS and
pure analog transmission.

As seen from our results and Fig. 1, BS scheme is distortion
exponent optimal when bandwidth ratio is larger than the
number of parallel channels (b > M). For smaller bandwidth
ratios, its performance degrades rapidly and falls below both
LS and HLS schemes. HLS dominates LS for all values of
bandwidth ratio, but the advantage of HLS compared to LS
vanishes with increasing bandwidth ratio. We can also observe
that the single layer HLS scheme performs worse than infinite
layer LS for a wide range of bandwidth ratios proving the
importance of layering. The performance of the hybrid scheme
proposed in [7] is equivalent to our LS with one layer as the
digital layer constrained to only one of the parallel channels.
We also included pure analog transmission to show that it is
not able to utilize the diversity of the system. The distortion
exponent of analog transmission is limited to 1 no matter how
many parallel channels we have.

Although we have a gap between the upper bound and the
best achievable performance for 1/M < b < M, it is not
known whether this upper bound is tight for these bandwidth
ratios.

APPENDIX
PROOF OF THEOREM 2

We can write the expected end-to-end distortion as

E[DH)] = /D(H)p(al, coap)dag, ... dog, (24)
The joint pdf of u;’s is
M

p(p1y .-y tin) :He*’“,ui >0fori=1,...,n.

i=1
Then the joint pdf of «;’s can be found as

(25)

()M SNRYM ] SNR™

plat,...,an) =
=1
M
cexp |~ Y SNR™™ (26)
=1

Since we are interested in the distortion exponent in the
high SNR regime, we can simplify the expected distortion
expression as below.

M . M
SNR—b—ai) SNR™ % da.
J. 11 1

=1 =1

E[DH)] =

i/ SNR~(Eyoitbi=00") g
Rn+

where R, is the non-negative orthant of the n dimen-
sional space. From the proof of Theorem 4 in [8], we have
E[D(H)] = SNR™®, where

M
A = inf i+ bl —a;)T. 27
aEH712n+ ; Qi+ ( @ ) ( )
The minimizing & can be found as
- - 0 if b<1
al—"'_aM_{l i b > 1. (28)
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