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Abstract—Delay constrained linear transmission (LT) of a mix-
ture of Gaussian measurements over an additive white Gaussian
noise (AWGN) fading channel is considered. At each time slot
(TS), the control center (CC) asks for the measurement of a
particular system parameter from the sensor, which is capable of
measuring multiple independent system parameters. The average
mean-square error (MSE) distortion is studied for Gaussian
parameters and a Gaussian fading channel under an average
power constraint. The optimal LT scheme is characterized under
a strict delay constraint, and a graphical interpretation for the
power allocation strategy is presented. Then, two achievable
LT strategies are proposed for general delay constraints. It is
shown that the performance improves as the delay constraint is
relaxed, and when the delay constraint is completely removed,
both strategies achieve the optimal performance under certain
matching conditions.

I. INTRODUCTION

Wireless sensors are deployed throughout intelligent net-

works, such as smart grids (SGs), to closely track sensi-

tive system parameters, e.g., voltage, current magnitudes,

active/reactive power values, as well as temperature and other

physical parameters [1]. The measurements are delivered to

a control center (CC) that manages and controls the network

efficiently. As the networks evolve and get smarter, near real-

time accurate reconstruction of the measurements in the CC

becomes necessary for fast response to failures. For example,

in conventional state estimation for the electricity grid, mea-

surements are collected once every two to four seconds and the

state is updated once every few minutes [2]. However, more

frequent state measurements and estimations are required for

modern SGs, which inevitably imposes strict delay constraints

on the transmission of measurements. Thus, linear transmis-

sion (LT), rather than advanced compression and channel

coding techniques, has recently attracted attention for state

estimation in intelligent networks, since LT reduces the delay

and encoding complexity significantly; and additionally, limits

the cost and energy requirements of the sensors.

LT of Gaussian sources has been extensively studied in the

literature. Goblick showed in [3] that zero delay LT of a Gaus-

sian source over an additive white Gaussian noise (AWGN)
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channel achieves the optimal mean-square error (MSE) dis-

tortion. In [4], the optimal LT scheme that matches an r-

dimensional Gaussian signal to a k-dimensional AWGN vector

channel under an average power constraint is characterized. LT

of a Gaussian source over a fading AWGN channel is studied

in [5]. It is shown that the optimal LT performance can be

achieved by symbol-by-symbol processing, and increasing the

block length does not provide any improvement, as opposed

to nonlinear coding schemes. In [6], LT of noisy vector

state measurements over a fading AWGN channel is studied

under diagonal and general observation matrices. LT of vector

Gaussian sources over multi-antenna static and fading channels

is studied in [7].

Here, we consider a wireless sensor node that collects

measurements from a mixture of J Gaussian parameters, and

delivers them to the CC over an AWGN fading channel under a

delay constraint. Discretizing time into time slots (TSs), each

corresponding to one use of the channel from the sensor to

the CC, we assume that the CC asks for the measurement

of a particular parameter from the sensor at each TS. The

sensor takes one sample of the requested parameter at each

TS. Different from the studied multi-dimensional Gaussian

source models, e.g., [4], [8], the sensor does not have the

measurements of all the J Gaussian parameters at each TS,

and instead, one measurement is taken from one of the J
parameters at each TS. Hence, the source can be defined

as a mixture of Gaussians. We assume that a measurement

taken in a TS needs to be delivered to the CC within d
TSs. Thereby, after each transmission, the CC estimates the

measurement whose deadline is just about to expire, i.e., the

measurement that was taken d − 1 TSs ago. We assume that

the channel is fast fading; that is, its state is independent and

identically distributed (i.i.d.) over TSs, and both the encoder

and the decoder know the instantaneous channel state. We

also assume that the statistics of the measured parameters, the

parameter requests and the channel are known. Our goal is

to estimate each requested measurement at the CC within the

delay constraint with the minimum average MSE distortion.

We first derive the optimal LT strategy under a strict

delay constraint (d = 1), and show that the optimal power

allocation can be interpreted as water-filling reflected on a

reciprocal mirror. Then, building on our previous work [9]



and exploiting the results of [4], we propose two achievable

LT strategies for larger delay constraints. In both strategies,

measurements are first collected and stored depending on a

delay constraint, and then, are transmitted to the CC over

multiple channel accesses within the delay constraint. The two

strategies consider different measurement selection criterias,

which are used to select the appropriate stored measurement

at each channel access. We then derive the theoretical lower

bound (TLB) on the achievable MSE distortion. We char-

acterize the average distortion achievable by the proposed

LT schemes and the TLB under various power and delay

constraints. We show that the achievable average distortion

diminishes as the delay constraint is relaxed if the sensor is

capable of measuring more than one system parameter. We

also show that the proposed LT strategies meet the TLB when

the delay constraint is completely removed; and hence, achieve

the optimal performance under certain matching conditions.

II. SYSTEM MODEL

We consider a CC that monitors the operation of a complex

system through a wireless sensor (Fig. 1). The sensor is

capable of measuring J distinct system parameters. The jth

system parameter is a zero-mean Gaussian random variable

(r.v.) with variance σ2
j , i.e., N (0, σ2

j ), for j ∈ [1:J ], where

[1:J ] denotes the set {1, 2, . . . , J}. These system parameters

are independent from each other, and their realizations are i.i.d.

over time. In order to monitor the network operation, the CC

requests the measurement of one system parameter from the

sensor at each TS. The requested system parameter at each

TS is modelled by the r.v. M ∈ [1:J ], which is also i.i.d. over

time, with probability distribution Pr{M = m} = pM (m).
Thereby, the source S can be described as a mixture of

J distinct Gaussian parameters, where the source sample is

drawn from one of the J independent Gaussian distributions

with probability pM (m) at each TS.

We assume that the CC imposes a maximum delay con-

straint d ∈ Z
+ on the measurements, such that measurement

requested in a TS needs to be transmitted within the following

d TSs, as otherwise; it becomes stale. The collected sensor

measurements are transmitted to the CC over a fading channel

with zero-mean and unit variance AWGN using an average

power P . The channel output at TS i is given by yi = hixi+zi,
where xi is the channel input, zi is the additive noise with

Z ∼ N (0, 1), and hi is the fading state of the channel. We

consider a fast-fading channel model, and assume that the

fading coefficient Hi ∈ R is modelled as a r.v. i.i.d. over

time with probability distribution pH(h).
Let ml

i = [mi,mi+1, . . . ,ml] be the sequence of the

requested parameters at TSs [i:l] for i ≤ l. The measurement

sequence is defined similarly as sli = [si, . . . , sl], where the

i-th entry si is the measured value of the requested parameter

mi at TS i. Therefore, the sequence sli has independent entries,

where the i-th entry comes from a Gaussian distribution with

variance σ2
mi

. The channel state and the output sequences

within TSs [i:l] are similarly defined as hl
i = [hi, . . . , hl]

and yl
i = [yi, . . . , yl], respectively. We assume that both
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Fig. 1. The illustration of the transmission model from the perspective of the
sensor with multiple channel accesses.

the encoder and the decoder know all the past accumulated

channel states, hi
1, and requested parameters, mi

1, from the

beginning to the current TS, as well as the statistics of the

measured parameters, σ2
m, the parameter requests, pM (m), and

the channel, pH(h).
1) Encoding Function: The encoding function fi : Ri ×

R
i ×R

i → R, maps all the past measurements, si1, parameter

requests, mi
1, and channel states, hi

1, to a channel input xi

at each TS i, i.e., xi = fi(s
i
1,m

i
1,h

i
1). An average power

constraint of P is imposed on the encoding function :

P̄ , lim
n→∞

1

n

n
∑

i=1

EM,H,S

[

|Xi|2
]

≤ P,

where the expectation is taken over M , H and S.

2) Decoding Function: At the end of TS i, the goal of

the CC is to estimate the measurement s(i−d+1), which has

been requested exactly d− 1 TSs ago, and is about to expire.

The decoder for each TS i observes all the past channel

outputs, yi
1, parameter requests, mi

1, and channel states, hi
1,

and reconstructs the measurement s(i−d+1) as ŝ(i−d+1). The

decoding function at TS i is denoted by gi : R
i×R

i×R
i → R,

and we have ŝ(i−d+1) = gi(y
i
1,m

i
1,h

i
1). The average MSE

distortion is given by :

D̄ , lim
n→∞

1

n

n
∑

i=d

EM,H,S,Z

[

|S(i−d+1) − Ŝ(i−d+1)|2
]

,

where the expectation is taken over M , H , S and Z . In

the scope of this paper, we are interested only in linear

transmission policies in which fi are restricted to be linear

functions of the sensor measurements. Under the linearity

constraint on the encoding functions, fi, the optimal estimators

at the receiver, gi, are also linear.

III. STRICT DELAY CONSTRAINT

We first consider a strict delay constraint (d = 1), that is, a

measurement is transmitted and estimated within the current

TS. In this case, the optimal LT performance is achieved by

transmitting only the most recent measurement at each TS

since all the previous measurements have expired, and trans-

mitting expired measurement cannot help the estimation of

the current measurement, since the previous measurements are

independent of the current one. Therefore, since the channel

input at TS i depends only on the most recent measurement

si, then the encoding function f(h,m) is a scalar. Given the
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Fig. 2. Water-filling reflected on a reciprocal mirror.

encoding function, the decoding function that minimizes the

MSE for Gaussian r.v.s is the linear MMSE estimator [10].

Then, the average MSE distortion D̄, and the average power

P̄ , as functions of h and σ2
m, can be written as :

D̄ =

J
∑

m=1

pM (m)

∫

σ2
m

|h|2f(h,m)2σ2
m + 1

pH(h)dh, (1)

P̄ =

J
∑

m=1

pM (m)

∫

f(h,m)2σ2
mpH(h)dh. (2)

The optimal linear encoding function f∗(h,m) is found as

the solution to the convex optimization problem D̄∗ , min D̄,

subject to the average power constraint P̄ ≤ P , as follows :

f∗(h,m) =

√

[

λ∗

|h|σm

− 1

|h|2σ2
m

]+

, (3)

where λ∗ is the optimal Lagrange multiplier, such that P̄ = P .

The optimal power allocation function and the correspond-

ing distortion are given by :

P ∗(h,m) =
σm

|h|

[

λ∗ − 1

|h|σm

]+

, (4)

D∗(h,m) =
σm

|h| min

(

1

λ∗
, |h|σm

)

, (5)

where D̄∗ = EM,H [D∗(h,m)] and P̄ = EM,H [P ∗(h,m)].
In Fig. 2, we present a graphical interpretation of the optimal

power allocation and the corresponding distortion for J = 2
parameters with variances σ2

1 and σ2
2 , which are requested with

probabilities pM (1), pM (2), respectively. We also consider a

discrete fading channel with three states, where the kth state,

ĥk, is observed with probability pH(ĥk), k = 1, 2, 3. Fig. 2

depicts rectangles that are placed upon a mirror surface and

their reciprocally scaled images below. Rectangles represent

all possible source-channel pairs {σm, ĥk}, where lkm ,
1

|ĥk|σm

and wkm , σm

|ĥk|
indicate the height and width of the

rectangles, respectively. The total power is poured above the

level lkm up to the water level λ∗ across the rectangles placed

above the mirror. The optimal power allocated to the source-

channel pair {σm, ĥk} is given by the shaded area below

the water level and above lkm. The corresponding distortion

values are found by simply looking at the reciprocally scaled

reflections of the rectangles and the water level on the mirror.

If 1
lkm

> 1
λ∗

, the distortion is given by the width wkm times

the reciprocal of the water level 1
λ∗

, and if 1
lkm

< 1
λ∗

, the

distortion is σ2
m, which are illustrated as dashed areas in Fig. 2.

We call this as water-filling reflected on a reciprocal mirror.

IV. ACHIEVABLE LT STRATEGIES

In this section, we propose two achievable LT strategies

for general delay constraints d ≥ 1. The block diagram of

the proposed LT strategies is illustrated in Fig. 3. The LT

strategies are composed of two main blocks, namely, storage

and transmission blocks. There are two buffers of size d̄
measurements, namely, the measurement buffer (MB) and

the transmission buffer (TB). Here, we present these two

schemes for an odd delay constraint d ∈ {1, 3, 5, . . .}, but

they can easily be adapted to the case when d is even. In

the storage block, given a delay constraint d = 2d̄ − 1 for

d̄ ∈ [1:∞], the sensor collects a block of d̄ consecutive

measurements at d̄ consecutive TSs, and stores them into the

MB. The consecutive blocks of d̄ measurements, taken over

successive time intervals, are indexed by k̄ = 1, 2, . . .. Then,

the k̄-th block consists of the measurements taken within TSs

[(1 + (k̄ − 1)d̄):k̄d̄], i.e., sk̄d̄
(1+(k̄−1)d̄)

. When the MB gets

full with the d̄ measurements of the k̄-th block, the sensor

removes sk̄d̄
(1+(k̄−1)d̄)

from the MB and loads them into the

TB. Then, for the next consecutive d̄ TSs [k̄d̄:((k̄+1)d̄− 1)],
the sensor accesses the channel and transmits a linear function

of the measurements in the TB, i.e., sk̄d̄
(1+(k̄−1)d̄)

, over the

channel states h
((k̄+1)d̄−1)

k̄d̄
satisfying the delay constraint d.

The specifics of these linear functions will be explained below.

Note that, while the sensor transmits the measurements in

the TB, it starts refilling the MB with new measurements

s
(k̄d̄+d̄)

(k̄d̄+1)
. After d̄ channel accesses within TSs [k̄d̄:((k̄+1)d̄−

1)], the MB gets full again and its new d̄ measurements are

transferred to the TB for transmission over the next d̄ TSs.

The proposed transmission strategies consist of two sub-

blocks, namely, the measurement selection and scaling sub-

blocks. This division is motivated by the results of [4], in

which the ordered measurements are mapped one-to-one to

the ordered channels and each measurement is transmitted

over its corresponding channel. Hence, we assume that, at

each channel access, the sensor selects only one measurement

and scales it to a channel input value. However, in this case,

we cannot directly use the optimal LT scheme in [4] and

guarantee that the selected measurement and the channel state

satisfy the optimal matching. This is because even though d̄
measurements are available in the TB, states of the next d̄
channels are not available to the transmitter as in the parallel

channel model of [4]; and instead, they are becoming available

over time through channel accesses. The two proposed LT

strategies differ in the way they choose the measurement to

be transmitted at each TS.



Fig. 3. The block diagram illustration of the proposed LT strategies.

A. Linear Transmission Scheme with Hard Matching (LTHM)

The first scheme we propose is called LT scheme with

hard matching (LTHM), which has the following measurement

selection criteria. Assume, without loss of generality, that

the variances of the parameters are ordered in descending

variances as σ2
1 > σ2

2 > · · · > σ2
J . We divide the magnitudes

of channel states into J ordered channel intervals, which are

defined on the positive real line as, Hm = [H ′
m, H ′

(m−1)),

where H ′
m < H ′

(m−1) for m ∈ [1:J ]. The boundary values are

chosen as H ′
0 = ∞, H ′

J = 0 and H ′
m = F−1

H (1−
m
∑

j=1

pM (j)),

for m ∈ [1:(J − 1)], where F−1
H () denotes the inverse of the

cumulative distribution function of the channel magnitude |h|,
FH(|h|).

Let b = [b1, b2, . . . , bJ ] be a J-length vector, where the

m-th entry, bm ∈ [0:d̄], denotes the number of measurements

of parameter m in the TB, for m ∈ [1:J ]. At each channel

access, if |h| ∈ Hm and bm 6= 0, then the sensor selects

one measurement of the paramater type m from the TB

and feeds it to the scaling sub-block. If there are multiple

measurements of the same parameter type m in the TB, i.e.,

bm > 1, then the sensor selects one of them randomly.

The selected measurement is removed from the TB and b

is updated by reducing the m-th entry, bm, by one. Thereby,

each measurement is transmitted only once. On the other hand,

if |h| ∈ Hm and bm = 0, no measurement is transmitted in

that TS. Hence, LTHM considers a hard matching condition

for selecting measurements, in which each parameter has a

corresponding interval of channel states, and only measure-

ments of that parameter can be transmitted over a channel state

from that interval. Note that, since the channel state is known

at the receiver, it also knows which type of measurement is

transmitted at each TS.

For the scaling sub-block, we use the power allocation

derived in Section III, which is also equivalent to the power

allocation derived in [4]. Thus, the selected measurement of

the parameter type m is transmitted at the current channel

state |h| ∈ Hm, for m ∈ [1:J ], by allocating power P (h,m),

leading to distortion D(h,m) :

P (h,m) =







[

µσm

|h| − 1
|h|2

]+

, if hard matching holds,

0, otherwise.
(6)

D(h,m) =

{

σ2
m

|h|2P (h,m)+1 , if hard matching holds,

σ2
m, otherwise,

(7)

where µ is chosen such that the average power constraint is

satisfied.

After every transmission, the CC estimates the transmitted

measurement s by using the channel output y. It is noteworthy

that after d̄ channel accesses, we may have untransmitted

measurements in the TB. TB is emptied anyway since these

measurements have expired due to the delay constraint. These

measurements are estimated with the maximum distortion

σ2
m. As we show next, the average number of untransmitted

measurements decreases with the increasing delay constraint

d. However, for a finite delay constraint, the untransmitted

measurements dominate the distortion even for large average

transmission power. In order to combat this drawback, we

propose a different LT scheme which has a different measure-

ment selection criteria that aims at adressing the limitation of

LTHM.

B. Linear Transmission Scheme with Soft Matching (LTSM)

The LTSM retains the hard matching condition of LTHM,

i.e., at each channel access, if |h| ∈ Hm and bm 6= 0 for m ∈
[1:J ], LTSM selects one measurement of the paramater type

m from the TB. Hence, LTSM also gives the highest selection

priority to the measurement of the parameter type that satisfies

the hard matching condition with the channel state. However,

if |h| ∈ Hm and bm = 0, LTSM does not waste the channel

state; and instead, it selects one measurement based on the

following measurement selection criteria.

Assume that each interval Hm is further divided into two

equally probable intervals by the boundary value h′
m =

F−1
H

(

FH (H′

(m−1))+FH (H′

m)

2

)

, for ∀m ∈ [1:J ]. If |h| ∈ Hm

and bm = 0, then LTSM selects one measurement of parameter

ς , which is the parameter that minimizes the following distance

metric :

min
bς 6=0

∣

∣|h| − h′
ς

∣

∣ . (8)

When the hard matching condition is not satisfied, the

LTSM considers a soft matching condition for selecting mea-

surements; that is, among all parameter types of the measure-

ments in the TB, it selects a measurement of the parameter

whose corresponding interval of channel states has the value

h′
ς closest to the channel state magnitude |h|. If two distinct ς

values satisfy the solution of Eqn. (8), then LTSM chooses

the smallest value of ς . LTSM allocates the power as in

Eqn. (6), and transmits the selected measurement. At the end

of d̄ channel accesses, the sensor will have transmitted all

the measurements in the TB, albeit some might have been

allocated zero power as a result of the water-filling algorithm.



V. NO DELAY CONSTRAINT

In this section, we first state the theoretical performance

bound without any delay or complexity constraints. Then, we

prove that this lower bound can be achieved by LTHM and

LTSM under certain matching conditions and infinite delay.

A. The Theoretical Lower Bound (TLB)

Shannon’s separation theorem states that the optimal end-

to-end distortion is achieved by concatenating the optimal

source and channel codes when there is no delay or complex-

ity constraints, and the source and channel distributions are

ergodic [11]. The sensor can transmit to the CC at the ergodic

capacity, C̄e, of the underlying fading channel, while the

minimum distortion, D̄e, is found by evaluating the distortion-

rate function for a mixture of Gaussians source model at the

ergodic channel capacity.

Since the channel state is known by both the transmitter

and the receiver, the ergodic capacity, in terms of the op-

timal power allocation scheme P ∗
e (h), is given by C̄e ,

EH

[

1
2 log

(

1 + |h|2P ∗
e (h)

)]

, where P ∗
e (h) is found by the

water-filling algorithm as P ∗
e (h) = [α∗ − 1/|h|2]+, such that

α∗ satisfies EH [P ∗
e (h)] = P .

The distortion-rate function of a mixture of m Gaus-

sian sources, N (0, σ2
m), each of which is observed with

probability pM (m) for m ∈ [1:J ], is defined as D̄e ,

EM

[

σ2
m2−2R∗

e
(σm)

]

, where the rate allocated to source m,

R∗
e(σm), and the distortion of source m, D∗

e(σm), are given

by R∗
e(σm) = 1

2

[

log
(

σ2
m

β∗

)]+

and D∗
e(σm) = min

(

β∗, σ2
m

)

,

respectively, such that β∗ satisfies EM [R∗
e(σm)] = C̄e.

The achieved average distortion is D̄e , EM [D∗
e(σm)],

which is the TLB on the achievable average distortion by

any transmission strategy in our system model. Note that

we have removed both the delay constraint and the linearity

requirement on the encoder and decoder.

B. Asymptotic Optimality of LT

In general, TLB cannot be achieved by LT even if the delay

constraint is removed. However, it can be shown that LTHM

and LTSM meet the lower bound when the delay constraint

is removed under certain matching conditions between the

channel states and the parameter variances.

Assume that the channel follows a discrete fading distribu-

tion, where the channel state h can take one of the J values ĥm

with probability pH(ĥm) for m ∈ [1:J ]. The discrete values

are ordered as |ĥ1| > |ĥ2| > · · · > |ĥJ |. The next theorem

states the necessary conditions in this discrete channel model

under which LTHM and LTSM achieve the optimal distortion

performance when the delay constraint is removed.

Theorem 1. For the discrete AWGN fading channel model,

when the delay constraint is removed, i.e., d → ∞, if the

parameter variances and the discrete channel states satisfy
σ1

|ĥ1|
= · · · = σJ

|ĥJ |
, and pM (m) = pH(ĥm), for ∀m ∈ [1:J ],

then the TLB is achieved by LTHM and LTSM.

Proof. The proof is omitted here due to space limitations. It

can be found in [12].
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Fig. 4. The achievable average distortion of LTHM versus the average power
for different delay constraints in the discrete fading channel model.

VI. NUMERICAL RESULTS AND OBSERVATIONS

Here, we provide numerical results to compare the per-

formances of LTHM and LTSM, and to analyze the impact

of the delay and power constraints on the performance. In

our simulations, we set J = 4 Gaussian parameters with

variances {10, 5, 1, 0.5}, each of which is requested with

probabilities {0.1, 0.3, 0.4, 0.2}, respectively. For a continuous

fading channel, we consider Rayleigh distribution with a scale

parameter ω = 3, and for a discrete fading channel, we

consider four states {
√
10,

√
5, 1,

√
0.5}, each of which is

observed with probabilities {0.1, 0.3, 0.4, 0.2}, respectively.

We investigate the achievable average distortion of LTHM

versus average power for various delay constraints in the

discrete channel setting in Fig. 4. We observe that the average

distortion diminishes as the delay constraint is relaxed. This

is because a relaxed delay constraint provides a larger number

of measurements in the TB; and hence, more flexibility for

the sensor in selecting the appropriate parameter measurement

for each TS. We note that this statement does not hold when

J = 1, in which case increasing the block length for the

LT of a Gaussian source does not provide any improvement

on the performance [5]. As it can be seen in Fig. 4, the

average distortion converges to a fixed value as the average

power value increases. This is due to the effect of additional

distortion brought in by the untransmitted measurements in

the TB. The average number of untransmitted measurements

and their effect on the average distortion decreases as the

delay constraint is relaxed, since having a larger number of

measurements in the TB increases the probability of finding

a measurement that satisfies the hard matching condition. In

particular, when the delay constraint is removed, as seen in

Fig. 4, LTHM achieves the TLB, and becomes the optimal

LT scheme, since the source-channel matching conditions in

Theorem 1 are satisfied for the setup considered here.

Next, we illustrate in Fig. 5 the achievable average dis-

tortion of LTSM with respect to the average power under
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Fig. 5. The achievable average distortion of LTSM with respect to the average
power for various delay constraints in the continuous fading channel model.

various delay constraints in the continuous channel model.

Similarly to LTHM, the average distortion diminishes as the

delay constraint increases. On the other hand, as opposed to

LTHM, the average distortion achieved by LTSM decreases

monotonically with the average power as illustrated in Fig. 5.

This is because the performance of LTSM does not suffer

from a fixed distortion component due to the untransmitted

measurements. In addition, LTSM also approaches to the TLB

as the delay constraint is relaxed. Although we do not expect

the LTSM to meet the TLB in this setting since the matching

conditions of Theorem 1 do not hold, we observe in Fig. 5

that it is very close to the TLB.

Finally, we compare the performances of LTHM and LTSM

with each other and with the TLB. Fig. 6 shows the achievable

average distortion of LTHM, LTSM and the TLB with respect

to the delay constraint for the continuous fading channel and

average power constraint P̄ = 10 dB. As seen in the figure,

the TLB is constant since it is derived by completely removing

the delay and complexity constraints. As expected, the average

distortion performances of LTHM and LTSM decrease as the

delay constraint increases. For the setup considered in Fig. 6,

LTSM outperforms LTHM for all delay constraints, while

the gap between the two schemes decreases with the delay

constraint. We expect that LTSM outperforms LTHM for all

delay constraints. When the matching conditions of Theorem 1

hold, the two schemes both converge to the TLB.

VII. CONCLUSIONS

We have studied the delay-constrained LT of mixture of

Gaussian measurements from a sensor to a CC over an AWGN

fading channel. We have considered a wireless sensor that can

collect measurements from J distinct Gaussian parameters.

The CC asks for a measurement of a particular parameter

from the sensor with a certain probability at each TS. In

this framework, we have presented the optimal LT strategy

under a strict delay constraint, and have given a graphical

interpretation for the optimal power allocation scheme and
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Fig. 6. The achievable average distortion of LTHM, LTSM and the TLB with
respect to the delay constraint for the continuous fading channel model and
average power constraint P̄ = 10 dB.

the corresponding distortion value. We have proposed two

achievable LT strategies for the transmission of the sensor

measurements, and have provided numerical results to investi-

gate the impact of the delay and average power constraints

on their performances. We have seen that, if the number

of parameters, J , is more than one, the average distortion

decreases as the delay constraint is relaxed. We have derived

a TLB on the achievable average distortion by relaxing the

delay constraint and the linearity requirement. Our results have

shown that the LTSM strategy performs better than LTHM

for all delay constraints. We have also analytically shown that

both strategies, under certain matching conditions between the

parameter and the channel statistics, meet the TLB: and hence,

are optimal, when the delay constraint is removed.
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