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ABSTRACT

We consider federated edge learning (FEEL), where mobile
users (MUs) collaboratively learn a global model by shar-
ing local updates on the model parameters rather than their
datasets, with the help of a mobile base station (MBS). We
optimize the resource allocation among MUs to reduce the
communication latency in learning iterations. Observing that
the performance in this centralized setting is limited due to the
distance of the cell-edge users to the MBS, we introduce small
cell base stations (SBSs) orchestrating FEEL among MUs
within their cells, and periodically exchanging model updates
with the MBS for global consensus. We show that this hierar-
chical federated learning (HFL) scheme significantly reduces
the communication latency without sacrificing the accuracy.

Index Terms— Cellular networks, federated learning,
mobile edge processing, resource allocation.

1. INTRODUCTION

Vast amounts of data is generated today by mobile devices,
from smart phones to autonomous vehicles, drones, and vari-
ous Internet-of-things (IoT) devices. Machine learning (ML)
is key to exploiting these massive datasets to make intelligent
inferences and predictions. Most ML solutions are central-
ized; that is, they assume that the data collected from edge
devices is available at a central server. However, offloading
these huge datasets to an edge or cloud server over wireless
links is often not feasible due to latency, bandwidth, or pri-
vacy constraints. A recently proposed alternative approach is
federated edge learning (FEEL) [1–4], which enables ML at
the network edge without offloading any data.

Federated learning (FL) is a collaborative ML framework
[5, 6], where random subsets of devices are selected in an
offline manner to update model parameters based on local
datasets. Local models are periodically averaged from par-
ticipating devices either with the help of a parameter server
or through device-to-device communications.
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Although the communication bottleneck of FL has been
acknowledged in the ML literature, implementation of these
techniques on wireless networks, particularly in heteroge-
neous cellular networks (HCNs), and the successful orches-
tration for a large scale learning problem has not been ad-
dressed.

Recently, FL with a particular focus on wireless com-
munications has been studied in several papers [1–3, 7–12].
Nevertheless, to the best of our knowledge, this is the first
work addressing the communication latency of FL framework
implemented over a cellular network, via seeking the optimal
resource allocation policy for the mobile users (MUs). Fur-
ther, this is the only work to consider MU clustering among
SBSs to reduce the communication latency by reducing link
distances, and by enabling spatial reuse of resources. Al-
though, hierarchical schemes have been studied in [13–15],
wireless nature of the communication medium is not taken
into account.

In this paper, we focus on FEEL across HCNs, and intro-
duce a communication-efficient hierarchical FL (HFL) frame-
work. In this framework, MUs with local datasets are clus-
tered around small-cell base stations (SBSs) to perform fed-
erated stochastic gradient descent (SGD) with decentralized
datasets, and these SBSs communicate with a macro-cell base
station (MBS) periodically to seek consensus on the shared
model of the corresponding ML problem. In order to further
reduce the communication latency of this hierarchical frame-
work, we utilize gradient sparsification, and introduce an opti-
mal resource allocation scheme for synchronous gradient up-
dates. Our contributions in this paper can be summarized as
follows:

• We introduce a HFL framework for HCNs and provide
a holistic approach for the communication latency with
a rigorous end-to-end latency analysis.

• We employ communication efficient FEEL techniques,
in particular, sparsification and periodic averaging, and
design a resource allocation strategy to minimize the
end-to-end latency.

• Finally, we demonstrate our results by studying FEEL
over a HCN to classify images from the CIFAR10



dataset, and show that the communication latency can
be reduced dramatically without sacrificing the accu-
racy much.

2. SYSTEM MODEL

We focus on a scenario where K clients collaborate on solv-
ing an optimization problem in the following form;

min
θ∈RQ

f(θ) =
1

K

K∑
i=1

Eζ∼DiFi(θ, ζ)︸ ︷︷ ︸
:=fi(θ)

, (1)

where fi(θ) and Di are the local expected loss function and
distribution of data at ith client, respectively, and θ is the Q-
length parameter model to be learned. FL framework is de-
signed to orchestrateK clients to solve the given optimization
problem in (1) without sharing their dataset.

In the general form of the FL framework, the central en-
tity orchestrating the collaborative learning (e.g., MBS) first
chooses C ≤ 1 portion of the clients at the beginning of each
iteration and sends them the current model. Then, the cho-
sen clients perform H number of local updates by employ-
ing SGD over their own dataset. Following H local updates,
clients send back their updated model to the central entity,
where the models are averaged to seek a consensus. This pro-
cess iterates until certain convergence requirements are sat-
isfied. The general FL framework is presented in Algorithm
1. In particular, when C = 1 it is referred as the full partic-
ipation scenario and when H = 1 it is called federated SGD
(FedSGD). In the scope of this paper, we will focus on the
full participation scenario where clients are MUs and FL is
orchestrated by a MBS.

Algorithm 1 Federated learning (FL)

1: for t = 1, 2, . . . do
2: Choose a subset of clients Kt ⊆ K: |Kt| = K × C
3: for k ∈ Kt do
4: Pull θt: θk,0 = θt
5: for τ = 1, . . . ,H do local update:
6: Compute SGD: gk,τ = ∇θFk(θk,τ−1, ζk,τ )
7: Update model: θk,τ = θk,τ−1 − ηtgk,τ
8: Push θk,H
9: Federated Averaging: θt+1 = 1

|Kt|
∑
k∈Kt θk,H

2.1. Communication latency

We assume that the bandwidth available for communication is
B Hz. We employ an orthogonal access scheme with OFDM,
and assign distinct subcarriers to MUs. Denote by M =
B
B0
≥ K the number of subcarriers, where B0 is the sub-

carrier spacing. We denote the channel gain between MU k

and MBS on subcarrierm by γk,m = |hk,m|2, k = 1, . . . ,M ,
where hk,m is the complex channel coefficient. The distance
of MU k to MBS is denoted by dk, and the path loss exponent
by α.

2.1.1. Uplink (UL) Latency

For the latency analysis, we consider a set of stationary poli-
cies Π(πr, πp) which are tuples of subcarrier and power al-
location schemes, respectively. The resource allocation pol-
icy πr divides the available subcarriers among the MUs dis-
jointly, i.e., πr = {M1, . . . ,MK :Mk∩Ml = ∅, ∀k 6= l}.
We consider a time slotted channel model with stationary and
ergodic time-varying channel gain over slots, and we em-
ploy the fixed-rate transmission policy with truncated chan-
nel inversion power allocation [16]. According to this policy,
given πr, at any transmission slot τ MU k allocates power
pk,m(τ) ∝ 1

γk,m(τ) on subcarrier m ∈ Mk if the channel
gain is above a certain threshold, i.e., γk,m(τ) ≥ γthk,m, other-
wise does not use that subcarrier. Under average power con-
straint, we limit our focus to those power allocation policies
πp satisfying

Eγk(τ)

[ ∑
m∈Mk

pk,m(τ)

]
≤ Pmax, ∀ k, τ. (2)

Therefore, the power allocation policy πp boils down to the
set of threshold vectors, i.e., πp = {γthk }Kk=1. Then, for given
policy Π, the transmission rate of MU k, at transmission slot τ
can be written as Rk(τ,Π) =

∑
m∈Mk

rk,m(γk,m(τ), γthk,m),
where rk,m(γk,m(τ), γthk,m) is the instantaneous rate of MU k
on subcarrier m at transmission slot τ . Accordingly, the UL
latency of MU k, under policy Π can be defined as

TULk (Π) = min{T :

T∑
τ=1

Rk(τ,Π) ≥ Q̂}, (3)

where Q̂ is the number of bits used to represent the model.
Due to synchronization, the overall average UL latency is de-
termined according to the MU with the highest UL latency,
i.e., T̄UL(Π) = Eγ1,...,γK max{TUL1 , . . . , TULK }, and the op-
timal policy Π? is the one that minimizes T̄UL(Π). To find
the optimal policy Π?, we assume that

Eγ1,...,γK mink{
∑T
τ=1Rk(τ,Π)}

T
= min

k
EγkRk(Π)︸ ︷︷ ︸

,R̄k

, (4)

which is reasonable when T is large. Hence, finding the op-
timal policy Π? is equivalent to solving the following opti-
mization problem:

max
Π

min
k=1,...,K

R̄k(Π). (5)



Power allocation policy πp depends on πr, which allocates
subcarriers, through (2). Given a πr, π?p can be found as
in [16]. Hence, to solve (5) we use the following sequential
optimization framework where we first initialize a resource
allocation policy πr, then find the optimal conditional policy
π?p |πr, and finally update the resource allocation policy πr ac-
cording to MU with the lowest expected UL rate, and repeat
the process.

2.1.2. Downlink (DL) Latency

We assume that the MBS also uses Q̂ bits to compress the
global model. We employ a multicast policy and assume that
the MBS allocates its available power uniformly over all the
subcarriers. Let SNRk,m(τ) denote the signal-to-noise ra-
tio (SNR) of worker k on subcarrier m. The instantaneous
multicast DL rate of MU k becomes:

Rk(τ) =
∑
m∈M

B0 log2(1 + SNRk,m(τ)), (6)

where SNRk,m(τ) =
Pmaxγk,m(τ)
MN0B0dαk

. The multicast will termi-

nate when Q̂ bits are received by all the workers. The average
multicast latency, TDL, can be computed as follows:

T̄DL = E

[
max
k

min{T : Ts

T∑
τ=1

Rk(τ) ≥ Q̂}

]
. (7)

Per iteration, the end-to-end latency of the FL protocol is
given by TFL = T̄UL + T̄DL.

3. HIERARCHICAL FEDERATED LEARNING
(HFL)

In large scale networks, where many MUs distributed across
a large cell and participate in FL, the communication latency
may be prohibitively large due to the limited bandwidth and
the weak channels of cell edge users. To this end we propose
the hierarchical FL framework, where MUs are clustered ac-
cording to their locations and seek a consensus on the model
with the help of SBSs according to FedSGD framework. In
particular, at each iteration, MUs in a cluster send their local
gradient estimates to the assigned SBS for aggregation, and
the SBSs send back the average of the received estimates to
their associated MUs to update their model accordingly.

Distance based MU clustering not only reduces the com-
munication distance, and hence the latency, but also allows
the spatial reuse of available communication resources. On
the other hand, limiting the gradient communications within
clusters may prevent convergence to a single parameter model
(i.e., global consensus). To this end, we combine the intra-
cluster gradient aggregation method with inter-cluster model
averaging strategy, such that after every H consecutive intra-
cluster SGD iterations, SBSs send their local model updates
to the MBS to establish a global consensus.

The HFL algorithm is presented in Algorithm 2. Denote
by Cl the set of MUs belonging to cluster l = 1, . . . , L, with
L being the number of SBSs. During intra-cluster iterations,
the local gradient estimates of the MUs are aggregated within
the clusters. SBS l aggregates the gradients from the MUs in
its cluster (line 6). This average is then sent back by the SBS
to the MUs in its cluster, and the models at all clusters are
updated. After H iterations, all SBSs transmit their models to
the MBS through UL fronthaul links. The MBS calculates the
model average (line 10), and multicasts it back to the SBSs
over the DL fronthaul links. Upon receiving the model up-
date, the SBSs share it with the MUs in their clusters. Hence,
afterH iterations all the MUs share a common parameter vec-
tor, globally.

Algorithm 2 HFL

1: for t = 1, . . . , T do
2: for k ∈ K do
3: Compute SGD: gk,t = ∇θFk(θk,t−1, ζk,t)

4: Execute FedSGD in the clusters:
5: for l = 1, . . . L do
6: gl,t = 1

|Cl|
∑
k∈Cl gk,t.

7: Update model at SBS: θl,t = θl,t−1 − ηtgl,t
8: if t | H then
9: Execute FedAvg among the clusters:

10: Update model at MBS: θt = 1
L

∑L
l=1 θl,t

11: SBS pulls model from MBS: θl,t = θt

12: Client pulls model from SBS: θk,t = θl,t

We assume that there is no interference between MUs lo-
cated more than Dth from each other. Clusters are colored
so that any two clusters with the same color are separated by
at least distance Dth to minimize the interference between
clusters. If Nc colors are used in total, the available OFDM
subcarriers are divided into Nc groups, and the subcarriers in
each group are allocated to clusters with a particular color.
Consequently, the number of available OFDM subcarriers for
each clusters is approximately M/Nc.

In the local gradient update step of HFL communication
latency analysis follows similarly to the one for centralized
FL in Sec. 2 with the number of subcarriers M/Nc. De-
note by ΓUl , and ΓDl , the UL and DL latencies in cluster l,
respectively. After H iterations, SBSs send their model up-
dates to the MBS. Let USBS , RSBS be the UL and DL rates
of SBSs to the MBS, respectively. The UL and DL latencies at
each period of H iterations become ΘU = Q̂

USBS
and ΘD =

Q̂
RSBS

, respectively. There is also the latency of transmitting
the average model by SBSs to their associated MUs. The
average latency associated with one period of HFL becomes
Γper = maxl∈LH

(
ΓUl + ΓDl

)
+ ΘU + ΘD + maxl Γ

D
l , and

the average per iteration latency of HFL is ΓHFL = Γper

H .



Table 1: Latency comparison between HFL and centralized
FL as a function of the path-loss exponent α and H .

H = 2 H = 4 H = 6
α = 2.7 5.6 6.4 6.6
α = 3.1 16 17.5 18.5
α = 3.5 35 39.5 41.5

4. NUMERICAL RESULTS

To further improve the performance of the HFL framework,
we use the momentum SGD for the local FedSGD and utilize
sparsification strategy to reduce the communication load. We
implement the FedSGD for clusters following the guidelines
in [17].

We consider 28 MUs uniformly distributed across a cir-
cular area with radius 750 meters. We consider hexagonal
clusters, where the diameter of circle inscribed in each is 500
meters. The SBSs are located at the center of the hexagons.
We assume that the fronthaul links are 100 times faster than
the UL and DL between MUs and SBSs. The total number
of clusters is 7. We assume 600 subcarriers with subcarrier
spacing of 30 KHz. The maximum transmit powers of the
MBS, SBSs, and the MUs are 20W, 6.3W, and 0.2W, respec-
tively [18].

In our numerical analysis, we consider the image classifi-
cation problem over the CIFAR-10 dataset with 10 different
image classes [19], and train the ResNet18 architecture [20]
in a federated manner. The dataset is divided across MUs in
an independent and identically distributed (IID) manner. We
utilize some large batch training tricks, such as scaling the
learning rate η and employing a warm-up phase [21]. We
set the batch size for training to β = 64. We set the initial
learning rate to 0.25, and consider the first 5 epochs as the
gradual warm-up phase where training starts with η = 0.1,
which is increased linearly at each iteration until it reaches
the initial learning rate. Following the guidelines in [13], we
train the network for 300 epochs, and at the end of the 150th
epoch we drop the initial learning rate by a factor of 10; and
similarly, after the 225th epoch we drop the learning rate by
another factor of 10. Finally, we apply 99%, 90%, 90% and
90% sparsification for MU UL, MU DL, SBS UL, and SBS
DL, respectively.

We first study the reduction in latency achieved by HFL
compared to centralized FL. We measure the latency reduc-
tion by comparing the latency of HFL, ΓHFL, with that of
centralized FL, TFL. In particular, we evaluate the latency
improvement factor defined as TFL

ΓHFL
.

Clustering reduces the communication distance, and as a
result, improves the SNR. The amount of improvement de-
pends on the amount of reduction in path-loss. In Table 1, the
latency improvement factor for different H and path-loss ex-

Table 2: Top 1 accuracy results for different strategies.

Baseline 92.48± 0.13
FL 89.23± 0.42

HFL, H = 2 90.27± 0.11
HFL, H = 4 90.474± 0.20
HFL, H = 6 91.03± 0.19
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Fig. 1: Top-1 accuracy

ponent (α) values is shown. We can observe that HFL brings
significant improvement in terms of latency especially when
the path-loss exponent is high, i.e., in urban environments,
where we also expect most FL applications to take place.

The convergence of top-1 accuracy achieved by central-
ized FL and HFL algorithms are shown in Fig. 1. We ob-
serve that the latency improvement of HFL over centralized
FL does not compromise its accuracy. In fact, a closer look
at the accuracy (averaged over 5 runs) in Table 2 shows that
HFL is able to achieve higher accuracy than centralized FL in
all the cases. The mean ± standard deviation results for the
last epoch is reported in Table 2, where the Baseline result is
obtained by training a single network on the whole training
set. We observe only a small degradation in the accuracy of
HFL with respect to this bound. We believe that this degrada-
tion is mainly due to the use of momentum SGD at each MU
instead of a global momentum and due to sparsification.

5. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we introduced an analyzed a HFL framework
implemented across a HCN. We provide a complete end-to-
end latency analysis for the communication steps including
both UL and DL phases. Then using this result we showed
that hierarchical framework can speed up the training by re-
ducing the communication latency. As a future extension of
this work we are planning to study to the non-IID data distri-
bution scenario [15, 22, 23].
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[8] Deniz Gündüz, Paul de Kerret, Nicholas D. Sidiropou-
los, David Gesbert, Chandra Murthy, and Mihaela
van der Schaar, “Machine learning in the air,” 2019.

[9] Jin-Hyun Ahn, Osvaldo Simeone, and Joonhyuk Kang,
“Wireless federated distillation for distributed edge
learning with heterogeneous data,” 2019.

[10] M. Mohammadi Amiri, T. M. Duman, and D. Gündüz,
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