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Abstract

A distributed binary hypothesis testing problem involving two parties, a remote observer and a detector, is studied. The

remote observer has access to a discrete memoryless source, and communicates its observations to the detector via a rate-limited

noiseless channel. The detector observes another discrete memoryless source, and performs a binary hypothesis test on the joint

distribution of its own observations with those of the observer. While the goal of the observer is to maximize the type 2 error

exponent of the test for a given type 1 error probability constraint, it also wants to keep a private part of its observations as

oblivious to the detector as possible. Considering both equivocation and average distortion as possible measures of privacy, the

trade-off between the communication rate from the observer to the detector, the type 2 error exponent and privacy is studied. For

the general hypothesis testing problem, we establish single-letter inner bounds on both the rate-error exponent-equivocation and

rate-error exponent-distortion trade-offs. Subsequently, single-letter characterizations for both trade-offs are obtained (i) for testing

against conditional independence of the observer’s observations from those of the detector, given some additional side-information

at the detector; and (ii) when the communication rate constraint over the channel is zero. Finally, we show by providing a

counterexample that, the strong converse which holds for distributed hypothesis testing without a privacy constraint, does not

hold when a privacy constraint is imposed. This implies that, in general, the rate-error exponent-equivocation and rate-error

exponent-distortion trade-offs are not independent of the type 1 error probability constraint.

I. INTRODUCTION

Data inference and privacy are often contradicting objectives. In many multi-agent system, each agent/user reveals information

about its data to a remote service, application or authority, which in turn, provides certain utility to the users based on their data.

Many emerging networked systems can be thought of in this context, from social networks to smart grids and communication

networks. While obtaining the promised utility is the main goal of the users, privacy of data that is shared is becoming

increasingly important. Thus, it is critical that users reveal only the information relevant for obtaining the desired utility, while

maximum possible privacy is retained for their sensitive information.

This work has been supported in part by the European Research Council Starting Grant project BEACON (grant agreement number 677854), and by the
H2020 MSCA-RISE program under project TactileNet (project ID: 690893).
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In distributed learning applications, typically the goal is to learn the joint probability distribution of data available at different

locations. In some cases, there may be prior knowledge about the joint distribution, for example, that it belongs to a certain set

of known probability distributions. In such a scenario, the nodes communicate their observations to the detector, which then

applies hypothesis testing (HT) on the underlying joint distribution of the data based on its own observations and those received

from other nodes. However, with the efficient data mining and machine learning algorithms available today, the detector can

illegitimately infer some unintended private information from the data provided to it exclusively for HT purposes. Such threats

are becoming increasingly imminent as large amounts of seemingly irrelevant yet sensitive data are collected from users, such

as in medical research [1], social networks [2], online shopping [3] and smart grids [4]. Therefore, there is an inherent trade-off

between the utility acquired by sharing data and the associated privacy leakage.

In this paper, we study distributed HT with a privacy constraint, in which, an observer communicates its observations to a

detector over a noiseless rate-limited channel of rate R nats per observed sample. Using the data received from the observer,

the detector performs binary HT on the joint distribution of its own observations and those of the observer. The performance

of the HT is measured by the asymptotic exponential rate of decay of the type 2 error probability, known as the type 2 error

exponent (T2EE), for a given constraint on the type 1 error probability (definitions will be given below). While the goal is

to maximize the performance of the HT, the observer also wants to maintain a certain level of privacy against the detector

for some latent private data that is correlated with its observations. We are interested in characterizing the trade-off between

the communication rate from the observer to the detector over the channel, T2EE achieved by the HT and the amount of

information leakage of private data. A special case of HT known as testing against conditional independence (TACI) will

be of particular interest. In TACI, the detector tests whether its own observations are independent of those at the observer,

conditioned on additional side information available at the detector.

Distributed HT without any privacy constraint has been studied extensively from an information theoretic perspective in

the past, although many open problems remain. The fundamental results for this problem are first established in [5], which

includes a single-letter lower bound on the optimal T2EE and a strong converse result which states that the optimal T2EE

is independent of the constraint on the type 1 error probability. Exact single-letter characterization of the optimal T2EE for

the testing against independence (TAI) problem, i.e., TACI with no side information at the detector, is also obtained. The

lower bound established in [5] is further improved in [6] and [7]. Strong converse is studied in the context of complete data

compression and zero-rate compression in [6] and [8], respectively, where in the former, the observer communicates to the

detector using a message set of size two, while in the latter using a message set whose size grows sub-exponentially with

the number of observed samples. The TAI problem with multiple observers remains open (similar to several other distributed

compression problems when a non-trivial fidelity criterion is involved); however, the optimal T2EE is obtained in [9] when

the sources observed at different observers follow a certain Markov relation. The scenario in which, in addition to HT, the

detector is also interested in obtaining a reconstruction of the observer’s source, is studied in [10]. The authors characterize

the trade-off between the achievable T2EE and the average distortion between the observer’s observations and the detector’s

reconstruction. The TACI is first studied in [11], where the optimality of a random binning based encoding scheme is shown.

The optimal T2EE for TACI over a noisy communication channel is established in [12]. Extension of this work to general
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HT over a noisy channel is considered in [13], where lower bounds on the optimal T2EE are obtained by using a separation

based scheme and also using hybrid coding for the communication between the observer and the detector. The TACI with a

single observer and multiple detectors is studied in [14], where each detector tests for the conditional independence of its own

observations from those of the observer. Recently, the general HT version of this problem over a noisy broadcast channel is

explored in [15], where the authors employ a combination of hybrid coding and unequal error protection scheme [16]. While all

the above works consider the asymmetric objective of maximizing the T2EE under a constraint on the type 1 error probability,

the trade-off between the exponential rate of decay of both the type 1 and type 2 error probabilities are also considered in [17]

[18] [19].

Data privacy has been a hot topic of research in the past decade, spanning across multiple disciplines in computer and

computational sciences. Several practical schemes have been proposed that deals with the protection or violation of data

privacy in different contexts, e.g., see [20]–[25]. More relevant for our work, HT under mutual information and maximal

leakage privacy constraints have been studied in [26] and [27], respectively, where the encoder uses a memoryless privacy

mechanism to convey a noisy version of its observed data to the detector. The detector performs HT on the probability

distribution of the observer’s data, and the optimal privacy mechanism that maximizes the T2EE while satisfying the privacy

constraint is analyzed. Recently, a distributed version of this problem has been studied in [28], where the goal at the detector

is to perform a HT on the joint distribution of its own observations with those of the observer. In contrast with [26], [27] and

[28], we study distributed HT with a privacy constraint, but without the restriction of memoryless coding mechanisms at the

encoder. More specifically, the output of the encoder is allowed to depend on the entire sequence of observed samples, rather

than a single sample. Also, while [26] and [27] are concerned with HT in a point to point setting, i.e., the detector does not

have its own observations, here the focus is on distributed HT problem. In Section II, we will further discuss the differences

between the system model considered here with that of [28].

Many different privacy measures have been considered in the literature to quantify the amount of private information leakage,

such as k-anonymity [29], differential privacy [30], total variation distance [31] etc.; see [32] for a detailed survey. Among

these, mutual information between the private and revealed information (or, equivalently, the equivocation of private information

given the revealed information) is perhaps the most commonly used measure. It is well known that a necessary and sufficient

condition to guarantee statistical independence between two random variables is to have zero mutual information between them.

Furthermore, the average information leakage measured using an arbitrary privacy measure is upper bounded by a constant

multiplicative factor of that measured by mutual information [33]. A rate-distortion approach to privacy is first explored by

Yamamoto in [34] for a rate-constrained noiseless channel where, in addition to a distortion constraint for legitimate data,

a minimum distortion requirement is enforced for the private part. Other measures of information leakage that are stronger

than mutual information has been recently considered in [35]. In this paper, we will consider both equivocation and average

distortion as the measures of privacy. In [36], the T2EE of a HT adversary is considered as a privacy measure. This can be

considered as the opposite setting to ours, in the sense that, while the goal here is to increase the T2EE under a privacy leakage

constraint, the goal in [36] is to reduce the T2EE under a constraint on possible transformations that can be applied on the

data.
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The amount of private information leakage that can be tolerated depends on the specific application at hand. While it may be

possible to tolerate a moderate amount of private information leakage in applications like online shopping or social networks,

it may no longer be the case in matters related to information sharing among government agencies or corporates. While it is

obvious that maximum privacy can be attained by revealing no information, this typically comes at the cost of zero utility.

On the other hand, maximum utility can be achieved by revealing all the information, but at the cost of minimum privacy.

Characterizing the optimal trade-off between the utility and the minimum privacy leakage between these two extremes is a

challenging research problem.

It is important to note here that the data privacy problem is fundamentally different from that of data security against an

eavesdropper or an adversary. In data security, sensitive data is to be protected against an external malicious agent distinct

from the legitimate parties in the system. The techniques for guaranteeing data security usually involve either cryptographic

methods in which the legitimate parties are assumed to have additional resources unavailable to the adversary (e.g., a shared

private key) or the availability of better communication channel conditions. However, in data privacy problems, the sensitive

data is to be protected from the same legitimate party that provides the utility; and hence, the above mentioned techniques for

guaranteeing data security are not applicable.

Main Contributions

The main contributions of this work are as follows.

(i) In Section III, Theorem 8 (resp. Theorem 9), we establish a single-letter inner bound on the rate-T2EE-equivocation

(resp. rate-T2EE-distortion) trade-off for distributed HT with a privacy constraint.

(ii) Exact characterizations are obtained for some important special cases in Section IV. More specifically, a single-letter

characterization of the optimal rate-T2EE-equivocation (resp. rate-T2EE-distortion) trade-off is established for:

a) TACI with a privacy constraint (for vanishing type 1 error probability constraint) in Section IV-A, Theorem 10 (resp.

Theorem 11).

b) distributed HT with a privacy constraint for zero-rate compression (R = 0) in Section IV-B, Theorem 15 (resp. Theorem

14).

Since the optimal trade-offs in Theorem 14 and Theorem 15 are independent of the constraint on the type 1 error

probability, they are strong converse results in the context of HT.

(iii) Finally, in Section V, we provide a counterexample showing that for positive rate R > 0, the strong converse result does

not hold in general for TAI with a privacy constraint.

The organization of the paper is as follows. The basic notations are introduced in Section II-A. The problem formulation

and associated definitions are given in Section II-B. The results are presented in Sections III to V. The proofs of the results

are presented either in the Appendix or immediately after the statement of the result. Finally, Section VI concludes the paper

with some open problems for future research.
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Fig. 1: HT with a privacy constraint.

II. PRELIMINARIES

A. Notations

All the random variables (r.v.’s) considered in this paper are discrete with finite support unless specified otherwise. We

denote r.v.’s and their realizations by upper and lower case letters (e.g., X and x), respectively. Sets are denoted by calligraphic

letters, e.g., the alphabet of a r.v. X is denoted by X . Sequence of r.v.’s (X1, . . . , Xn) will be denoted by Xn. The group of m

r.v’s X(j−1)m+1, . . . , Xjm is denoted by Xm(j), and the infinite sequence Xm(1), Xm(2), . . . is denoted by {Xm(j)}j∈Z+ .

D(PX ||QX), HPX (X), HPXY (X|Y ) and IPXY (X;Y ) represent the standard quantities of Kullback-Leibler (KL) divergence

between distributions PX and QX , the entropy of X with distribution PX , the conditional entropy of X given Y and the

mutual information between X and Y with joint distribution PXY , respectively. When the distribution of the r.v.’s involved are

clear from the context, the entropic and mutual information quantities are denoted simply by I(X;Y ), H(X) and H(X|Y ),

respectively. Following the notation in [37], TP and Tm[PX ]δ
(or Tm[X]δ

or Tmδ when there is no ambiguity) denote the set of

sequences of type P and the set of PX -typical sequences of length m, respectively. The set of all types of k-length sequences

of r.v.’s Xk and Y k is denoted by T k(X ×Y) and ∪k∈Z+T k(X ×Y) is denoted by T (X ×Y). Given realizations Xn = xn

and Y n = yn, He(x
n|yn) denotes the conditional empirical entropy defined as

He(x
n|yn) := HPX̃Ỹ

(X̃|Ỹ )

where PX̃Ỹ denotes the joint type of (xn, yn). 1 denotes the indicator function. X − Y −Z denotes a Markov chain between

the r.v.’s X , Y and Z, while X ⊥ Y denotes statistical independence between X and Y .
(n)−−→ denotes asymptotic limit with

respect to n, e.g., an
(n)−−→ 0 means the sequence an tends to zero asymptotically with n. P(E) denotes the probability of event

E . For positive real m, we define [m] := {1, . . . , dme}. For an arbitrary set A, we denote its complement by Ac, and for

A ⊆ Rn, we denote its interior and closure by int(A) and cl(A) (with respect to the Euclidean metric), respectively. Whenever

the range of the summation is not specified, this will mean summation over the entire support, e.g.,
∑
u denotes

∑
u∈U , unless

specified otherwise. Throughout this paper, the base of the logarithms is taken to be e. For a ∈ R, a+ denotes max{0, a}. For

two probability distributions P and Q defined on a common support X , P << Q will mean that P is absolutely continuous

with respect to Q.
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B. Problem formulation

Consider the HT setup illustrated in Fig. 1. The encoder (observer) observes a discrete memoryless source Un and sends the

message index M := f (n)(Un) to the detector over an error-free channel using some encoding function (possibly stochastic)

f (n) : Un → {PM |Un}, M = [enR]. Given its own independent and identically distributed (i.i.d.) observation V n, the detector

performs a HT on the joint distribution1 of Un and V n with null hypothesis

H0 : (Un, V n) ∼
n∏
i=1

PUV ,

and alternate hypothesis

H1 : (Un, V n) ∼
n∏
i=1

QUV .

Let H, Ĥ ∈ {0, 1} denote the r.v.’s corresponding to the true hypothesis and the output of the HT, respectively, where 0 denotes

the null hypothesis and 1 the alternate hypothesis. Let g(n) :M×Vn → {PĤ|M,V n} denote the decision rule at the detector.

The type 1 and type 2 error probability for an (f (n), g(n)) pair are defined as

ᾱ
(
f (n), g(n)

)
:= P(Ĥ = 1|H = 0) = PĤ(1),

and

β̄
(
f (n), g(n)

)
:= P(Ĥ = 0|H = 1) = QĤ(0),

respectively, where

PĤ(1) =
∑

un,m,vn

[
n∏
i=1

PUV (ui, vi)

]
PM |Un(m|un) PĤ|MV n(1|m, vn),

and QĤ(0) =
∑

un,m,vn

[
n∏
i=1

QUV (ui, vi)

]
PM |Un(m|un) PĤ|MV n(0|m, vn).

For a given type 1 error probability constraint ε, define the minimum type 2 error probability over all possible detectors as

β
(
f (n), ε

)
:= inf

g(n)
β̄
(
f (n), g(n)

)
, (1)

such that ᾱ
(
f (n), g(n)

)
≤ ε.

The performance of HT is measured by the T2EE achieved by the test for a given constraint ε on the type 1 error probability,

i.e., lim infn→∞− 1
n log

(
β(f (n), ε)

)
. Although the goal of the detector is to maximize the T2EE achieved for the HT, it is

also curious about a latent r.v. Sn that is correlated with the source Un. Sn is referred to as the private part of Un, which is

distributed i.i.d. according to the joint distribution PSUV and QSUV under the null and alternate hypothesis, respectively. It is

desired to keep the private part as concealed as possible from the detector. We consider two measures of privacy for Sn at the

1Although a r.v. is specified together with its probability distribution, here, we abuse the notation for ease of exposition, and denote the observations at
the observer and detector under both the null and alternate hypothesis by (Un, V n), with probability distribution

∏n
i=1 PUV and

∏n
i=1 QUV , respectively.

This terminology is used throughout the paper.



7

detector. The first is the equivocation defined as 1
nH(Sn|M,V n). The second one is the average distortion between Sn and its

reconstruction Ŝn at the detector, measured according to an arbitrary bounded additive distortion metric d : S × Ŝ → [0, Dm]

with multi-letter distortion defined as

d(sn, ŝn) :=
1

n

n∑
i=1

d(si, ŝi).

The goal is to ensure that the T2EE for HT is maximized, while satisfying the constraints on the type 1 error probability ε

and the privacy of Sn. In the sequel, we study the trade-off between the rate, T2EE (henceforth also referred to simply as the

error exponent) and privacy achieved in the above setting. Before delving into that, a few definitions are in order.

Definition 1. For a given type 1 error probability constraint ε, a rate-error exponent-distortion tuple (R, κ,∆0,∆1) is

achievable, if there exists a sequence of encoding and decoding functions f (n) : Un → {PM |Un}, M = [enR] and g(n) :

[enR]× Vn → {PĤ|M,V n} such that

lim sup
n→∞

log
(
β(f (n), ε)

)
n

≤ −κ, and (2)

lim inf
n→∞

inf
g

(n)
r

E
[
d
(
Sn, Ŝn

)
|H = i

]
≥ ∆i, i = 0, 1, (3)

where g(n)
r : [enR]×Vn → {PŜn|M,V n} and PŜn|M,V n denotes an arbitrary conditional probability distribution. The rate-error

exponent-distortion region Rd(ε) is the closure of the set of all such achievable (R, κ,∆0,∆1) tuples for a given ε.

Definition 2. For a given type 1 error probability constraint ε, a rate-error exponent-equivocation (R, κ,Ω0,Ω1) tuple is

achievable, if there exists a sequence of encoding and decoding functions f (n) : Un → {PM |Un}, M = [enR] and g(n) :

[enR]× Vn → {PĤ|M,V n} such that (2) is satisfied and

lim inf
n→∞

1

n
H(Sn|M,V n, H = i) ≥ Ωi, i = 0, 1. (4)

The rate-error exponent-equivocation region Re(ε) is the closure of the set of all achievable (R, κ,Ω0,Ω1) tuples for a given

ε.

Before stating our results, we briefly highlight the differences between our system model and the one studied in [28]. In

[28], the observer applies a memoryless privacy mechanism to the data before releasing it to the transmitter, which performs

further encoding prior to transmission to the detector, while in our model, there is no such restriction, as is obvious from the

definitions above. Also, while we consider the equivocation (or average distortion) between the revealed information and the

private part as the privacy measure, in [28], the mutual information between the observer’s observations and the output of the

memoryless mechanism is the privacy measure. Thus, perfect privacy in their model would imply that the T2EE is also zero,

since the output of the memoryless mechanism has to be independent of the observer’s observations (under both hypothesis).

However, as we show in Example 1 later, a positive T2EE is achievable while guaranteeing perfect privacy in our model.

Next, we state some supporting results that will be useful later for proving the main results.
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C. Supporting Results

First, we show that restricting our attention to a deterministic detector g(n) : [enR]×Vn → {0, 1} in Definitions 1 and 2 is

without loss of optimality. Accordingly, let

g(n)(m, vn) = 1

(
(m, vn) ∈ Ac(n)

)
(5)

denote the deterministic detector with acceptance region A(n) ⊆ [enR] × Vn for H0 and Ac(n) for H1. Then, the type 1 and

type 2 error probabilities are given by

ᾱ
(
f (n), g(n)

)
:= PMV n(Ac(n)) = E (1(M,V n) ∈ Ac(n)|H = 0), (6)

β̄
(
f (n), g(n)

)
:= QMV n(A(n)) = E (1(M,V n) ∈ A(n)|H = 1). (7)

Proposition 3. It is sufficient to consider a deterministic detector of the form given in (5) for some A(n) ⊆ [enR]×Vn, where

A(n) and Ac(n) denote the acceptance regions for H0 and H1, respectively.

Proof: Note that for a stochastic detector, the type 1 and type 2 error probabilities are linear functions of PĤ|MV n . As a

result, for each fixed n and f (n), ᾱ
(
f (n), g(n)

)
and β̄

(
f (n), g(n)

)
for a stochastic detector g(n) can be thought of as the type

1 and type 2 errors achieved by ”time sharing” among a finite number of deterministic detectors. Now, suppose (ᾱ
(n)
1 , β̄

(n)
1 )

and (ᾱ
(n)
2 , β̄

(n)
2 ) denote the pair of type 1 and type 2 error probabilities achieved by deterministic detectors g(n)

1 and g
(n)
2 ,

respectively. Let A1,(n) and A2,(n) denote their corresponding acceptance regions for H0. Let g(n)
θ denote the stochastic

detector formed by using g
(n)
1 and g

(n)
2 with probabilities θ and 1 − θ, respectively. From the above mentioned linearity

property, it follows that g(n)
θ achieves type 1 and type 2 error probabilities of ᾱ

(
f (n), g

(n)
θ

)
= θᾱ

(n)
1 + (1 − θ)ᾱ

(n)
2 and

β̄
(
f (n), g

(n)
θ

)
= θβ̄

(n)
1 + (1 − θ)β̄(n)

2 , respectively. Note that for θ ∈ (0, 1), the exponent of the type 2 error probability for

(f (n), g
(n)
θ ) pair is given by

− 1

n
log
(
β̄
(
f (n), g

(n)
θ

))
= min

(
− 1

n
log
(
β̄

(n)
1

(
f (n), g

(n)
1

))
,− 1

n
log
(
β̄

(n)
2

(
f (n), g

(n)
2

)))
.

Hence, either

ᾱ
(n)
1 ≤ ᾱ

(
f (n), g

(n)
θ

)
and − 1

n
log
(
β̄

(n)
1

(
f (n), g

(n)
1

))
≥ − 1

n
log
(
β̄
(
f (n), g

(n)
θ

))
,

or

ᾱ
(n)
2 ≤ ᾱ

(
f (n), g

(n)
θ

)
and − 1

n
log
(
β̄

(n)
2

(
f (n), g

(n)
2

))
≥ − 1

n
log
(
β̄
(
f (n), g

(n)
θ

))
.

Thus, a stochastic detector does not offer any advantage over deterministic detectors in the trade-off between the T2EE and

the type 1 error probability.

Due to Proposition 3, henceforth we restrict our attention to deterministic g(n). The next result shows that without loss of
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generality (w.l.o.g), it is also sufficient to consider g(n)
r (in Definition 1) to be a deterministic function of the form

g(n)
r = {φi(m, vn)}ni=1, (8)

for the minimization in (3), where φi :M×Vn → Ŝ, i ∈ [1 : n], denotes an arbitrary deterministic function.

Proposition 4. For the minimization in (3), it is sufficient to restrict our attention to a deterministic function g(n)
r as given in

(8).

Proof: Let P̃ (j)
SnUnV nM denote the joint distribution of the r.v.’s (Sn, Un, V n,M) under hypothesis Hj , j = 0, 1, and

P̃Ŝn|M,V n denote an arbitrary stochastic function for g(n)
r . Then, we have

min
g

(n)
r

E
[
d
(
Sn, Ŝn

)
|H = j

]
= min
P̃Ŝn|M,V n

EP̃ (j)

[
d
(
Sn, Ŝn

)]
= min
{P̃Ŝi|M,V n}

n
i=1

1

n

n∑
i=1

EP̃ (j)

[
d
(
Si, Ŝi

)]
=

1

n

n∑
i=1

∑
M=m,V n=vn

P̃
(j)
MV n(m, vn) min

P̃Ŝi|M=m,V n=vn

∑
ŝi

P̃Ŝi|M=m,V n=vn(ŝi) E
P̃

(j)

Si|M=m,V n=vn
[d (Si, ŝi)]

=
1

n

n∑
i=1

∑
M=m,V n=vn

P̃
(j)
MV n(m, vn) E

P̃
(j)

Si|M=m,V n=vn
[d (Si, φij(m, v

n))] ,

where,

φij(m, v
n) = arg min

ŝ∈Ŝ
E
P̃

(j)

Si|M=m,V n=vn
[d(Si, ŝ)] .

Continuing, we have

min
g

(n)
r

E
[
d
(
Sn, Ŝn

)
|H = j

]
=

1

n

n∑
i=1

∑
M=m,V n=vn

P̃
(j)
MV n(m, vn) min

φi(m,vn)
E
P̃

(j)

Si|M=m,V n=vn
[d (Si, φi(m, v

n))]

= min
{φi(m,vn)}ni=1

1

n

n∑
i=1

EP̃ (j) [d (Si, φi(M,V n))] . (9)

Next, we state some lemmas that will be handy for upper bounding the amount of privacy leakage in the proofs of the main

results stated below. The following one is a well known result proved in [37] that upper bounds the difference in entropy of

two r.v.’s (with a common support) in terms of the total variation distance between their probability distributions.

Definition 5. The total variation between probability distributions PX and QX defined on the same support X is defined as

||PX −QX || =
1

2

∑
x∈X
|PX(x)−QX(x)|.

Lemma 6. [37, Lemma 2.7] Let PX and QX be distributions defined on a common support X and let ρ := ||PX − QX ||.

Then,

|HPX −HQX | ≤ −2ρ log

(
2ρ

|X |

)
.
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The next lemma will be used later in the proofs of Theorem 8, Theorem 9, Theorem 14 and counter-example for strong

converse in Section V.

Lemma 7. Let PXY and QXY denote two arbitrary joint probability distributions of the r.v.’s X and Y . Let PXnY n =∏n
i=1 PXY and QXnY n =

∏n
i=1QXY denote probability distributions of the r.v.’s Xn and Y n. For δ > 0, define

IX(xn, δ) := 1

(
xn /∈ Tn[PX ]δ

)
. (10)

If PX 6= QX , then for δ > 0 sufficiently small,

‖QY n −QY n|IX(Xn,δ)=1‖
(n)−−→ 0. (11)

If PX = QX , then the following holds for any δ > 0,

‖QY n −QY n|IX(Xn,δ)=0‖
(n)−−→ 0, (12)

‖PY n − PY n|IX(Xn,δ)=0‖
(n)−−→ 0. (13)

Proof: The proof is presented in Appendix A.

To provide further intuition into the claims given in (11)-(13) of Lemma 7, we briefly explain each of them. Eqn. (11) states

that if the marginals PX and QX are different, then the conditional distribution QY n of Y n given that Xn /∈ T[PX ]δ , is close (in

terms of total variation distance) to the unconditional distribution QY n , provided that δ is small enough. This essentially means

that the conditional distribution QY n , conditioned on the knowledge that Xn is not PX -typical, does not differ much from

the unconditional distribution asymptotically. Similarly, (12) and (13), respectively, state that given PX = QX , the conditional

distribution QY n (resp. PY n ) of Y n given that Xn ∈ T[PX ]δ , is close to the unconditional distribution QY n (resp. PY n ) for

any value of δ > 0. This implies that the knowledge of Xn being PX -typical does not change the marginal distribution of Y n

by much asymptotically.

In the next section, we establish an inner bound on Re(ε) and Rd(ε).

III. MAIN RESULTS

The following two theorems are the main results of this paper providing inner bounds for Re(ε) and Rd(ε), respectively.

Theorem 8. For ε ∈ (0, 1), (R, κ,Ω0,Ω1) ∈ Re(ε) if there exists an auxiliary r.v. W , such that (V, S)− U −W , and

R ≥ IP (W ;U |V ), (14)

κ ≤ κ∗(PW |U , R), (15)

Ω0 ≤ HP (S|W,V ), (16)

Ω1 ≤ 1 (PU = QU ) HQ(S|W,V ) + 1 (PU 6= QU ) HQ(S|V ), (17)
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where

κ∗(PW |U , R) := min
(
E1(PW |U ), E2(R,PW |U )

)
,

E1(PW |U ) := min
PŨṼ W̃∈T1(PUW ,PVW )

D(PŨṼ W̃ ||QUV PW |U ), (18)

E2(R,PW |U ) :=


min

PŨṼ W̃∈T2(PUW ,PV ) D(PŨṼ W̃ ||QUV PW |U ) + (R− IP (U ;W |V )), if IP (U ;W ) > R,

∞, otherwise,
(19)

T1(PUW , PVW ) := {PŨṼ W̃ ∈ T (U × V ×W) : PŨW̃ = PUW , PṼ W̃ = PVW },

T2(PUW , PV ) := {PŨṼ W̃ ∈ T (U × V ×W) : PŨW̃ = PUW , PṼ = PV , HP (W |V ) ≤ H(W̃ |Ṽ )},

PSUVW := PSUV PW |U , QSUVW := QSUV PW |U .

Theorem 8 is the direct part or the achievability result in the parlance of information theory, and utilizes the well-known

coding techniques of quantization and binning, along with minimum empirical entropy decoding using the available side-

information at the detector. While the analysis of the T2EE is similar to that of the Shimokawa-Han-Amari scheme [7], the

analysis of the privacy part is new. Indeed, we recover the rate-T2EE trade-off derived in [7] when the privacy constraint in

Theorem 8 is relaxed. The detailed proof of Theorem 8 is presented in Appendix B. We next state an inner bound for Rd(ε).

Theorem 9. For a given bounded additive distortion measure d(·, ·) and ε ∈ (0, 1), (R, κ,∆0,∆1) ∈ Rd(ε) if there exist an

auxiliary r.v. W and deterministic functions φ :W ×V → Ŝ and φ′ : V → Ŝ, such that (V, S)− U −W and (14), (15),

∆0 ≤ min
φ(·,·)

EP [d (S, φ(W,V ))] , (20)

and ∆1 ≤ 1 (PU = QU ) min
φ(·,·)

EQ [d (S, φ(W,V ))] + 1 (PU 6= QU ) min
φ′(·)

EQ [d (S, φ′(V ))] , (21)

are satisfied, where PSUVW and QSUVW are as defined in Theorem 8.

The proof of Theorem 9 is presented in Appendix C. We mention an important point regarding average distortion as a

privacy measure. In order to obtain a single-letter lower bound for the achievable distortion of the private part at the detector,

it is required that the aposteriori probability distribution of Sn given the observations (M,V n) at the detector is close in

some sense to a desired “target” memoryless distribution (as will become apparent from the proof). For this purpose, we use

stochastic encoding to induce the necessary randomness for Sn at the detector. The analysis of the joint distribution of the

r.v.’s in the system (both the given r.v.’s and those generated as part of the coding scheme) is done using the so-called channel

resolvability or soft-covering lemma [38]–[40]. Properties of the total variation distance between probability distributions play

a key role in this analysis.

Theorems 8 and 9 provide single-letter inner bounds on Rd(ε) and Re(ε), respectively. A complete computable charac-

terization of these regions would require a matching converse. This is a hard problem, since such a characterization is not

available even for the distributed HT problem in general, without a privacy constraint (see [5]). However, it is known that a
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single-letter characterization of the rate-error exponent region exists for the special case of TACI [11]. In the next section, we

show that TACI with a privacy constraint also admits a single-letter characterization, in addition to other optimality results.

IV. OPTIMALITY RESULTS FOR SPECIAL CASES

A. TACI with a Privacy Constraint

Assume that the detector observes two discrete memoryless sources Y n and Zn, i.e., V n = (Y n, Zn). In TACI, the detector

tests for the conditional independence of U and Y , given Z. Thus, the joint distribution of the r.v.’s under the null and alternate

hypothesis are given by

H0 : PSUY Z := PS|UY ZPU |ZPY |UZPZ , (22)

and

H1 : QSUY Z := QS|UY ZPU |ZPY |ZPZ , (23)

respectively.

Let Re and Rd denote the rate-error exponent-equivocation and rate-error exponent-distortion regions, respectively, for the

case of vanishing type 1 error probability constraint, i.e.,

Re := lim
ε→0
Re(ε) and Rd := lim

ε→0
Rd(ε).

Assume that the privacy constraint under the alternate hypothesis is inactive. Thus, we are interested in characterizing the set

of all tuples (R, κ,Ω0,Ω1) ∈ Re and (R, κ,∆0,∆1) ∈ Rd, where

Ω1 ≤ Ωmin := HQ(S|U, Y, Z),

and ∆1 ≤ ∆min := min
φ(u,y,z)

EQ [d (S, φ(U, Y, Z))] . (24)

Note that Ωmin and ∆min correspond to the equivocation and average distortion of Sn at the detector, respectively, when Un is

available directly at the detector under the alternate hypothesis. The above assumption is motivated by scenarios, in which, the

encoder is more eager to protect Sn when there is a correlation between its own observation and that of the decoder. Consider

the following example of user privacy in the context of online shopping, in which the encoder and detector correspond to a

consumer and an online shopping portal, respectively. A consumer would like to share some information about his/her shopping

behaviour, e.g., shopping history and preferences, with the shopping portal in order to get better deals and recommendations

on relevant products. The shopping portal would like to determine whether the consumer belongs to its target age group (e.g.,

below 30 years old) before sending special offers to this customer. Assuming that the shopping patterns of the users within and

outside the target age groups are independent, the shopping portal performs an independence test to check if the consumer’s

shared data is correlated with the data of its own customers. If the consumer is indeed within the target age group, the shopping

portal would like to gather more information about this potential customer, particular interests, more accurate age estimation,
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etc.; while the user is reluctant to provide any further information. In this example, Un, Sn and Y n corresponds to shopping

behaviour, more information about the customer, and customers data available to the shopping portal, respectively.

For the above mentioned case, we have the following results.

Theorem 10. (R, κ,Ω0,Ωmin) ∈ Re if and only if there exists an auxiliary r.v. W , such that (Z, Y, S)− U −W , and

κ ≤ IP (W ;Y |Z), (25)

R ≥ IP (W ;U |Z), (26)

Ω0 ≤ HP (S|W,Z, Y ), (27)

for some joint distribution of the form PSUY ZW := PSUY ZPW |U .

Proof: For TACI, the inner bound in Theorem 8 yields that for ε ∈ (0, 1), (R, κ,Ω0,Ω1) ∈ Re(ε) if there exists an

auxiliary r.v. W , such that (Y,Z, S)− U −W , and

R ≥ IP (W ;U |Y,Z), (28)

κ ≤ κ∗(PW |U , R), (29)

Ω0 ≤ HP (S|W,Y,Z), (30)

Ω1 ≤ HQ(S|W,Y,Z), (31)

where

κ∗(PW |U , R) := min
(
E1(PW |U ), E2(R,PW |U )

)
,

E1(PW |U ) := min
PŨỸ Z̃W̃∈T1(PUW ,PY ZW )

D(PŨỸ Z̃W̃ ||QUY ZPW |U ), (32)

E2(R,PW |U ) :=


min

PŨỸ Z̃W̃∈T2(PUW ,PY Z) D(PŨỸ Z̃W̃ ||QUY ZPW |U ) + (R− IP (U ;W |Y,Z)), if IP (U ;W ) > R,

∞, otherwise,
(33)

T1(PUW , PY ZW ) := {PŨỸ Z̃W̃ ∈ T (U × Y × Z ×W) : PŨW̃ = PUW , PỸ Z̃W̃ = PY ZW },

T2(PUW , PY Z) := {PŨỸ Z̃W̃ ∈ T (U × Y × Z ×W) : PŨW̃ = PUW , PỸ Z̃ = PY Z , HP (W |Y,Z) ≤ H(W̃ |Ỹ Z̃)},

PSUY ZW := PSUY ZPW |U , QSUY ZW := QS|Y ZPU |ZPY |ZPZPW |U .

Note that since (Y,Z, S)− U −W , we have

IP (W ;U) ≥ IP (W ;U |Z) ≥ IP (W ;U |Y,Z). (34)
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Let B′ := {PW |U : IP (U ;W |Z) ≤ R}. Then, for PW |U ∈ B′, we have,

E1(R,PW |U ) = min
PŨỸ Z̃W̃∈T1(PUW ,PY ZW )

D(PŨỸ Z̃W̃ ||QUY ZPW |U ) = IP (Y ;W |Z),

E2(R,PW |U ) ≥ IP (U ;W |Z)− IP (U ;W |Y,Z) = IP (Y ;W |Z).

Hence,

κ∗(PW |U , R) ≥ IP (Y ;W |Z). (35)

By noting that Ωmin ≤ HQ(S|W,Y,Z) (by the data processing inequality), we have shown that for Ω1 ≤ Ωmin, (R, κ,Ω0,Ω1) ∈

Re if (25)-(27) are satisfied. This completes the proof of achievability.

Converse: Let (R, κ,Ω0,Ω1) ∈ Re. Let T be a r.v. uniformly distributed over [n] and independent of all the other r.v.’s

(Un, Y n, Zn,M). Define an auxiliary r.v. W := (WT , T ), where Wi := (M,Y i−1, Zi−1, Zni+1), i ∈ [n]. Note that (Z, Y )−

U −W . Then, for any γ′ > 0 and sufficiently large n, we have

n(R+ γ′) ≥ HP (M) ≥ HP (M |Zn) ≥ IP (M ;Un|Zn)

=
∑n

i=1
IP (M ;Ui|U i−1, Zn)

=
∑n

i=1
IP (M,U i−1, Zi−1, Zni+1;Ui|Zi) (36)

=
∑n

i=1
IP (M,U i−1, Zi−1, Zni+1, Y

i−1;Ui|Zi) (37)

≥
∑n

i=1
IP (M,Zi−1, Zni+1, Y

i−1;Ui|Zi)

=
∑n

i=1
IP (Wi;Ui|Zi) = nIP (WT ;UT |ZT , T )

= nIP (WT , T ;UT |ZT ) (38)

= nIP (W ;U |Z). (39)

Here, (36) follows since the sequences (Un, Zn) are memoryless; (37) follows since Y i−1 − (M,U i−1, Zi−1, Zni+1) − Ui ;

(38) follows from the fact that T is independent of all the other r.v.’s.

The equivocation of source Sn under the null hypothesis can be bounded as follows.

H(Sn|M,Y n, Zn, H = 0) =
∑n

i=1
H(Si|M,Si−1, Y n, Zn, H = 0)

≤
∑n

i=1
H(Si|M,Y i−1, Yi, Z

i−1, Zi, Z
n
i+1, H = 0)

=
∑n

i=1
H(Si|Wi, Yi, Zi, H = 0)

= nH(ST |WT , YT , ZT , T,H = 0)

= nHP (S|W,Y,Z), (40)

where PSUY ZW = PSUY ZPW |U for some conditional distribution PW |U .

Finally, we prove the upper bound on κ. For any encoding function f (n) and decision region An ⊆M×Yn ×Zn for H0
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such that εn → 0, we have,

D (PMY nZn ||QMY nZn) ≥ PMY nZn(An) log

(
PMY nZn(An)

QMY nZn(An)

)
+ PMY nZn(Acn) log

(
PMY nZn(Acn)

QMY nZn(Acn)

)
(41)

≥ −H(εn)− (1− εn) log
(
β
(
f (n), εn

))
.

Here, (41) follows from the log-sum inequality [37]. Thus,

lim sup
n→∞

− log (β (fn, 0))

n
≤ lim sup

n→∞

1

n
D (PMY nZn ||QMY nZn)

= lim sup
n→∞

1

n
IP (M ;Y n|Zn) (42)

= HP (Y |Z)− lim inf
n→∞

1

n
HP (Y n|M,Zn), (43)

where (42) follows since QMY nZn = PMZnPY n|Zn . The last term can be single-letterized as follows.

HP (Y n|M,Zn) =
∑n

i=1
HP (Yi|Y i−1,M,Zn)

=
∑n

i=1
HP (Yi|Zi,Wi)

= nHP (YQ|ZQ,WQ, Q)

= nHP (Y |Z,W ). (44)

Substituting (44) in (43), we obtain

κ ≤ IP (Y ;W |Z). (45)

This completes the proof of the converse and the theorem.

Next, we state the result for TACI with a distortion privacy constraint, where the distortion is measured using an arbitrary

distortion measure d(·, ·). Let ∆min := minφ(u,y,z) EQ [d (S, φ(U, Y, Z))].

Theorem 11. (R, κ,∆0,∆min) ∈ Rd if and only if there exist an auxiliary r.v. W and a deterministic function φ :W×Y×Z →

Ŝ such that

R ≥ IP (W ;U |Z), (46)

κ ≤ IP (W ;Y |Z), (47)

∆0 ≤ min
φ(·,·,·)

EP [d (S, φ(W,Y,Z))] , (48)

for some PSUY ZW as defined in Theorem 10.

Proof: The proof of achievability follows from Theorem 9, similarly to the way Theorem 10 is obtained from Theorem

8. Hence, only differences will be highlighted. Similar to the inequality Ωmin ≤ HQ(S|U, Y, Z) in the proof of Theorem

10, we need to prove the inequality ∆min ≤ EQ [d (S, φ(W,Y,Z))], where QSUY ZW := QSUY ZPW |U for some conditional
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distribution PW |U . This can be shown as follows.

min
φ(·,·,·)

EQ [d (S, φ(W,Y,Z))]

=
∑
u,y,z

QUY Z(u, y, z)
∑
w

PW |U (w|u) min
φ(w,y,z)

∑
s

QS|UY Z(s|u, y, z) d(s, φ(w, y, z))

≥
∑
u,y,z

QUY Z(u, y, z)
∑
w,s

PW |U (w|u) QS|UY Z(s|u, y, z) d(s, φ∗(u, y, z)) (49)

≥
∑
u,y,z

QUY Z(u, y, z) min
φ(u,y,z)

∑
w,s

PW |U (w|u) QS|UY Z(s|u, y, z) d(s, φ(u, y, z))

=
∑
u,y,z

QUY Z(u, y, z) min
φ(u,y,z)

∑
s

QS|UY Z(s|u, y, z) d(s, φ(u, y, z))

= min
φ(·,·,·)

EQ [d (S, φ(U, Y, Z))] := ∆min,

where, in (49), φ∗(u, y, z) is chosen such that

φ∗(u, y, z) := arg min
φ(w,y,z),w∈W

∑
s

QS|UY Z(s|u, y, z) d(s, φ(w, y, z)).

Converse: Let W = (WT , T ) denote the auxiliary r.v. defined in the converse of Theorem 10. Inequalities (46) and (47)

follow similarly as obtained in Theorem 10. We prove (48). Defining φ(M,Y n, Zn, i) := φi(M,Y n, Zn), we have that,

min
g

(n)
r

E
[
d
(
Sn, Ŝn

) ∣∣∣H = 0
]

= min
{φ(m,yn,zn,i)}ni=1

E

[
1

n

n∑
i=1

d (Si, φ(M,Y n, Zn, i))
∣∣∣H = 0

]
(50)

= min
{φ(·,·,·,·,·)}

E

[
1

n

n∑
i=1

d
(
Si, φ(Wi, Zi, Yi, Y

n
i+1, i)

) ∣∣∣H = 0

]

≤ min
{φ(wi,zi,yi,i)}

E

[
1

n

n∑
i=1

d (Si, φ(Wi, Zi, Yi, i))
∣∣∣H = 0

]

= min
{φ(·,·,·,·)}

E
[
E
[
d (ST , φ(WT , ZT , YT , T ))

∣∣T ] ∣∣∣H = 0
]

= min
{φ(·,·,·,·)}

E
[
d (ST , φ(WT , ZT , YT , T ))

∣∣∣H = 0
]

= min
{φ(w,z,y)}

E
[
d (S, φ(W,Z, Y ))

∣∣∣H = 0
]
.

In (50), we used the fact that (9) holds for any arbitrary joint distribution on the r.v.’s (Sn, Un,M, Y n, Zn) in place of

P̃
(0)
SnUnMY nZn . Hence, any ∆0 satisfying (3) satisfies

∆0 ≤ min
{φ(w,z,y)}

EP [d (S, φ(W,Z, Y ))] .

This completes the proof of the converse and the theorem.

A more general version of Theorem 10 and Theorem 11 is claimed in [41] as Theorem 7 and Theorem 8, respectively,

in which a privacy constraint under the alternate hypothesis is also imposed. However, we have identified a mistake in the

converse proof; and hence, a single-letter characterization for this general problem remains open.

To complete the single-letter characterization in Theorem 10 and Theorem 11, we bound the alphabet size of the auxiliary
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r.v. W .

Proposition 12. In Theorem 10 and 11, it suffices to consider auxiliary r.v.’s W such that |W| ≤ |U|+ 2.

Proof: Consider the |U|+ 2 functions of PU |W ,

PU (ui) =
∑
w∈W

PW (w)PU |W (ui|w), i = 1, 2, . . . , |U| − 1, (51)

HP (U |W,Z) =
∑
w

PW (w)g1(PU |W , w), (52)

HP (Y |W,Z) =
∑
w

PW (w)g2(PU |W , w), (53)

HP (S|W,Y,Z) =
∑
w

PW (w)g3(PU |W , w), (54)

where,

g1(PU |W , w) = −
∑
u,z

PU |W (u|w)PZ|U (z|u) log

(
PU |W (u|w)PZ|U (z|u)∑
u PU |W (u|w)PZ|U (z|u)

)
,

g2(PU |W , w) = −
∑
y,z,u

PU |W (u|w)PY Z|U (y, z|u) log

(∑
u PU |W (u|w)PY Z|U (y, z|u)∑
u PU |W (u|w)PZ|U (z|u)

)
,

g3(PU |W , w) = −
∑
s,y,z,u

PU |W (u|w)PSY Z|U (s, y, z|u) log

(∑
u PU |W (u|w)PSY Z|U (s, y, z|u)∑
u PU |W (u|w)PY Z|U (y, z|u)

)
.

Thus, by the Fenchel-Eggleston-Carathéodory’s theorem [42], it is sufficient to have at most |U| − 1 points in the support of

W to preserve PU and three more to preserve HP (U |W,Z), HP (Y |W,Z) and HP (S|W,Z, Y ). Noting that HP (Y |Z) and

HP (U |Z) are automatically preserved since PU is preserved (and (Y, Z, S)−U−W holds), |W| = |U|+2 points are sufficient

to preserve the R.H.S. of equations (25)-(27). This completes the proof for the case of Re. Similarly, considering the |U|+ 1

functions of PW |U given in (51)-(53) and

EP [d (S, φ(W,Y,Z))] =
∑
w

PW (w)g4(w,PW |U ), (55)

where, g4(w,PW |U ) =
∑
s,u,y,z

PU |W (u|w)PY ZS|U (y, z, s|u) d(s, φ(w, y, z)), (56)

similar result holds also for the case of Rd.

Remark 13. When QS|UY Z = QS|Y Z , a tight single-letter characterization of Re and Rd exists even if the privacy constraint

is active under the alternate hypothesis. This is due to the fact that given Y n and Zn, M is independent of Sn under the

alternate hypothesis. In this case, (R, κ,Ω0,Ω1) ∈ Re if and only if there exists an auxiliary r.v. W , such that (Z, Y, S)−U−W ,



18

Helper
Encoder

Legitimate 
Decoder

Main
Encoder

Adversary
Decoder

Fig. 2: Source-coding problem in the presence of a helper with a privacy constraint.

and

κ ≤ IP (W ;Y |Z), (57)

R ≥ IP (W ;U |Z), (58)

Ω0 ≤ HP (S|W,Z, Y ), (59)

Ω1 ≤ HQ(S|Z, Y ), (60)

for some PSUY ZW as in Theorem 10. Similarly, we have that (R, κ,∆0,∆1) ∈ Rd if and only if there exist an auxiliary r.v.

W and a deterministic function φ :W ×Y ×Z → Ŝ such that (57), (58),

∆0 ≤ min
φ(·,·,·)

EP [d (S, φ(W,Y,Z))] , (61)

∆1 ≤ min
φ(·,·,·)

EQ [d (S, φ(Y,Z))] , (62)

are satisfied for some PSUY ZW as in Theorem 10.

Having established a single-letter characterization of Re (resp. Rd), we briefly mention that this result can also be obtained

via the single-letter characterization of the rate-equivocation (resp. rate-distortion) trade-off for an equivalent source-coding

problem shown in Fig. 2, which we refer to as the source-coding problem in the presence of a helper with a privacy constraint.

As it may be of interest on its own, the detailed description of this problem along with a proof of its equivalence to TACI

with a privacy constraint is provided in Appendix D.

Theorem 10 (resp. Theorem 11) provide a characterization of Re (resp. Rd) under the condition of vanishing type 1 error

probability constraint. Consequently, the converse part of these results are known as weak converse results in the context of HT.

In the next subsection, we establish the optimal error exponent-privacy trade-off for the special case of zero-rate compression.

This trade-off is independent of the type 1 error probability constraint ε ∈ (0, 1), and hence known as a strong converse result.
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B. Zero-rate compression

Assume the following zero-rate constraint on the communication between the observer and the detector,

lim
n→∞

log(|M|)
n

= 0. (63)

Note that (63) does not imply that |M| = 0, i.e., nothing can be transmitted, but that the message set cardinality can grow at

most sub-exponentially in n. Such a scenario is motivated practically by low power or low bandwidth constrained applications

in which communication is costly. Theorems 14 and 15 stated below provide an optimal single-letter characterization of Rd(ε)

and Re(ε) in this case. While the coding schemes in the achievability part of these results are inspired from that in [6], the

analysis of privacy achieved at the detector is new. Intuitively, Theorem 15 is based on the fact that at zero-rate, the equivocation

of the private part remains essentially unaffected with the knowledge of the message M , and we may borrow results from

distributed HT without a privacy constraint problem. On the other hand, to establish Theorem 14, a more detailed analysis of

average distortion of Sn at the detector is required, which involves showing that the conditional joint distribution of the private

part and the detector’s observations given M is close (in terms of the total variation distance) to the unconditional distribution.

Lemma 7 serves as a crucial tool for this purpose. We next state the results.

Theorem 14. For ε ∈ (0, 1), (0, κ,∆0,∆1) ∈ Rd(ε) if and only if it satisfies,

κ ≤ min
PŨṼ ∈T1(PU ,PV )

D(PŨṼ ||QUV ), (64)

∆0 ≤ min
φ′(·)

EP [d (S, φ′(V ))] , (65)

∆1 ≤ min
φ′(·)

EQ [d (S, φ′(V ))] , (66)

where φ′ : V → Ŝ is a deterministic function and

T1(PU , PV ) = {PŨṼ ∈ T (U × V) : PŨ = PU , PṼ = PV }.

Proof: First, we prove that (0, κ,∆0,∆1) satisfying (64)-(66) is achievable. While the encoding and decoding scheme is

the same as that in [6], we mention it for the sake of completeness.

Encoding: The encoder sends the message M = 1 if Un ∈ Tn[PU ]δ
, δ > 0, and M = 0 otherwise.

Decoding: The detector declares Ĥ = 0 if M = 1 and V n ∈ Tn[PV ]δ
, δ > 0. Otherwise, Ĥ = 1 is declared.

We analyze the type 1 and type 2 error probabilities for the above scheme as δ → 0. First, note by the weak law of large

numbers, that, for any δ > 0,

P(Un ∈ Tn[PU ]δ
∩ V n ∈ Tn[PV ]δ

)|H = 0) = P(M = 1 ∩ V n ∈ Tn[PV ]δ
)|H = 0)

(n)−−→ 1.
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Hence, the type 1 error probability tends to zero, asymptotically. The type 2 error can be written as follows.

lim
δ→0

β(f (n), g(n)) = lim
δ→0

P(Un ∈ Tn[PU ]δ
∩ V n ∈ Tn[PV ]δ

)|H = 1)

= lim
δ→0

∑
un∈Tn[PU ]δ

,

(vn)∈T[PV ]δ

QUnV n(un, vn)

≤ (n+ 1)|U||V|e−nκ
∗

= e−n(κ∗− |U||V| log(n+1)
n ),

where

κ∗ = min
PŨṼ ∈T1(PU ,PV )

D(PŨṼ ||QUV ).

Next, we lower bound the average distortion for Sn achieved by this scheme at the detector. First, note that

P(Un ∈ Tn[PU ]δ
|H = 0)

(n)−−→ 1, (67)

P(Un ∈ Tn[PU ]δ
|H = 1)

(n)−−→ 1 if QU = PU , (68)

P(Un /∈ Tn[PU ]δ
|H = 1)

(n)−−→ 1 if QU 6= PU . (69)

This implies that

min
g

(n)
r

E
[
d
(
Sn, Ŝn

)
|H = 0

]
≥ γ1n min

{φi(m,vn)}ni=1

1

n

n∑
i=1

EPSnV n|IU (Un,δ)=0
[d (Si, φi(1, V

n))] (70)

≥ min
{φ′i(v)}

EP

[
1

n

n∑
i=1

d(Si, φ
′
i(Vi))

]
−Dmγ2n (71)

= min
{φ′(·)}

EP [d(S, φ′(V ))]−Dmγ2n,

for some sequences of positive numbers {γ1n}n∈Z+ and {γ2n}n∈Z+ , such that γ1n ∈ [0, 1], ∀ n ∈ Z+, γ1n
(n)−−→ 1 and

γ2n
(n)−−→ 0. Here, (70) follows from (67), and (71) follows from (13), Property 2(b) in [43] and the boundedness of the

distortion measure, respectively. The average distortion can be bounded similarly under the alternate hypothesis using (68) and

(12) when QU = PU , and using (69) and (11) when QU 6= PU . This completes the proof of the achievability.

We next prove the converse. Note that by the strong converse result in [8], the R.H.S of (64) is an upper bound on the

achievable T2EE for all ε ∈ (0, 1) even without a privacy constraint (hence, also with a privacy constraint). Also,

min
g

(n)
r

E
[
d
(
Sn, Ŝn

)
|H = 0

]
≤ min
{φ′i(vn)}ni=1

1

n

n∑
i=1

EPSnV n [d (Si, φ
′
i(V

n))] (72)

= min
{φ′(v)}

EP [d(S, φ′(V ))] .

Here, (72) follows from the fact that the detector can always reconstruct Ŝi as a function of V n. Similarly,

min
g

(n)
r

E
[
d
(
Sn, Ŝn

)
|H = 1

]
≤ min
{φ′(v)}

EQ [d(S, φ′(V ))] .
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Hence, any achievable Ω0 and Ω1 has to satisfy (65) and (66), respectively. This completes the proof.

The following theorem is the analogous result to Theorem 14 when the privacy measure is equivocation.

Theorem 15. For ε ∈ (0, 1), (0, κ,Ω0,Ω1) ∈ Re(ε) if and only if it satisfies (64) and

Ω0 ≤ HP (S|V ), (73)

Ω1 ≤ HQ(S|V ). (74)

Proof: For proving the achievablity part, the encoding and decoding scheme is the same as in Theorem 14. Note that the

following inequality holds for j = 0, 1;

1

n
H(Sn|V n, H = j)− 1

n
H(M) ≤ 1

n
H(Sn|M,V n, H = j) ≤ 1

n
H(Sn|V n, H = j). (75)

Then, (63) and (75) imply that

H(S|V,H = j)− γ3n ≤
1

n
H(Sn|M,V n, H = j) ≤ H(S|V,H = j), (76)

for some γ3n
(n)−−→ 0. Notice that the message M does not play a role in the values of equivocation of Sn at the detector

asymptotically. Hence, any T2EE that is achievable under zero-rate compression without a privacy constraint is also achievable

under an equivocation constraint. Hence, it follows from the results in [6] and [8] that the R.H.S of (64) is the optimal T2EE

achievable for all values of ε ∈ (0, 1). Moreover, it is clear from (76) that an (Ω0,Ω1) pair satisfying (73) and (74) is achievable,

and that the R.H.S. of (73) (resp. (74)) is an upper bound for any achievable Ω0 (resp. Ω1). This concludes the proof.

In Section II-B, we mentioned that it is possible to achieve a positive T2EE with perfect privacy in our model. Here, we

provide an example of TAI with an equivocation privacy constraint under both hypothesis, and show that perfect privacy is

possible. Recall that TAI is a special case of TACI, in which, Z = constant, and hence, the null and alternate hypothesis are

given by

H0 : (Un, Y n) ∼
n∏
i=1

PUY ,

and H1 : (Un, Y n) ∼
n∏
i=1

PUPY .

Example 1. Let S = U = {0, 1, 2, 3}, Y = {0, 1},

PSU = 0.125 ·



1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1


, PY |U =



1 0

0 1

1 0

0 1


,

PSUY := PSUPY |U and QSUY := PSUPY , where PY =
∑
u∈U PU (u)PY |U (y|u). Then, we have HQ(S|Y ) = HP (S) =

HP (U) = 2 bits. Also, noting that under the null hypothesis, Y = U mod 2, HP (S|Y ) = 2 bits. It follows from the inner
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bound given by equations (28)-(31), and, (34) and (35) that (R, κ,Ω0,Ω1) ∈ Re(ε), ε ∈ (0, 1) if

R ≥ IP (W ;U),

κ ≤ IP (W ;Y ),

Ω0 ≤ HP (S|W,Y ),

Ω1 ≤ HQ(S|W,Y ) = HQ(S|W ),

where PSUYW := PSUY PW |U and QSUYW := QSUY PW |U for some conditional distribution PW |U . If we set W := U mod 2,

then we have IP (U ;W ) = 1 bit, IP (Y ;W ) = HP (Y ) = 1 bit, HP (S|W,Y ) = HP (S|Y ) = 2 bits, and HQ(S|W ) =

HP (S|Y ) = 2 bits. Thus, by revealing only W to the detector, it is possible to achieve a positive T2EE while ensuring

maximum privacy under both the null and alternate hypothesis, i.e., the tuple (1, 1, 2, 2) ∈ Re(ε), ∀ ε ∈ (0, 1).

V. A COUNTEREXAMPLE TO THE STRONG CONVERSE

Ahlswede and Csiszár obtained a strong converse result for the distributed HT problem without a privacy constraint in [5],

where they showed that for any positive rate R, the optimal achievable T2EE is independent of the type 1 error probability

constraint ε. Here, we explore whether a similar result holds in our model, in which, an additional privacy constraint is imposed.

We will show through a counterexample that this is not the case in general.

Assume that the joint distribution PSUV is such that HP (S|U, V ) < HP (S|V ). Proving the strong converse amounts to

showing that any (R, κ,Ω0,Ω1) ∈ Re(ε) for some ε ∈ (0, 1) also belongs to Re. Consider TAI problem with an equivocation

privacy constraint, in which, R ≥ HP (U) and Ω1 ≤ Ωmin. Then, from the optimal single-letter characterization of Re given

in Theorem 10, it follows by taking W = U that (HP (U), IP (V ;U), HP (S|V,U),Ωmin) ∈ Re. Note that IP (V ;U) is the

maximum T2EE achievable for any type 1 error probability constraint ε ∈ (0, 1), even when Un is observed directly at the

detector. Thus, for vanishing type 1 error probability constraint ε → 0 and κ = IP (V ;U), the term HP (S|V,U) denotes the

maximum achievable equivocation for Sn under the null hypothesis. From the proof of Theorem 10, it follows that the coding

scheme for achieving this tuple is as follows.

1) Quantize Un to codewords in CU = {un(j), j ∈ [1 : 2n(H(U)+δ′)], un(j) ∈ Tn[PU ]δ
}, i.e., if Un = un ∈ Tn[PU ]δ

, send

M = j, where j is the index of un in CU , else, send M = 0.

2) At the detector, if M = 0, declare Ĥ = 1. Else, if M 6= 0, declare Ĥ = 0 if (Un(M), V n) ∈ TnP[UV ]
δ′

, δ′ > δ and

Ĥ = 1, otherwise.

The type 1 error probability of the above scheme tends to zero asymptotically with n. Now, for a fixed ε∗ > 0, consider a

modification of this coding scheme as follows.

1) If Un = un ∈ Tn[PU ]δ
, send M = j with probability 1 − ε∗, where j is the index of un in CU , and with probability ε∗,

send M = 0. If Un = un /∈ Tn[PU ]δ
, send M = 0.

2) At the detector, if M = 0, declare Ĥ = 1. Else, if M 6= 0, declare Ĥ = 0 if (Un(M), V n) ∈ TnP[UV ]
δ′

, δ′ > δ and

Ĥ = 1, otherwise.
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It is easy to see that for this modified coding scheme, the type 1 error probability is asymptotically equal to ε∗, while the T2EE

remains the same as I(V ;U) since the probability of declaring Ĥ = 0 is decreased. Defining IU (un, δ) := 1

(
un /∈ TnP[U]δ

)
,

we also have that

1

n
H(Sn|M,V n, H = 0)

= (1− γn)(1− ε∗) 1

n
H (Sn|Un, V n, IU (Un, δ) = 0, H = 0) + (1− γn) ε∗

1

n
H (Sn|M = 0, V n, IU (Un, δ) = 0, H = 0)

+ γn
1

n
H(Sn|M = 0, V n, IU (Un, δ) = 1, H = 0)

≥ (1− γn)(1− ε∗) (HP (S|U, V )− γ′′n) + (1− γn) ε∗
1

n
H (Sn|M = 0, V n, IU (Un, δ) = 0, H = 0)

+ γn
1

n
H(Sn|M = 0, V n, IU (Un, δ) = 1, H = 0) (77)

> (1− γn)(1− ε∗) (HP (S|U, V )− γ′′n) + (1− γn) ε∗
(
HP (S|U, V )− γ′n

n

)
+ γn

1

n
H(Sn|M = 0, V n, H = 0, IU (Un, δ) = 1) (78)

= (1− γn)(1− ε∗) (HP (S|U, V )− γ′′n) + (1− γn) ε∗
(
HP (S|U, V )− γ′n

n

)
+ γ′′′n (79)

= (1− γn)HP (S|U, V )− γ̄n, (80)

where,

γn := P
(
Un /∈ TnP[U]δ

)
≤ e−nγ (n)−−→ 0, (81)

for some γ > 0 such that γ ∈ O(δ), γ′n is defined in (86) below, {γ′′n}n∈Z+ denotes some sequence of positive numbers such

that γ′′n
(n)−−→ 0,

γ′′′n :=
γn
n
H(Sn|M = 0, V n, ,H = 0, IU (Un, δ) = 1)

(n)−−→ 0, (82)

and γ̄n := (1− γn)(1− ε∗)γ′′n + (1− γn) ε∗
γ′n
n
− γ′′′n . (83)

Equation (77) follows similarly to the proof of Theorem 1 in [44]. Equation (78) is obtained as follows.

1

n
H (Sn|M = 0, V n, H = 0, IU (Un, δ = 0))

≥ 1

n
H (Sn|V n, H = 0)− γ′n

n
(84)

> HP (S|U, V )− γ′n
n

(85)

where,

γ′n := −2ρ∗n log

(
2ρ∗n
|S|n

)
, (86)

ρ∗n := ‖PSnV n|IU (Un,δ)=0,M=0 − PSnV n‖ = ‖PSnV n|IU (Un,δ)=0 − PSnV n‖. (87)
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Here, (84) is obtained by an application of Lemma 6; and (85) is due to the assumption that HP (S|U, V ) < HP (S|V ).

It follows from Lemma 7 that ρ∗n
(n)−−→ 0, which in turn implies that

γ′n
n

(n)−−→ 0. (88)

From (81), (82) and (88), we have that γ̄n
(n)−−→ 0. Hence, equation (80) implies that (HP (U), IP (V ;U),Ω∗0,Ωmin) ∈ Re(ε∗)

for some Ω∗0 > HP (S|U, V ). Since (HP (U), IP (V ;U),Ω∗0,Ωmin) /∈ Re, this implies that in general, the strong converse does

not hold for HT with an equivocation privacy constraint. The same counterexample can be used in a similar manner to show

that the strong converse does not hold for HT with an average distortion privacy constraint either.

VI. CONCLUSIONS

We have studied the distributed HT problem with a privacy constraint, with equivocation and average distortion as the

measures of privacy. We have established a single-letter inner bound on the rate-error exponent-equivocation and rate-error

exponent-distortion trade-offs. We have also obtained the optimal rate-error exponent-equivocation and rate-error exponent-

distortion trade-offs for two special cases, when the communication rate over the channel is zero, and for TACI under a privacy

constraint. It is interesting to note that the strong converse for distributed HT does not hold when there is an additional privacy

constraint in the system. Thus, the problem studied here provides a counterexample to the folklore that strong converses hold

for all memoryless systems. Extending these results to the case when the communication between the observer and detector

takes place over a noisy communication channel is an interesting avenue for future research.

APPENDIX A

PROOF OF LEMMA 7

We will first prove (11). For γ > 0, define the following sets,

Bδ0,γ := {(yn) ∈ Tn[PY ]γ
: PY n(yn) ≥ PY n|IX(Xn,δ)=0(yn)},

Cδ0,γ := {(yn) ∈ Tn[PY ]γ
: PY n(yn) < PY n|IX(Xn,δ)=0(yn)},

Bδ1,γ := {(yn) ∈ Tn[QY ]γ
: QY n(yn) ≥ QY n|IX(Xn,δ)=0(yn)},

Cδ1,γ := {(yn) ∈ Tn[QY ]γ
: QY n(yn) < QY n|IX(Xn,δ)=0(yn)},

Bδ2,γ := {(yn) ∈ Tn[QY ]γ
: QY n(yn) ≥ QY n|IX(Xn,δ)=1(yn)},

Cδ2,γ := {(yn) ∈ Tn[QY ]γ
: QY n(yn) < QY n|IX(Xn,δ)=1(yn)}.

Then, we can write

‖QY n −QY n|IX(Xn,δ)=1‖

=
∑
yn

|QY n(yn)−QY n|IX(Xn,δ)=1(yn)|
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=
∑

(yn)/∈Tn
[QY ]γ

|QY n(yn)−QY n|IX(Xn,δ)=1(yn)|+
∑

(yn)∈Tn
[QY ]γ

|QY n(yn)−QY n|IX(Xn,δ)=1(yn)|

≤
∑

(yn)/∈Tn
[QY ]γ

QY n(yn) +QY n|IX(Xn,δ)=1(yn) +
∑

(yn)∈Tn
[QY ]γ

|QY n(yn)−QY n|IX(Xn,δ)=1(yn)|. (89)

Next, note that

QY n|IX(Xn,δ)=1(yn) = QY n(yn)
QIX(Xn,δ)|Y n|(1|yn)

Q(IX(Xn, δ) = 1)
≤ QY n(yn)

Q(IX(Xn, δ) = 1)
≤ 2QY n(yn), (90)

for sufficiently large n, since Q(IX(Xn, δ) = 1)
(n)−−→ 1. Thus,

∑
(yn)/∈Tn

[QY ]γ

QY n(yn) +QY n|IX(Xn,δ)=1(yn) ≤ 3
∑

(yn)/∈Tn
[QY ]γ

QY n(yn) ≤ e−nγ
′
. (91)

for sufficiently large n for some γ′ > 0. We can bound the term in (89) as follows.

∑
(yn)∈Tn

[QY ]γ

|QY n(yn)−QY n|IX(Xn,δ)=1(yn)|

=
∑

(yn)∈Bδ2,γ

QY n(yn)−QY n|IX(Xn,δ)=1(yn) +
∑

(yn)∈Cδ2,γ

QY n|IX(Xn,δ)=1(yn)−QY n(yn)

=
∑

(yn)∈Bδ2,γ

QY n(yn)−QY n|IX(Xn,δ)=1(yn) +
∑

(yn)∈Cδ2,γ

QY n|IX(Xn,δ)=1(yn)−QY n(yn)

=
∑

(yn)∈Bδ2,γ

QY n(yn)

(
1−

QY n|IX(Xn,δ)=1(yn)

QY n(yn)

)
+

∑
(yn)∈Cδ2,γ

QY n(yn)

(
QY n|IX(Xn,δ)=1(yn)

QY n(yn)
− 1

)

=
∑

(yn)∈Bδ2,γ

QY n(yn)

(
1−

QIX(Xn,δ)|Y n(1|yn)

Q(IX(Xn, δ) = 1)

)
+

∑
(yn)∈Cδ2,γ

QY n(yn)

(
QIX(Xn,δ)|Y n(1|yn)

Q(IX(Xn, δ) = 1)
− 1

)

≤
∑

(yn)∈Bδ2,γ

QY n(yn)
(
1−QIX(Xn,δ)|Y n(1|yn)

)
+

∑
(yn)∈Cδ2,γ

QY n(yn)

(
1

Q(IX(Xn, δ) = 1)
− 1

)
. (92)

Let PỸ denote the type of yn and define

E(n)(δ, γ) := min
PỸ ∈Tn[QY ]γ

min
PX̃∈Tn[PX ]δ

D(PX̃|Ỹ ||QX|Y |PỸ ). (93)

Then, for yn ∈ Tn[QY ]γ
, arbitrary γ̃ > 0 and n sufficiently large, we have

QIX(Xn,δ)|Y n(1|yn) ≥ 1− e−n(E(n)(δ,γ)−γ̃), (94)

Q(IX(Xn, δ) = 1) ≥ 1− e−n(D(PX ||QX)−γ̃). (95)

From (89), (91) and (92), it follows that

‖QY n −QY n|IX(Xn,δ)=1‖ ≤ e−nγ
′
+ e−n(E(n)(δ,γ)−γ̃) + e−n(D(PX ||QX)−γ̃). (96)
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We next show that E(n)(δ, γ) > 0 for sufficiently small δ > 0 and γ > 0. This would imply that the R.H.S of (96) converges

to 0 (for γ̃ small enough), thus proving (11). We can write,

E(n)(δ, γ) ≥ min
PỸ ∈Tn[QY ]γ

min
PX̃∈Tn[PX ]δ

D(PX̃ ||Q̂X) (97)

≥ 1

2 log 2
∗

[
min

PỸ ∈Tn[QY ]γ

min
PX̃∈Tn[PX ]δ

‖PX̃ − Q̂X‖
2

]
, (98)

where

Q̂X(x) :=
∑
y

PỸ (y)QX|Y (x|y).

Here, (97) follows due to the convexity of KL divergence (98) is due to Pinsker’s inequality [37]. We also have from the

properties of total variation that,

‖PX̃ − Q̂X‖ ≥ ‖PX −QX‖ − ‖PX̃ − PX‖ − ‖Q̂X −QX‖.

For yn ∈ Tn[QY ]γ
,

‖Q̂X −QX‖ ≤ ‖QX|Y PỸ −QXY ‖ ≤ ‖PỸ −QY ‖ ≤ k1(γ),

where k(γ) = O(γ). Also, for PX̃ ∈ Tn[PX ]δ
,

‖PX̃ − PX‖ ≤ k2(δ),

where k2(δ) = O(δ). Hence,

E(n)(δ, γ) ≥ 1

2 log 2
∗ (‖PX −QX‖ − k1(γ)− k2(δ))2.

Since PX 6= QX , E(n)(δ, γ) > 0 for sufficiently small γ > 0 and δ > 0. This completes the proof of (11).

We next prove (13). Similar to (89) and (90), we have,

‖PY n − PY n|IX(Xn,δ)=0‖

≤
∑

(yn)/∈Tn
[PY ]γ

PY n(yn) + PY n|IX(Xn,δ)=0(yn) +
∑

(yn)∈Tn
[PY ]γ

|PY n(yn)− PY n|IX(Xn,δ)=0(yn)|, (99)

and

PY n|IX(Xn,δ)=0(yn) ≤ 2PY n(yn), (100)

since P (IX(Xn, δ) = 0)
(n)−−→ 1.
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Also,

∑
(yn)∈Tn

[PY ]γ

|PY n(yn)− PY n|IX(Xn,δ)=0(yn)|

=
∑

(yn)∈Bδ0,γ

PY n(yn)− PY n|IX(Xn,δ)=0(yn) +
∑

(yn)∈Cδ0,γ

PY n|IX(Xn,δ)=0(yn)− PY n(yn)

≤
∑

(yn)∈Bδ0,γ

PY n(yn)
(
1− PIX(Xn,δ)|Y n(0|yn)

)
+

∑
(yn)∈Cδ0,γ

PY n(yn)

(
1

P (IX(Xn, δ) = 0)
− 1

)
≤ γ̃n, (101)

for some γ̃n
(n)−−→ 0. Here, (101) follows due to the facts that P (IX(Xn, δ) = 0)

(n)−−→ 1, and PIX(Xn,δ)|Y n(0|yn)
(n)−−→ 1 for

(yn) ∈ Bδ0,γ with γ sufficiently small. Thus, from (99), (100) and (101), we can write for some γ′ > 0 that,

‖PY n − PY n|IX(Xn,δ)=0‖ ≤ 3e−nγ
′
+ γ̃n

(n)−−→ 0.

This completes the proof of (13). The proof of (12) is exactly same as (13), with the only difference that the sets Bδ1,γ and

Cδ1,γ are used in place of Bδ0,γ and Cδ0,γ , respectively.

APPENDIX B

PROOF OF THEOREM 8

We will present a random coding scheme, and analyze the resulting type 1 and type 2 error probabilities followed by the

equivocation of private part Sn at the detector over the ensemble of all randomly generated codebooks. We mention here

that unless specified otherwise, the mutual information and entropy terms appearing in the proof below, like for example,

I(U ;W ), I(U ;W |V ), H(W |V ) etc. are computed with respect to the joint distribution induced under the null hypothesis,

i.e., PSUVW = PSUV PW |U .

Codebook Generation:

Fix a conditional distribution PW |U , and positive numbers δ′, δ′′, δ and δ̃ (arbitrarily small subject to the delta-convention [37]

and certain other constraints that will be specified in the course of the proof). Generate en(I(U ;W )+δ′) independent sequences

Wn(j), j ∈
[
en(I(U ;W )+δ′)

]
randomly according to the distribution

∏n
i=1 PW (wi), where

PW (w) =
∑
u∈U

∑
w∈W

PU (u)PW |U (w|u).

Denote this codebook by Cn.

Encoding: The encoder f (n) : Un → [enR] is deterministic with output M , which is chosen as follows. If I(U ;W )+δ′ > R,

the encoder performs uniform random binning on the sequences Wn(j), j ∈
[
en(I(U ;W )+δ′)

]
in Cn, i.e., for each codeword

in Cn, it selects an index uniformly at random from the set [enR]. Denote the bin assignment by CnB and the bin index selected

for Wn(j) by fB(j). If the observed sequence Un is typical, i.e., Un ∈ Tn[PU ]δ′′
, the encoder first looks for a sequence

Wn(J) such that (Un,Wn(J)) ∈ Tn[PUW ]δ
, δ > δ′′. If there exists multiple such codewords, it chooses one of the index J

among them uniformly at random and outputs the bin-index M = fB(J), M ∈ [1 : enR] or M = J depending on whether
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I(U ;W ) + δ′ > R or otherwise. If Un /∈ Tn[PU ]δ′′
or such an index J does not exist, the encoder outputs the error message

M = 0.

Decoding: If M = 0, Ĥ = 1 is declared. Else, given M 6= 0 and V n, the detector looks for a typical sequence Ŵn =

Wn(L̂) ∈ Tn[PW ]δ̂
, δ̂ = |U|δ in Cn such that

L̂ = arg min
l: M=fB(l),
Wn(l)∈Tn[PW ]

δ̂

He(W
n(l)|V n).

If (Ŵn, V n) ∈ Tn[PWV ]δ̃
, δ̃ > δ, Ĥ = 0 is declared, else, Ĥ = 1 is declared.

We next analyze the Type 1 and Type 2 error probabilities achieved by the above scheme (in the limit δ, δ′, δ̃ → 0).

Analysis of Type 1 error: A type 1 error occurs only if one of the following events happen.

ETE =

{
(Un, V n) /∈ Tn[PUV ]δ̄

, δ̄ =
δ′′

|V|

}
,

EEE =
{
@ j ∈

[
1 : en(I(U ;W )+δ′)

]
: (Un,Wn(j)) ∈ Tn[PUW ]δ

}
,

EME =
{

(V n,Wn(J)) /∈ Tn[PVW ]δ̃

}
,

EDE =

{
∃ l ∈

[
1 : en(I(U ;W )+δ′)

]
, l 6= J : fB(l) = fB(J), Wn(l) ∈ Tn[PW ]δ̂

, He(W
n(l)|V n) ≤ He(W

n(J)|V n)

}
,

E = ETE ∪ EEE ∪ EME ∪ EDE .

Hence, the Type 1 error can be upper bounded as

α(f (n)) := inf
g

(n)
h

α(f (n), g
(n)
h ) ≤ P(E|H = 0).

ETE tends to 0 asymptotically by the weak law of large numbers. Note that given EcTE holds, Un ∈ T[PU ]δ′′
and by the

covering lemma [37, Lemma 9.1], it is well known that EEE tends to 0 doubly exponentially for δ > δ′′ and δ′ appropriately

chosen. Given EcEE ∩ EcTE holds, it follows from the Markov chain relation V − U −W and the Markov lemma [42], that

P(EME) tends to zero as n→∞ for δ̃ > δ (appropriately chosen). Furthermore,

P(EDE | V n = vn,Wn(J) = wn, EcME ∩ EcEE ∩ EcTE)

≤
2n(I(U;W )+δ′)∑

l=1,
l 6=J

∑
w̃n∈Tn[PW ]

δ̂
:

He(w̃
n|vn)≤He(wn|vn)

P (fB(l) = fB(J), Wn(l) = w̃n| V n = vn,Wn(J) = wn, EcME ∩ EcEE ∩ EcTE)

=

2n(I(U;W )+δ′)∑
l=1,
l 6=J

∑
w̃n∈Tn[PW ]

δ̂
:

He(w̃
n|vn)≤He(wn|vn)

P(Wn(l) = w̃n| V n = vn,Wn(J) = wn, EcME ∩ EcEE ∩ EcTE)
1

2nR

≤
2n(I(U;W )+δ′)∑

l=1,
l 6=J

∑
w̃n∈Tn[PW ]

δ̂
:

He(w̃
n|vn)≤He(wn|vn)

2−nR2−n(H(W )−δ1)
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≤
2n(I(U;W )+δ′)∑

l=1,
l 6=J

(n+ 1)|V||W| 2n(H(W |V )+γ1(n)) · 2−nR2−n(H(W )−δ1)

≤ 2−n(R−I(U ;W |V )−δ(n)
2 ),

where, δ1 = O(δ̂), γ1(n) = |He(w
n|vn)−H(W |V )| and δ(n)

2 = δ1 + 1
n |V||W| log(n+ 1) + δ′+ γ1(n)

(n)−−→ 0 as δ̃, δ′, δ → 0.

Hence, P(EDE) tends to zero as n → ∞ provided that R > I(U ;W |V ), which in turn implies from the union bound that

α(f (n))
(n)−−→ 0.

Analysis of Type 2 error: A type 2 error occurs only if V n ∈ Tn[PV ]δ′′′
, δ′′′ = |W|δ̃ and M 6= 0, i.e., Un ∈ Tn[PU ]δ′′

and

EEE does not occur. Hence, we can restrict the type 2 error analysis to only such (Un, V n). Denote the event that a type 2

error happens by D0. Let

ET2 =
{
Un /∈ Tn[PU ]δ′′

or V n /∈ Tn[PV ]δ′′′

}
. (102)

The type 2 error probability can be written as

β(f (n), ε) =
∑

(un,vn)∈ Un×Vn
P(Un = un, V n = vn|H = 1) P(D0|Un = un, V n = vn, H = 1). (103)

Let ENE := EcEE ∩ EcT2. The last term in (103) can be upper bounded as follows.

P(D0|Un = un, V n = vn, H = 1)

= P(ENE |Un = un, V n = vn, H = 1) P(D0|Un = un, V n = vn, ENE , H = 1)

≤ P(D0|Un = un, V n = vn, ENE , H = 1).

Thus, we have

β(f (n), ε) ≤
∑

(un,vn)∈ Un×Vn
P(Un = un, V n = vn|H = 1) P(D0|Un = un, V n = vn, ENE , H = 1), (104)

where,

P(D0| Un = un, V n = vn, ENE , H = 1) =

en(I(U;W )+δ′)∑
j=1

enR∑
m=1

P(J = j, fB(J) = m| Un = un, V n = vn, ENE , H = 1)

P(D0|Un = un, V n = vn, J = j, fB(J) = m, ENE , H = 1). (105)

By the symmetry of the codebook generation, encoding and decoding procedure, the term P(D0|Un = un, V n = vn, J =

j, fB(J) = m, ENE , H = 1) in (105) is independent of the value of J and fB(J). Hence, w.l.o.g., assuming J = 1 and

fB(J) = 1, we can write
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P(D0| Un = un, V n = vn, ENE , H = 1)

=

en(I(U;W )+δ′)∑
j=1

enR∑
m=1

P(J = j, fB(J) = m| Un = un, V n = vn, ENE , H = 1)

P(D0|Un = un, V n = vn, J = 1, fB(J) = 1, ENE , H = 1)

= P(D0|Un = un, V n = vn, J = 1, fB(J) = 1, ENE , H = 1)

=
∑

wn∈Wn

P(Wn(1) = wn|Un = un, V n = vn, J = 1, fB(J) = 1, ENE , H = 1)

P(D0|Un = un, V n = vn, J = 1, fB(J) = 1,Wn(1) = wn, ENE , H = 1). (106)

Given ENE holds, D0 may occur in two possible ways (i) when an unintended wrong codeword is retrieved from the bin

with index M that is jointly typical with V n and (ii) when the correct codeword is jointly typical with V n. We refer to the

event in case (i) as the binning error event EBE . More specifically,

EBE =
{
∃ l ∈

[
1 : en(I(U ;W )+δ′)

]
, l 6= J, fB(l) = M, Wn(l)) ∈ Tn[PW ]δ̂

, (V n,Wn(l)) ∈ Tn[PVW ]δ̃

}
. (107)

Define the following events

F = {Un = un, V n = vn, J = 1, fB(J) = 1,Wn(1) = wn, ENE}, (108)

F1 = {Un = un, V n = vn, J = 1, fB(J) = 1,Wn(1) = wn, ENE , EcBE}, (109)

F2 = {Un = un, V n = vn, J = 1, fB(J) = 1,Wn(1) = wn, ENE , EBE}. (110)

The last term in (106) can be expressed as follows.

P(D0|F , H = 1) = P(EcBE |F , H = 1) P(D0|F1, H = 1) + P(EBE |F , H = 1) P(D0|F2, H = 1).

For the case I(U ;W ) > R, EBE happens when a wrong codeword Wn(l), l 6= J is retrieved from the bin with index M

by the empirical entropy decoder such that (Wn(l), V n) ∈ Tn[PWV ]δ
. Let PŨṼ W̃ denote the type of PUnV nWn(J). Note that

PŨW̃ ∈ T n[PUW ]δ
when ENE holds. If H(W̃ |Ṽ ) < H(W |V ), there exists a codeword in the bin with index M having empirical

entropy strictly less than H(W |V ). Hence, the decoded codeword Ŵn is such that (Ŵn, V n) /∈ Tn[PWV ]δ̃
(asymptotically) since

(Ŵn, V n) ∈ Tn[PWV ]δ̃
necessarily implies that He(Ŵ

n|V n) := H(PŴn |PV nP)→ H(W |V ) as δ → 0. Consequently, a Type

2 error can happen under the event EBE only when H(W̃ |Ṽ ) ≥ H(W |V ). The probability of the event EBE can be upper

bounded under this condition as

P(EBE |F , H = 1)

≤ P
(
∃ l 6= 1, l ∈ [1 : 2n(I(U :W )+δ′)] : fB(l) = 1 and (Wn(l), vn) ∈ Tn[PWV ]δ̃

|F
)
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≤
2n(I(U;W )+δ′)∑

l=2

P
(

(Wn(l), vn) ∈ Tn[PWV ]δ̃
|F
)

P
(
fB(l) = 1|F2, (W

n(l), vn) ∈ Tn[PWV ]δ̃

)

=

2n(I(U;W )+δ′)∑
l=2

P
(

(Wn(l), vn) ∈ Tn[PWV ]δ̃
|F
)

2−nR

≤
2n(I(U;W )+δ′)∑

l=2

∑
w̃n:

(w̃n,vn)∈Tn[PWV ]
δ̃

P(Wn(l) = w̃n|Un = un, V n = vn, ENE , EcCE) 2−nR (111)

≤
2n(I(U;W )+δ′)∑

l=2

∑
w̃n:

(w̃n,vn)∈Tn[PWV ]
δ̃

2−nR2−n(H(W )−δ1)

≤
2n(I(U;W )+δ′)∑

l=1,
l 6=J

(n+ 1)|V||W| 2n(H(W |V )+δ3 · 2−nR2−n(H(W )−δ1)

≤ 2−n(R−I(U ;W |V )−δ(n)
4 ), (112)

where δ(n)
4

(n)−−→ 0 as δ, δ′, δ̃ → 0. Also, note that, by definition, P(D0|F2) = 1.

We proceed to analyze the R.H.S of (104) which upper bounds the type 2 error β(f (n), ε), in the limit n → ∞ and

δ, δ′, δ̃ → 0. From (106), it follows that

lim
n→∞

lim
δ,δ̃,δ′→0

∑
un,vn

P(Un = un, V n = vn|H = 1) P(D0|Un = un, V n = vn, ENE , H = 1)

= lim
n→∞

lim
δ,δ̃,δ′→0

∑
un,vn

P(Un = un, V n = vn|H = 1)

P(D0|Un = un, V n = vn, J = 1, fB(J) = 1, ENE , H = 1). (113)

Similar to that in [13], rewriting the summation in (113) as the sum over the types and sequences within a type, we obtain

P(D0| ENE , H = 1)

=
∑

PŨṼ W̃∈
T n(U×V×W)

∑
(un,vn,wn)
∈TP

ŨṼ W̃

[
P(Un = un, V n = vn|H = 1)

P(Wn(1) = wn|Un = un, V n = vn, J = 1, fB(J) = 1, ENE , H = 1) P(D0|F , H = 1)
]

(114)

Since H1 is the true underlying hypothesis, we have

P(Un = un, V n = vn|H = 1) P(Wn(1) = wn|Un = un, V n = vn, J = 1, fB(J) = 1, ENE , H = 1)

≤ e−n(H(ŨṼ )+D(PŨṼ ||QUV )+H(W̃ |Ũ)− 1
n |U||W| log(n+1)). (115)

where PŨṼ W̃ denotes the type of the sequence (un, vn, wn).

With (112) and (115), we have the necessary machinery to analyze (114). First, consider that the event ENE ∩ EcBE holds.
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In this case,

P(D0|F1, H = 1) = P(D0|Un = un, V n = vn, J = 1, fB(J) = 1,Wn(1) = wn, ENE , EcBE , H = 1)

=


1, if Punwn ∈ Tn[UW ]δ

and Pvnwn ∈ Tn[VW ]δ̃
,

0, otherwise.
(116)

Thus, the following terms in (114) can be simplified (in the limit δ, δ̃ → 0) as

lim
n→∞

lim
δ,δ̃,δ′→0

∑
PŨṼ W̃∈

T n(U×V×W)

∑
(un,vn,wn)
∈TP

ŨṼ W̃

[
P(Un = un, V n = vn|H = 1) P(EcBE |F , H = 1) P(D0|F1, H = 1)

P(Wn(1) = wn|Un = un, V n = vn, J = 1, fB(J) = 1, ENE , H = 1)
]

≤ lim
n→∞

lim
δ,δ̃,δ′→0

∑
PŨṼ W̃∈

T n(U×V×W)

∑
(un,vn,wn)
∈TP

ŨṼ W̃

[
P(Un = un, V n = vn|H = 1) P(D0|F1, H = 1)

P(Wn(1) = wn|Un = un, V n = vn, J = 1, fB(J) = 1, ENE , H = 1)
]

≤ lim
n→∞

(n+ 1)|U||V||W| max
PŨṼ W̃∈

T1(PUW ,PVW )

enH(ŨṼ W̃ )e−n(H(ŨṼ )+D(PŨṼ ||QUV )+H(W̃ |Ũ)− 1
n |U||W| log(n+1)) (117)

= lim
n→∞

e−nẼ1n .

where

Ẽ1n := min
PŨṼ W̃∈

T1(PUW ,PVW )

H(Ũ Ṽ ) +D(PŨṼ ||QUV ) +H(W̃ |Ũ)−H(Ũ Ṽ W̃ )

− 1

n
|U||V||W| log(n+ 1)− 1

n
|U||W| log(n+ 1)

= min
PŨṼ W̃∈

T1(PUW ,PVW )

∑
PŨṼ W̃ log

(
PŨṼ
QUV

1

PŨṼ

PŨ
PŨW̃

PŨṼ W̃

)
− o(1)

= min
PŨṼ W̃∈T1(PUW ,PVW )

D(PŨṼ W̃ ||QUVW )− o(1)
(n)−−→ E1(PW |U ), (118)

where QUVW = QUV PW |U . To obtain (117), we used (115) and (116). This results in the term E1(PW |U ) in (18).

Next, consider the terms corresponding to the event ENE ∩EBE in (114). Note that given the event F2 = {Un = un, V n =

vn, J = 1, fB(J) = 1,Wn(1) = wn, ENE , EBE} occurs, Punwn ∈ Tn[PUW ]δ
. Also, D0 can happen only if He(w

n|vn) ≥

H(W |V ) − γ2(δ̃) for some positive function γ2(δ̃) ∈ O(δ̃) and Pvn ∈ Tn[PV ]δ′′′
. Using these facts to simplify the terms

corresponding to the event ENE ∩ EBE in (114), we obtain similar to [13],

lim
n→∞

lim
δ′,δ,δ̃→0

∑
PŨṼ W̃∈

T n(U×V×W)

∑
(un,vn,wn)
∈TP

ŨṼ W̃

[
P(Un = un, V n = vn|H = 1) P(EBE |F , H = 1) P(D0|F2, H = 1)

P(Wn(1) = wn|Un = un, V n = vn, J = 1, fB(J) = 1, ENE , H = 1)
]

= lim
n→∞

e−nẼ2n , (119)
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where,

E2n := min
PŨṼ W̃∈

T2(PUW ,PV )

H(Ũ Ṽ ) +D(PŨṼ ||QUV ) +H(W̃ |Ũ) +R− I(U ;W |V )− 1

n
|U||V||W| log(n+ 1)

− 1

n
|U||W| log(n+ 1)

(n)−−→ E2(R,PW |U ). (120)

Also, note that EBE occurs only when I(U ;W ) > R. This completes the analysis of the T2EE.

Next, we lower bound the equivocation of Sn at the adversary as follows. Assume H = 0. Let IM := 1(M 6= 0). Then,

we have

H(Sn|M,V n, H = 0) = H(Sn|M,V n, IM , H = 0)

= P(M = 0|H = 0)H(Sn|M,V n, IM = 0, H = 0) + P(M 6= 0|H = 0)H(Sn|M,V n, IM = 1, H = 0)

≥ γ0n H(Sn|M,V n, IM = 1, H = 0) (121)

≥ γ0n H(Sn|Wn(M,M ′), V n,M, IM = 1, H = 0) (122)

≥ n(HP (S|W,V )− γ′0n). (123)

for some γ0n
(n)−−→ 1, γ′0n

(n)−−→ 0. Here, (121) follows since under hypothesis H0, P(ETE ∪ EEE)
(n)−−→ 0; (122) follows since

M and X are functions of the codeword Wn(M,M ′); and (123) follows similarly to the proof of Theorem 1 in [44].

Next, assume that H = 1 and PU = QU . Let EU = {Un /∈ Tn[PU ]δ′′
}. Then, by the weak law of large numbers and covering

theorem [42], it follows that

P (EU ∪ EEE |H = 1)
(n)−−→ 0.

Consequently, P(M 6= 0|H = 1)
(n)−−→ 1. Thus, we can write

H(Sn|M,V n, H = 1) = H(Sn|M,V n, IM , H = 1)

= P(M = 0|H = 1)H(Sn|M,V n, IM = 0, H = 1) + P(M 6= 0|H = 1)H(Sn|M,V n, IM = 1, H = 1)

≥ γ1n H(Sn|M,V n, IM = 1, H = 1) (124)

≥ γ1n H(Sn|Wn(M,M ′), V n,M, IM = 1, H = 1) (125)

≥ n(HQ(S|W,V )− γ′1n). (126)

for some γ1n
(n)−−→ 1, γ′1n

(n)−−→ 0. Eqn. (126) follows similarly to the proof of Theorem 1 in [44] since (Un,Wn(M,M ′)) ∈

Tn[PUW ]δ
and QSnV n|Un,Wn(M,M ′) =

∏n
i=1QSV |U .

Now, assume that H = 1 and QU 6= PU . Then, it follows that for some 0 < γ′ < D(PU ||QU ),

P (EU |H = 1) ≥ 1− e−n(D(PU ||QU )−γ′) := γ2n
(n)−−→ 1. (127)
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Recalling that IU (un, δ′′) := 1

(
un /∈ Tn[PU ]δ′′

)
, we can write

H(Sn|M,V n, H = 1)

≥ γ2n H(Sn|M,V n, IU (Un, δ′′) = 1, H = 1)

= γ2n H(Sn|V n, IU (Un, δ′′) = 1, H = 1) (128)

≥ γ2n (H(Sn|V n, H = 1)− γ′2n) (129)

≥ n(HQ(S|V )− γ′2n), (130)

for some γ′2n
(n)−−→ 0. Eqn. (128) follows since given IU (Un, δ′′) = 1, M = 0. Eqn. (129) follows from the fact that for δ′′

small enough,

|H(Sn|V n, H = 1)−H(Sn|V n, IU (Un, δ′′) = 1, H = 1)| ≤ γ′2n.

which in turn follows from Lemma 6 and 7. Thus, we have shown that (R, κ,Ω0,Ω1) ∈ Re(ε), ε ∈ (0, 1), provided that (14)-

(17) are satisfied, and by the random coding argument, there exists a deterministic codebook that achieves this tuple.

APPENDIX C

PROOF OF THEOREM 9

The generation of the codebook Cn and the random coding method for analysis is the same as in Theorem 8. However,

a stochastic encoder f (n) : Un → {PM |Un}, M = [enR] with output M is used at the observer instead of a deterministic

encoder. Again, unless specified otherwise, the mutual information and entropy terms appearing in the proof below, like for

example, I(U ;W ), I(U ;W |V ), H(W |V ) etc. are computed with respect to the joint distribution PSUVW = PSUV PW |U . As in

Theorem 8, δ′, δ′′, δ and δ̃ appearing in the proof below denote arbitrarily small positive numbers subject to delta-convention

[37] and certain other constraints that will be specified in the course of the proof.

Encoding: For a given codebook Cn, define a conditional probability distribution

PEu(j|un, Cn) :=

∏n
i=1 PU |W (ui|Wi(j))∑

j

∏n
i=1 PU |W (ui|Wi(j)))

. (131)

If I(U ;W ) + δ′ + |U||W| log(n+1)
n > R, the encoder performs uniform random binning on the sequences Wn(j), j ∈[

en(I(U ;W )+δ′)
]

in Cn, i.e., for each codeword in Cn, it selects an index uniformly at random from the set
[
en(R− |U||W| log(n+1)

n )
]
.

Denote the bin assignment by CnB and the bin index selected for Wn(j) by fB(j). If the observed sequence Un is typical,

i.e., Un ∈ Tn[PU ]δ′′
, then the encoder outputs the message2 M = (T,M ′), M ′ = fB(J), M ∈ [1 : enR] or M = (T, J)

depending on whether I(U ;W ) + δ′ + |U||W| log(n+1)
n > R or otherwise, where J ∈ [en(I(U ;W )+δ′)] is selected according to

the probability PEu(j|un, Cn) and T denotes the index of the joint type of (Un,Wn(J)) in the set of types T n(U ×W). If

Un /∈ Tn[PU ]δ′′
, the encoder outputs the error message M = 0.

2Note that this is valid assignment since the total number of types in T n(U ×W) is upper bounded by (n+ 1)|U||W| [37].
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Decoding: If M = 0 or T /∈ Tn[PUW ]δ
, Ĥ = 1 is declared. Else, given M 6= 0 and V n, the detector looks for a typical

sequence Ŵn = Wn(L̂) ∈ Tn[PW ]δ̂
, δ̂ = |U|δ in the codebook such that

L̂ = arg min
l: M=fB(l),
Wn(l)∈Tn[PW ]

δ̂

He(W
n(l)|V n).

The detector declares Ĥ = 0 if (Ŵn, V n) ∈ Tn[PWV ]δ̃
, for δ̃ > δ, else, Ĥ = 1 is declared.

We next analyze the average of the Type 1 and Type 2 error probabilities achieved by the above scheme (in the limit

δ, δ′, δ̃ → 0) over all random codebooks Cn and CnB .

Analysis of Type 1 error:

The system induced distribution when H = 0 is given by

P̃ (0)(sn, un, vn, j, wn,m, ĵ, ŵn)

=

[
n∏
i=1

PSUV (si, ui, vi, zi)

]
PEu(j|un, Cn)1(Wn(j) = wn)1(fB(j) = m) PED(ĵ|vn,m)

1(Wn(ĵ) = ŵn), if un ∈ Tn[PU ]δ′′
, (132)

and

P̃ (0)(sn, un, vn,m) =

[
n∏
i=1

PSUV (si, ui, vi)

]
1(m = 0), if un /∈ Tn[PU ]δ′′

. (133)

Consider two auxiliary distribution Ψ̃ and Ψ defined as

Ψ̃(0)(sn, un, vn, j, wn,m, ĵ, ŵn)

:=

[
n∏
i=1

PSUV (si, ui, vi)

]
PEu(j|un, Cn)1(Wn(j) = wn)1(fB(j) = m) PED(ĵ|vn,m)1(Wn(ĵ) = ŵn), (134)

and

Ψ(0)sn, un, vn, j, wn,m, ĵ, ŵn)

:=
1

en(I(U ;W )+δ′)
1(Wn(j) = wn)

[
n∏
i=1

PU |W (ui|wi)

][
n∏
i=1

PV S|U (vi, si|ui)

]
1(fB(j) = m)

PED(ĵ|vn,m)1(Wn(ĵ) = ŵn). (135)

Note that the distributions P̃ (0),Ψ(0) and Ψ̃(0) defined are random variables and depend on the codebook realization Cn and

the binning assignment. Also, observe that the stochastic encoder is chosen such that PEu(j|un, Cn) = Ψ(0)(j|un) and hence,

the only difference between the joint distribution Ψ(0) and Ψ̃(0) is the marginal distribution of Un. By the soft-covering lemma

[38] [40], it follows that for some γ1 > 0,

ECn
[
‖Ψ(0)

Un − Ψ̃
(0)
Un‖

∣∣H = 0
]
≤ exp (−γ1n)

(n)−−→ 0. (136)
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Hence, from (136) and the properties of total variation, we have

ECn
[
‖Ψ(0) − Ψ̃(0)‖

∣∣H = 0
]
≤ exp (−γ1n). (137)

where the distributions Ψ(0) and Ψ̃(0) are over the r.v.’s given in (134). Also, note that the only difference between the

distributions P̃ (0) and Ψ̃(0) is PEu when un /∈ Tn[PU ]δ′′
. Since P(Un /∈ Tn[PU ]δ′′

)
(n)−−→ 0, it follows that for some {γ2n}n∈Z+

such that γ2n
(n)−−→ 0,

ECn
[
‖P̃ (0) − Ψ̃(0)‖

∣∣H = 0
]
≤ γ2n. (138)

Eqns. (137) and (138) together imply that

ECn
[
‖P̃ (0) −Ψ(0)‖

∣∣H = 0
]
≤ γ3n := γ2n + exp (−γ1n)

(n)−−→ 0. (139)

This means that the system distribution P̃ (0) induced by encoding and decoding operations (when H0 is the true hypothesis)

can be approximated by that under Ψ(0). Let P̃ (1) and Ψ̃(1) be defined by the R.H.S. of (132), (133) and (134), with PSUV

replaced by QSUV . Let Ψ(1) denote the R.H.S. of (135) with PV S|U replaced by QV S|U . Note that under joint distribution

Ψ(l), l ∈ {0, 1},

Si − (Wi(J), Vi)− (M,Wn(J), V n), i = [1 : n]. (140)

Also, since I(U ;W ) + δ′ > 0, by the application of soft-covering lemma,

ECn
[

n∑
i=1

‖PW −Ψ
(l)
Wi

(J)‖
∣∣H = 0

]
≤ exp (−γ4n)

(n)−−→ 0, l = 0, 1, (141)

for some γ4 > 0. From (135), (139) and (141),

P((Un,Wn(J)) ∈ Tn[PUW ]δ
|H = 0)

(n)−−→ 1. (142)

by the weak law of large numbers. A type 1 error occurs only if one of the following events happen.

ETE =

{
(Un, V n) /∈ Tn[PUV ]δ̄

, δ̄ =
δ′′

|V|

}
,

ESE = {T /∈ Tn[PUW ]δ
},

EME =
{

(V n,Wn(J)) /∈ Tn[PVW ]δ̃

}
,

EDE =

{
∃ l ∈

[
1 : en(I(U ;W )+δ′)

]
, l 6= J : fB(l) = fB(J), Wn(l) ∈ Tn[PW ]δ̂

, He(W
n(l)|V n) ≤ He(W

n(J)|V n)

}
,

E = ETE ∪ ESE ∪ EDE .
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Hence, the type 1 error can be upper bounded as

α(f (n)) := inf
g

(n)
h

α(f (n), g
(n)
h ) ≤ P(E|H = 0).

P(ETE) tends to 0 asymptotically by the weak law of large numbers. From (142), P(ESE)
(n)−−→ 0. Given EcSE and EcTE holds,

it follows from the Markov chain relation V −U −W and the Markov lemma [42], that P(EME) tends to zero as n→∞ for

δ̃ > δ (appropriately chosen). Also, similar to that shown in Theorem 8, it follows that

P(EDE | V n = vn,Wn(J) = wn, EcME ∩ EcSE ∩ EcTE , H = 0) ≤ e−n(R−I(U ;W |V )−δ(n)
2 ), (143)

where δ
(n)
2

(n)−−→ 0 as δ̃, δ′, δ → 0. Hence, by the union bound, α(f (n))
(n)−−→ 0 provided R > I(U ;W |V ) (in the limit

δ̃, δ′, δ → 0).

Analysis of Type 2 error: The analysis is similar to that of Theorem 8. First, note that a type 2 error occurs only if

V n ∈ Tn[PV ]δ′′′
, δ′′′ = |W|δ̃, M 6= 0, i.e., Un ∈ Tn[PU ]δ′′

and T ∈ Tn[PUW ]δ
. Hence, we can restrict the type 2 error analysis to

only such (Un, V n). Denote the event that a type 2 error happens by D0. The type 2 error probability can be written as

β(f (n), ε) =
∑

(un,vn)∈ Un×Vn
P(Un = un, V n = vn|H = 1) P(D0|Un = un, V n = vn, H = 1). (144)

Let ENE := EcSE ∩ {V n ∈ Tn[V ]δ′′′
} ∩ {Un ∈ Tn[U ]δ′′

}. The last term in (144) can be upper bounded as follows.

P(D0|Un = un, V n = vn, H = 1)

= P(ENE |Un = un, V n = vn, H = 1) P(D0|Un = un, V n = vn, ENE , H = 1)

≤ P(D0|Un = un, V n = vn, ENE , H = 1).

By averaging over all codebooks Cn, CnB and using the symmetry of the codebook generation, encoding and decoding

procedure, we can write similar to (106) that,

P(D0| Un = un, V n = vn, ENE , H = 1)

=
∑

wn∈Wn

P(Wn(1) = wn|Un = un, V n = vn, J = 1, fB(J) = 1, ENE , H = 1)

P(D0|Un = un, V n = vn, J = 1, fB(J) = 1,Wn(1) = wn, ENE , H = 1). (145)

Defining the events EBE , F , F1, F2 as in eqns. (107), (108), (109), (110), respectively, the last term in (145) can be written

as

P(D0|F , H = 1) = P(EcBE |F , H = 1) P(D0|F1, H = 1) + P(EBE |F , H = 1) P(D0|F2, H = 1). (146)

The first term in (145) can upper bounded as
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P(Wn(1) = wn|Un = un, V n = vn, J = 1, fB(J) = 1, ENE , H = 1) ≤ 1

|TPW̃ |Ũ |
≤ e−n(H(W̃ |Ũ)− 1

n |U||W| log(n+1)). (147)

To obtain (147), we used the fact that PEu(1|un, Cn) in (131) is invariant to the joint type TPŨW̃ of (Un,Wn(1)) = (un, wn)

(keeping all the other codewords fixed), which in turn implies that given ENE and the type PŨ of Un = un, each sequence

in the conditional type TPW̃ |Ũ is equally likely (in the randomness induced by the random codebook generation and stochastic

encoding in (131)) and its probability is upper bounded by 1
|TP

W̃ |Ũ
| . The analysis of the other terms in (146) is the same as in

Theorem 8 and results in similar factors in the T2EE. Hence, it is omitted. Therefore, by the random coding argument, there

exists a sequence of deterministic codebooks (Cn, CnB) such that it achieves the T2EE given in (15) and satisfies the type 1

error probability constraint ε, (142), (139) and (141). Using these codebooks for coding (at the encoder and decoder), we next

lower bound the average distortion of Sn at the adversary decoder as follows.

First consider that the null hypothesis holds. Then,

min
g

(n)
r

E
[
d
(
Sn, Ŝn

)
|H = 0

]
= min
{φi(m,vn)}ni=1

1

n

n∑
i=1

EP̃ (0) [d (Si, φi(M,V n))]

≥ min
{φi(m,vn)}

EΨ(0)

[
1

n

n∑
i=1

d(Si, φi(M,V n))

]
−Dmγ3n (148)

≥ min
{φi(·,·)}

EΨ(0)

[
1

n

n∑
i=1

d(Si, φi(Wi, Vi))

]
−Dmγ3n (149)

≥ min
{φ(·,·)}

EP [d(S, φ(W,V ))]−Dm(γ3n + exp (−γ4n)). (150)

Here, (148) follows from (139) and boundedness of distortion measure; (149) follows from (140); (150) follows from (141)

and the fact that Ψ
(0)
SiVi|Wi

= P
(0)
SV |W , i ∈ [n].

Next, consider that the alternate hypothesis holds and that QU = PU . Then, from the soft-covering lemma, it again follows

that

ECn
[
‖Ψ(1)

Un − Ψ̃
(1)
Un‖

∣∣H = 1
]
≤ exp (−γ1n)

(n)−−→ 0. (151)

and

ECn
[
‖Ψ(1) − Ψ̃(1)‖

∣∣H = 1
]
≤ exp (−γ1n). (152)

where the distributions Ψ(1) and Ψ̃(1) are over the r.v.’s given in (134). Also, note that the only difference between the

distributions P̃ (1) and Ψ̃(1) is PEu when un /∈ Tn[PU ]δ′′
. Since QU = PU implies P(Un /∈ Tn[PU ]δ′′

|H = 1)
(n)−−→ 0, it follows

that

ECn
[
‖P̃ (1) − Ψ̃(1)‖

∣∣H = 1
]
≤ γ2n

(n)−−→ 0. (153)
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Eqns. (152) and (153) together imply that

ECn
[
‖P̃ (1) −Ψ(1)‖

∣∣H = 1
]
≤ γ3n := γ2n + exp (−γ1n)

(n)−−→ 0. (154)

This means that the system distribution P̃ (1) induced by encoding and decoding operations when H1 is the true hypothesis

can be approximated by that under Ψ(1). Then,

min
g

(n)
r

E
[
d
(
Sn, Ŝn

)
|H = 1

]
= min
{φi(m,vn)}ni=1

1

n

n∑
i=1

EP̃ (1) [d (Si, φi(M,V n))]

≥ min
{φi(m,vn)}

EΨ(1)

[
1

n

n∑
i=1

d(Si, φi(M,V n))

]
−Dmγ3n (155)

≥ min
{φi(·,·)}

EΨ(1)

[
1

n

n∑
i=1

d(Si, φi(Wi, Vi))

]
−Dmγ3n (156)

≥ min
{φ(·,·)}

EQ [d(S, φ(W,V ))]−Dm(γ3n + exp (−γ4n)). (157)

Now, consider the case H = 1 and QU 6= PU . Then, it follows that for some 0 < γ′ < D(PU ||QU ),

P (M = 0|H = 1) = P
(
Un /∈ Tn[PU ]δ′′

|H = 1
)
≥ 1− e−n(D(PU ||QU )−γ′) := γ5n

(n)−−→ 1.

Hence,

min
g

(n)
r

E
[
d
(
Sn, Ŝn

)
|H = 1

]
≥ γ5n min

{φi(m,vn)}ni=1

1

n

n∑
i=1

EP̃ (1) [d (Si, φi(0, V
n))]

≥ min
{φ′i(v)}

EQ

[
1

n

n∑
i=1

d(Si, φ
′
i(Vi))

]
−Dmγ3n (158)

= min
{φ′(·)}

EQ [d(S, φ′(V ))]−Dm(γ3n). (159)

Here, (158) follows from Lemma 7. Thus, we have shown that (R, κ,∆0,∆1) ∈ Rd(ε), ε ∈ (0, 1), provided that (14), (15),

(20) and (21) are satisfied. This completes the proof of the theorem.

APPENDIX D

ONE-HELPER LOSSLESS SOURCE CODING PROBLEM WITH A PRIVACY CONSTRAINT

Here, we show the equivalence between the one-helper lossless source coding problem with a privacy constraint shown in

Fig. 2 and the HT with a privacy constraint problem. In the one-helper lossless source coding problem with a privacy constraint,

the main encoder f (n)
y

(
resp. helper encoder f (n)

)
sends the message M̃ (resp. M ) based on its observation Y n (resp. Un) to

the legitimate decoder g(n)
y through a noiseless channel with rate constraint Ry (resp. R). The goal of the legitimate decoder

g
(n)
y is to reconstruct Y n losslessly using the received indices M and M̃ as well as its side information Zn. This is a source

coding with coded side information problem, studied in [45]. However, in our case, there is an additional sequence Sn and
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an adversary decoder g(n)
r which has access to (M,Y n, Zn). The goal is to keep Sn private from the adversary decoder such

that (3) (resp. (4)) is satisfied when average distortion (resp. equivocation) is the measure of privacy. Note that the adversary

decoder has access to all the information that the legitimate decoder has. Hence, protecting Sn cannot depend on coding

techniques that are based on the adversary partially missing data (or having a noisier channel), as is common in many physical

layer security related works. We measure the privacy of Sn at the adversary decoder under two cases, namely, when the joint

distribution of the r.v.’s (Sn, Un, Y n, Zn) is (i)
∏n
i=1 PSUY Z and (ii)

∏n
i=1QSUY Z . The pair of equivocation and average

distortion tuples simultaneously achievable in these two cases are of interest.

Definition 16. Given a distortion measure d : Sn × Ŝn → [0, Dm], a rate-distortion tuple (R,Ry,∆0,∆1) is achievable

if there exists a sequence of encoding functions f (n) : Un → [enR], f (n)
y : Yn → [enRy ] and decoding functions g(n)

y :

[enR]× [enRy ]×Zn → Ŷ n such that

lim sup
n→∞

P(Y n 6= Ŷ n) = 0, (160)

and (3) are satisfied. Let R̂d denote the closure of all achievable (R,Ry,∆0,∆1) tuples.

Definition 17. A rate-equivocation tuple (R,Ry,Ω0,Ω1) is achievable if there exists a sequence of encoding functions f (n) :

Un → [enR], f (n)
y : Yn → [enRy ] and decoding functions g(n)

y : [enR] × [enRy ] × Zn → Ŷ n such that (4) and (160) are

satisfied. Let R̂e denote the closure of all achievable (R,Ry,Ω0,Ω1) tuples.

Let R(n)
d = {(R, κ,∆0,∆1)} such that there exists f (n) : Un → {PM |Un}, M =

[
enR

]
satisfying

κ ≤ 1

n
D(PMY nZn ||QMY nZn) = I(M ;Y n|Zn), (161)

inf
g

(n)
r

E
[
d
(
Sn, Ŝn

)
|H = i

]
≥ ∆i, i = 0, 1, (162)

(Y n, Zn, Sn)− Un −M, M = f (n)(Un). (163)

Similarly, let R(n)
e = {(R, κ,Ω0,Ω1)} such that there exists f (n) : Un →

[
enR

]
satisfying (161), (163) and

1

n
H(Sn|M,Y n, Zn, H = i) ≥ Ωi, i = 0, 1. (164)

The next theorem provides a multi-letter characterization of R̂d and R̂e.

Theorem 18. Let R̂(n)
d denote the set of (R,Ry,∆0,∆1) tuples such that (162), (163) and

Ry ≥
1

n
H(Y n|M,Zn). (165)

are satisfied. Similarly, let R̂(n)
e denote the set of (R,Ry,Ω0,Ω1) tuples such that (163), (164) and (165) are satisfied. Then,

R̂d = cl
(
∪nR̂(n)

d

)
, (166)

R̂e = cl
(
∪nR̂(n)

e

)
. (167)
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Proof: We first prove (166). For the achievability part, consider the following scheme.

Encoding: Fix n and f (n) : Un → PM̄ |Un satisfying (162). For j ∈ Z+, upon observing unj , the helper encoder transmits

the super-message M = (M(1), . . . ,M(j)), where each M(j) ∈ [enR] is selected independently according to PM̄ |Un=un(j).

The main encoder fnjy : Ynj → {1, 2, · · · , enjRy} performs uniform random binning on Y nj , i.e., for each observed sequence

vnj , an index M̃ is chosen uniformly at random from the set {1, 2, · · · , enjRy}.

Decoding: On receiving M and M̃ , the legitimate decoder checks for a unique sequence Ŷ nj such that fy(Ŷ nj) = M̃ and

(Ŷ nj ,M,Znj) ∈ T j
[Y nM̄Zn]δ

. If successful, it outputs g(nj)(M, M̃, Znj) = Ŷ nj . Else, an error is declared.

Analysis of the probability of error: The following events may result in an error at the legitimate decoder.

E1 = {(Y nj ,M,Znj) /∈ T j
[Y nM̄,Zn]δ

},

E2 = {∃ Ỹ nj 6= Y nj , f (nj)
y (Ỹ nj) = fnjy (Y nj), (Ỹ nj ,M,Znj) ∈ T j

[Y nM̄Zn]δ
}.

By the joint typicality lemma [42], Pr(E1)→ 0 as j →∞. Also,

P(E2) =
∑

ynj ,m,znj

P(vnj ,m, znj) P
(
fnjy (Ỹ nj) = fnjy (vnj), (Ỹ nj ,M, znj) ∈ T j

[Y nM̄Zn]δ

)
=

∑
ynj ,m,znj

P(vnj ,m, znj)
∑

vnj∈T j
[Y nM̄Zn]δ

e−njRy

≤ ej(H(Y n|M̄,Zn)+δ)e−njRy

= e
nj

(
H(Y n|M̄,Zn)+δ

n −Ry
)
.

Hence, P(E2)→ 0 as j →∞ if Ry > H(Y n|M̄, Zn) + δ. Note that (Zn, Y n)−Un− M̄ . Also, defining l(k, n) := k−nb knc,

we can write,

inf
g

(k)
r

E
[
d
(
Sk, Ŝk

)
|H = Hi

]

=
n

k

b kn c∑
j=1

inf
g

(n)
r

E
[
d
(
Sn(j), Ŝn(j)

)
|H = Hi

]
+

1

k
inf

g
l(k,n)
r

E
[
d
(
Sk
nb kn c+1

, Ŝk
nb kn c+1

)
|H = Hi

]
(168)

≥ 1
k
n

b kn c∑
j=1

inf
g

(n)
r

E
[
d
(
Sn, Ŝn

)
|H = Hi

]
=

(b knc
k
n

∆i.

Here, (168) follows since
{
M(j), Y jn(j−1)n+1, Z

jn
(j−1)n+1

}
j∈Z+

forms an i.i.d. sequence. Taking limit k →∞, we obtain

lim inf
k→∞

inf
g

(k)
r

E
[
d
(
Sk, Ŝk

)
|H = Hi

]
≥ ∆i. (169)

Thus, if (R,Ry,∆0,∆1) ∈ R̂(n)
d , then (R,Ry,∆0,∆1) ∈ R̂d. Since R̂d is closed by definition, it follows that cl

(
R̂(n)
d

)
⊆ R̂d.
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Similarly, for fixed f (n) that satisfies (164), and M = (M(1),M(2), . . .) as before, we have

1

k
H(Sk|M,Y k, Zk, H = Hi) ≥

n

k

b kn c∑
j=1

1

n
H(Sn(j)|M(j), Y n(j), Zn(j), H = Hi) ≥

(b knc
k
n

Ωi.

Thus,

lim inf
k→∞

1

k
H(Sk|M,Y k, Zk, H = Hi) ≥ Ωi, (170)

and it follows that cl
(
R̂(n)
e

)
⊆ R̂e.

For the converse, we have by Fano’s inequality that H(Y n|M̃,M,Zn) ≤ γn, where γn → 0 as n→∞. Hence, we obtain

nRy = log(|M̃|) ≥ H(M̃ |M,Zn)

= H(M̃ |M,Zn)−H(Y n|M̃,M, , Zn) +H(Y n|M̃,M,Zn)

≥ H(Y n, M̃ |M,Zn)− γn

= H(Y n|M,Zn) +H(M̃ |Y n,M,Zn)− γn

≥ H(Y n|M,Zn)− γn.

Noting that (Zn, Y n) − Un −M , M ∈ [enR] and (162) (resp. (164)) holds for any achievable scheme, it follows that

int
(
R̂d
)
⊆ R̂nd

(
resp. int

(
R̂e
)
⊆ R̂ne

)
. Taking closure, this implies that

R̂d ⊆ cl
(
R̂nd
)
,

and R̂e ⊆ cl
(
R̂ne
)
. (171)

This completes the proof of the theorem.

Next, we prove an inner and outer bound for Rd(ε) and Re(ε) in terms of multi-letter expressions. The inner bound holds

for all ε ∈ (0, 1), while the outer bound holds only when ε→ 0.

Theorem 19.

cl
(
∪nR(n)

d

)
⊆ Rd(ε),∀ε ∈ (0, 1), (172)

Rd ⊆ cl
(
∪nR(n)

d

)
, (173)

cl
(
∪nR(n)

e

)
⊆ Re(ε),∀ε ∈ (0, 1), (174)

Re ⊆ cl
(
∪nR(n)

e

)
. (175)

Proof: For simplicity, denote by V the r.v.’s (Y, Z). We will prove that for all ε ∈ (0, 1),

∪nR(n)
d ⊆ Rd(ε), (176)

∪nR(n)
e ⊆ Re(ε). (177)
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Since Rd(ε) and Re(ε) are closed by definition, this in turn implies that

cl
(
∪nR(n)

d

)
⊆ Rd(ε),

cl
(
∪nR(n)

e

)
⊆ Re(ε).

Fix n and an encoding function (possibly stochastic) f (n) : Un → {PM̄ |Un}, M̄ =
[
enR

]
satisfying (162). Let M(j) denote

the encoder output for the jth block of samples Un(j). Then, the distribution of M(j) is given by

PM(j)(m) =
∑

un∈Un
PUn(j)(u

n)PM̄ |Un(m|un).

Since the sequence (Un(1), Un(2), . . .) is i.i.d., so is (M(1),M(2), . . .). The encoder transmits the super-message M =

(M(1),M(2), . . .) formed by the concatenation of these sub-messages. Note that
{
M(j), V jn(j−1)n+1

}
j∈Z+

form an infinite

sequence of i.i.d. r.v.’s indexed by j. Hence, by the application of Stein’s Lemma [5], we have for all ε ∈ (0, 1) that,

lim sup
j→∞

log (β(nj, ε))

nj
≤
−D

(
PM̄V n ||QM̄V n

)
n

.

For k ≥ nj, β(k, ε) ≤ β(nj, ε). Hence,

lim sup
m→∞

log (β(m, ε))

m
≤ lim sup

j→∞

log (β(nj, ε))

nj
≤
−D

(
PM̄V n ||QM̄V n

)
n

.

Note that (163) is satisfied. It can be shown similarly to (169) that

lim inf
k→∞

inf
g

(k)
r

E
[
d
(
Sk, Ŝk

)
|H = Hi

]
≥ ∆i, i = 0, 1,

and hence, (R, κ,∆0,∆1) satisfying (161), (162) and (163) is achievable. This proves (176).

Also, it can be shown similarly to (170) that

lim inf
k→∞

1

k
H(Sk|M,V k, H = Hi) ≥ Ωi,

which proves (177).

Next, we prove the converse part, i.e.,

Rd ⊆ cl
(
∪nR(n)

d

)
, (178)

Re ⊆ cl
(
∪nR(n)

e

)
. (179)

We will show that

int (Rd) ⊆ ∪nR(n)
d , (180)

int (Re) ⊆ ∪nR(n)
e . (181)
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This would complete the proof of the converse as (180) and (181) implies (178) and (179), respectively. Let f (n) : Un →

{PM |Un}, M = [enR] and A ⊆ [enR] × Vn be an arbitrary encoding function and acceptance region for the detector, such

that ᾱ(f (n), g(n)) = PMV n(Ac) ≤ ε. Then, we have, by the log-sum inequality [37] that

D(PMV n ||QMV n) ≥ PMV n(Ac) log

(
PMV n(Ac)
QMV n(Ac)

)
+ PMV n(A) log

(
PMV n(A)

QMV n(A)

)
= −h

(
ᾱ
(
f (n), g(n)

))
− (1− ε) log

(
β̄
(
f (n), g(n)

))
.

As 0 ≤ α
(
f (n), g(n)

)
≤ ε, limε→0 h

(
ᾱ
(
f (n), g(n)

))
→ 0. Thus, we have

lim
ε→0

1

n
log
(
β̄
(
f (n), g(n)

))
≥ −1

n
D(PMV n ||QMV n). (182)

Also, note that (162) and (163) should be satisfied by definition for any achievable (R, κ,∆0,∆1) ∈ int (Rd). Similarly, it

follows that for any achievable (R, κ,Ω0,Ω1) ∈ int (Re), (161), (163) and (164) should be satisfied. This completes the proof

of the theorem.

Corollary 20.

Rd = cl
(
∪nR(n)

d

)
,

Re = cl
(
∪nR(n)

e

)
.

Noting that I(M ;Y n|Zn) = nH(Y |Z)−H(Y n|Zn,M), it follows from the definition of Rne (resp. Rnd ), R̂ne (resp. R̂nd ),

Theorem 18 and Corollary 20 that the following equivalence between Re (resp.Rd ) and R̂e (resp. R̂d) holds.

(R, κ,Ω0,Ω1) ∈ Re ⇔ (R,H(Y |Z)− κ,Ω0,Ω1) ∈ R̂e,

(R, κ,∆0,∆1) ∈ Rd ⇔ (R,H(Y |Z)− κ,∆0,∆1) ∈ R̂d.
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[36] Z. Li, T. Oechtering, and D. Gündüz, “Smart meter privacy based on adversarial hypothesis testing,” in IEEE Int. Symp. Inf. Theory, Aachen, Germany,

Jun. 2017.

[37] I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete Memoryless Systems. Cambridge University Press, 2011.

[38] A. D. Wyner, “The common information of two dependent random variables,” IEEE Trans. Inf. Theory, vol. 21, no. 2, pp. 163–179, Mar. 1975.



46

[39] T. S. Han and S. Verdú, “Approximation theory of output statistics,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 752–772, May. 1993.

[40] P. Cuff, “Distributed channel synthesis,” IEEE Trans. Inf. Theory, vol. 59, no. 11, pp. 7071–7096, Nov. 2013.

[41] S. Sreekumar, D. Gündüz, and A. Cohen, “Distributed hypothesis testing under privacy constraints,” in IEEE Inf. Theory Workshop, Guangzhou, China,

Nov. 2018.

[42] A. E. Gamal and Y. H. Kim, Network Information theory. Cambridge University Press, 2011.

[43] C. Schieler and P. Cuff, “Rate-distortion theory for secrecy systems,” IEEE Trans. Inf. Theory, vol. 60, no. 12, pp. 7584–7605, Dec. 2014.

[44] J. Villard and P. Piantanida, “Secure multiterminal source coding with side information at the eavesdropper,” IEEE Trans. Inf. Theory, vol. 59, no. 6,

pp. 3668–3692, Jun. 2013.

[45] R. Ahlswede and J. Körner, “Source coding with side information and a converse for degraded broadcast channels,” IEEE Trans. Inf. Theory, vol. 21,

no. 6, pp. 629–637, Nov. 1975.


