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Abstract—A point to point hypothesis testing problem involving
two parties, one referred to as the observer and the other as the
detector, is studied. The observer observes a discrete memoryless
source and communicates its observations to the detector over
a discrete memoryless channel. The detector performs a binary
hypothesis test on the probability distribution of the observer’s
observation. The trade-off between the type 1 error probability
and the type 2 error exponent is explored. We obtain a single-
letter characterization of the optimal type 2 error exponent for
a given constraint on the type 1 error probability. We also show
that a strong converse holds, in the sense that, the optimal type
2 error exponent is independent of the constraint on the type 1
error probability.

I. INTRODUCTION

Consider the scenario depicted in Fig. 1, in which, a
statistician, or detector, wants to ascertain the underlying
probability distribution of the data observed at a remote node,
referred to as the observer. The data samples observed at the
observer, U1, . . . , Uk, denoted by Uk, are communicated to
the detector over a noisy communication channel. Based on
the data received from the observer, the detector performs a
hypothesis test to determine the probability distribution of Uk.
Assuming that Uk is generated independent and identically
according to a fixed distribution, the simplest case of such a
test is a binary hypothesis test with the following null and
alternate hypothesis:

Null hypothesis H0 : Uk ∼
k∏
i=1

PU , (1a)

Alternate hypothesis H1 : Uk ∼
k∏
i=1

QU . (1b)

Our aim is to characterize the performance of the above
hypothesis test as measured by the type 1 and type 2 error
probabilities. More specifically, denoting by β(ε), the mini-
mum value of the type 2 error probability subject to a fixed
constraint ε on the type 1 error probability, we are interested
in characterizing the optimal type 2 error exponent (T2EE)
given by − 1

k log(β(ε)), ε ∈ (0, 1).
It is well known that the optimal trade-off between the type

1 and type 2 error probabilities for the hypothesis test given in
(1) is achieved by the Neyman-Pearson test [1]. Also, when
the observations Uk are available directly at the detector, a
single-letter characterization of the optimal T2EE for a given
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Fig. 1: Hypothesis testing over a noisy channel.

constraint ε on the type 1 error probability is known. Denoting
the optimal T2EE by κ(ε), it is given by

κ(ε) = D(PU ||QU ), ∀ ε ∈ (0, 1), (2)

where, D(PU ||QU ) denotes the Kullback-Leibler divergence
between probability distributions PU and QU [2]. Notice that
a strong converse holds in this case, in the sense that, κ(ε) is
independent of ε.

If the detector and the observer are connected with a noise-
free link of capacity R > 0, it is easy to see that the T2EE
in (2) can be achieved by performing the Neyman-Pearson
test locally at the observer and transmitting the decision to
the detector over the noiseless link. We refer to this as the
local decision scheme since the test is performed locally at
the observer.

The trade-off between the T2EE and the type 1 error
probability has also been explored in a related distributed
hypothesis testing (HT) setting, where, the detector has access
to an independent and identically distributed (i.i.d.) side infor-
mation sequence V k correlated with Uk, and the hypothesis
test is performed on the joint distribution of Uk and V k.
Although a single-letter characterization of the optimal T2EE
for this setting remains open, special cases have been solved.
In [3], the case when the communication between the observer
and detector is over a noiseless channel subject to a rate
constraint of R bits per source sample, is studied. A single
letter characterization of the optimal T2EE for a special case
of HT known as testing against independence is obtained in
[3]. Also, a single-letter lower bound on the optimal T2EE
is established for the general case and a strong converse
result is shown to hold. The lower bound obtained in [3] is
subsequently improved in [4] and [5].

In [6], we proved a single-letter characterization of the opti-
mal T2EE for testing against independence, when the noiseless
channel in [3] is replaced by a noisy channel. Extensions of
this problem to the case of general HT is studied in [7], where
lower bounds on the optimal T2EE are obtained by using a
separation based scheme that performs independent HT and
channel coding, and, a joint HT and channel coding scheme



that utilizes hybrid coding [8]. While the above mentioned
works study the most basic setting, the trade-off between the
T2EE and type 1 error probability has also been explored in
several other distributed HT settings, see [9], [10], [11], [12],
[13].

When the communication channel from the observer to the
detector is noisy, it is unclear whether performing a hypothesis
test at the observer and communicating the decision to the
detector is optimal. More specifically, since the reliability of
the transmitted messages depends on the communication rate
employed, there is a trade-off between transmitting less infor-
mation more reliably versus transmitting more information less
reliably, to the detector. In the sequel, we show that making
decisions locally at the observer, and communicating it to the
detector is indeed optimal. We also provide a single-letter
characterization of the optimal T2EE, and show that the strong
converse holds for HT over a noisy channel.

A. Notations

Random variables (r.v.’s) and their realizations are denoted
by upper and lower case letters (e.g., X and x), respectively.
Sets are denoted by calligraphic letters, e.g., the alphabet of
a r.v. X is denoted by X . Following the notation in [2], TP
and Tm[PX ]δ

denotes the set of sequences of type P and the set
of PX -typical sequences of length m, respectively. For a ∈
R+, [a] denotes the set of integers {1, 2, . . . , dae}. ak

(k)−−→ b
indicates that limk→∞ ak = b. For functions f1 : A → B and
f2 : B → C, f2 ◦ f1 denotes function composition. Finally,
1(·), O(·) and o(·) denote the indicator function, the Big-o
and the Little-o notation of Landau, respectively.

B. Problem formulation

All the r.v.’s considered henceforth are discrete with finite
support, and, all logarithms considered in this paper are with
respect to base e. Let k, n ∈ Z+ be arbitrary. The encoder
observes Uk, and transmits codeword Xn = f (k,n)(Uk),
where f (k,n) : Uk → Xn represents the encoding function
(possibly stochastic) of the observer. Let τ := n

k denote the
bandwidth ratio. Let PXn and QXn denote the probability
distribution of the channel input under the null and alternate
hypothesis, respectively. The channel output Y n given Xn is
generated according to the probability law

PY n|Xn(yn|xn) =

n∏
j=1

PY |X(yj |xj), (3)

i.e., the channel PY n|Xn is memoryless. Let PY n and QY n

denote the probability distribution of the channel output under
the null and alternate hypothesis, respectively. Depending
on the received symbols Y n, the detector makes a decision
between the two hypotheses H0 and H1 given in (1). Let
H ∈ {0, 1} denote the actual hypothesis and Ĥ ∈ {0, 1} de-
note the output of the hypothesis test, where 0 and 1 denote H0

and H1, respectively. Let A(n) ⊆ Yn denote the acceptance
region for H0. Then, the decision rule g(n) : Yn → {0, 1} is
given by

g(n) (yn) = 1− 1
(
yn ∈ A(n)

)
.

Let

α
(
k, n, f (k,n), g(n)

)
:= 1− PY n

(
A(n)

)
, (4)

and β
(
k, n, f (k,n), g(n)

)
:= QY n

(
A(n)

)
, (5)

denote the type 1 and type 2 error probabilities for the
encoding function f (k,n) and decision rule g(n), respectively.

Definition 1. A T2EE κ is (τ, ε) achievable if there exists
sequences of integers k and nk, corresponding sequence of
encoding functions f (k,nk) and decoding functions g(nk) such
that

lim sup
k→∞

nk
k
≤ τ, (6a)

lim inf
k→∞

−1

k
log
(
β
(
k, nk, f

(k,nk), g(nk)
))
≥ κ, (6b)

and lim sup
k→∞

α
(
k, nk, f

(k,nk), g(nk)
)
≤ ε. (6c)

For (τ, ε) ∈ R+ × [0, 1], let

κ(τ, ε) := sup{κ′ : κ′ is (τ, ε) achievable}. (7)

We are interested in obtaining a computable characterization
of κ(τ, ε).

II. OPTIMAL TYPE 2 ERROR EXPONENT

In this section, we prove a single-letter characterization of
κ(τ, ε). Let

Ec := Ec(PY |X) := D(PY |X=a||PY |X=b), (8)

where

(a, b) := arg max
(x,x′)∈X×X

D(PY |X=x||PY |X=x′). (9)

Let
κ0 := κ0(τ, PU , QU , PY |X)

:=

{
D(PU ||QU ), if τ = 0 and Ec =∞,
min (D(PU ||QU ), τEc) , otherwise.

The next theorem states that there exists a single-letter char-
acterization for κ(τ, ε) given by κ0, and furthermore, that a
strong converse holds. Before proceeding to the proof details,
we provide a brief sketch of it as follows. We first prove the
achievability for arbitrary ε ∈ (0, 1), and converse for the
case when ε → 0, known as a weak converse. Subsequently,
the strong converse is shown using a constructive method that
starts with any coding scheme that satisfies the given type
1 error probability constraint ε, and constructs a modified
encoding and decoding scheme such that the type 1 error
probability tends to zero, asymptotically, and the T2EE is
decreased infinitesimally from that achieved by the original
coding scheme. The blowing up lemma [14][2] is the key tool
used for this purpose. The weak converse along with the strong



converse for HT when Uk is observed directly by the detector
then implies the desired strong converse.

Theorem 2. κ(τ, ε) = κ0, ∀ ε ∈ (0, 1), τ ≥ 0.

Proof: The proof consists of three steps as follows:

(i) κ(τ, ε) ≥ κ0, ∀ ε ∈ (0, 1).
(ii) limε→0 κ(τ, ε) = κ0.

(iii) κ(τ, ε) ≤ κ0, ∀ ε ∈ (0, 1).

Assume that Ec < ∞. First, we prove (i). Let k ∈ Z+ and
nk = bτkc. We define f (k,nk) as the composition of two
functions f (k)s and f (k,nk)c , i.e., f (k,nk) = f

(k,nk)
c ◦f (k)s , where

f (k)s (uk) =

{
0, if Puk ∈ T k[PU ]δ

,

1, otherwise,

and

f (k,nk)c

(
f (k)s (uk)

)
=

{
ank , if f (k)s (uk) = 0,

bnk , otherwise.

Here, δ > 0 is an arbitrarily small number, and ank and bnk
denote the codewords formed by repeating the symbols a and
b from the channel input alphabet X , which are chosen such
that (9) is satisfied. Let the decision rule be defined as

g(nk)(ynk) =

{
0, if ynk ∈ Tnk[PY |X=a]δ′

,

1, otherwise,

where δ′ > δ. By the law of large numbers, the type 1 error
probability tends to zero asymptotically, since

lim
k→∞

P(Uk ∈ T k[PU ]δ
|H = 0) = 1, (10)

and lim
k→∞

P(Y nk ∈ Tnk[PY |X=a]δ′
|H = 0) = 1. (11)

Next, we focus on the events that could possibly lead to a
type 2 error. Note that a type 2 error may occur only under
the following two events:

E1 := {Uk ∈ T k[PU ]δ
and Y nk ∈ Tnk[PY |X=a]δ′

},

E2 := {Uk /∈ T k[PU ]δ
and Y nk ∈ Tnk[PY |X=a]δ′

}.

It follows from Lemma 2.6 [2] and the fact that the number
of types is at most polynomial in k, that, for any γ > 0,

P(E1|H = 0) ≤ P(Uk ∈ T k[PU ]δ
|H = 0)

≤ e−k(D(PU ||QU )−γ−O(δ)) (12)

for sufficiently large k. The probability of the second event is
upper bounded (asymptotically with k) similarly by

P(E2|H = 1) ≤ P
(
Y nk ∈ Tnk[PY |X=a]δ′

|Uk /∈ T k[PU ]δ

)
= P(Y nk ∈ Tnk[PY |X=a]δ′

|Xnk = bnk)

≤ e−nk(Ec−γ−O(δ′)) (13)

where (13) follows again from [2, Lemma 2.6]. By the union
bound, it follows that

β(k, nk, f
(k,nk), g(nk)) ≤ P(E1|H = 1) + P(E2|H = 1),

which in turn implies in the limit δ and δ′ tending to zero
(subject to delta-convention given in [2]), that

κ(τ, ε) ≥ min (D(PU ||QU )− γ), τ(Ec − γ)) , ∀ ε ∈ (0, 1).

The proof of achievability is completed by noting that γ > 0
is arbitrary.

Next, we show part (ii). We will prove the weak converse

lim
ε→0

κ(τ, ε) ≤ κ0(τ), (14)

which combined with part (i) proves part (ii). Similarly
to [3, Theorem 1 (b)], it follows that for any sequence of
encoding functions f (k,nk) and decision rules g(nk) such that
lim sup nk

k ≤ τ and

lim sup
k→∞

α
(
k, nk, f

(k,nk), g(nk)
)
≤ εk

(k)−−→ 0, (15)

we have

lim sup
k→∞

−1

k
log
(
β
(
k, nk, f

(k,nk), g(nk)
))

≤ 1

k
D(PY nk ||QY nk ). (16)

The right hand side (R.H.S.) of (16) can be upper bounded as
follows.

D(PY nk ||QY nk )

=

nk∑
i=1

D(PYi|Y i−1 ||QYi|Y i−1 |PY i−1) (17)

=

nk∑
i=1

∑
yi−1∈Yi−1

PY i−1(yi−1)

[ ∑
yi∈Y

PYi|Y i−1(yi|yi−1)

log

(
PYi|Y i−1(yi|yi−1)

QYi|Y i−1(yi|yi−1)

)]

=

nk∑
i=1

∑
yi−1

∈Yi−1

PY i−1(yi−1) D
(
PYi|Y i−1=yi−1 ||QYi|Y i−1=yi−1

)
.

Since

PYi|Y i−1(yi|yi−1)

=
∑
xi∈X

PXi|Y i−1(xi|yi−1)PYi|Xi(yi|xi), (18)

and QYi|Y i−1(yi|yi−1)

=
∑
xi∈X

QXi|Y i−1(xi|yi−1)PYi|Xi(yi|xi), (19)

we can write

D(PY nk ||QY nk ) ≤
nk∑
i=1

∑
yi−1

∈Yi−1

PY i−1(yi−1)
[

sup
PXi|Y i−1=yi−1

D
(
PYi|Y i−1=yi−1 ||QYi|Y i−1=yi−1

) ]
. (20)

It follows from (18), (19) and the convexity of D(PX ||QX)



in (PX , QX) that, D
(
PYi|Y i−1=yi−1 ||QYi|Y i−1=yi−1

)
is a

convex function of (PXi|Y i−1=yi−1 , QXi|Y i−1=yi−1) for any
yi−1 ∈ Yi−1. It is well-known that the maximum of a convex
function over a convex feasible set is achieved at the extreme
points of the feasible set. Since the extreme points of the
probability simplex PX are probability distributions of the
form

PXi(x) = 1(x = x′), x ∈ X , (21)

for some x′ ∈ X , it follows that for some functions h1i :
Yi−1 → X and h2i : Yi−1 → X , i ∈ [1 : n], we can write

sup
PXi|Y i−1=yi−1

D
(
PYi|Y i−1=yi−1 ||QYi|Y i−1=yi−1

)
= D

(
PYi|Xi=h1i(yi−1)||PYi|Xi=h2i(yi−1)

)
≤ max

(x,x′)∈X×X
D
(
PY |X=x||PY |X=x′

)
= Ec. (22)

Thus, it follows from (20) and (22) that
1

k
D(PY nk ||QY nk ) ≤ nk

k
Ec. (23)

Also, the data processing inequality for Kullback-Leibler di-
vergence applied to Markov chain Uk −Xnk − Y nk yields

1

k
D(PY nk ||QY nk ) ≤ 1

k
D(PUk ||QUk) = D(PU ||QU ). (24)

Hence, from (6a), (16), (23) and (24), it follows that

lim sup
k→∞

−1

k
log
(
β
(
k, nk, f

(k,nk), g(nk)
))

≤ min (D(PU ||QU ), τEc) . (25)

Noting that the R.H.S. of (25) is independent of(
f (k,nk), g(nk)

)
, the proof of (14) is completed by taking

supremum with respect to
(
f (k,nk), g(nk)

)
.

Finally, we prove part (iii), i.e.,

κ(τ, ε) ≤ κ0(τ), ∀ ε ∈ (0, 1). (26)

For k ∈ Z+, let {nk, f (k,nk), g(nk)} be any sequence such that
(6a) and (6c) are satisfied. Let A(nk) denote the acceptance
region corresponding to g(nk). For fixed γ > 0 and δ > 0, let

B(k,nk)γ,δ

=
{
uk ∈ T k[PU ]δ

: P
(
Y nk ∈ A(nk)|Uk = uk, H = 0

)
≥ γ

}
.

By the weak law of large numbers, for γ′ > 0 and sufficiently
large k, we have that

P
(
Uk ∈ T k[PU ]δ

|H = 0
)
≥ 1− γ′. (27)

Then, it follows from (6c) and (27) that

P
(
Uk ∈ B(k,nk)γ,δ |H = 0

)
≥ 1− ε− γ

1− γ
− γ′. (28)

Taking γ = 1−ε
2 and γ′ ∈

(
0, 1−ε

2(1+ε)

)
, we have that

P
(
Uk ∈ B(k,nk)γ,δ |H = 0

)
≥ 1− ε

2(1 + ε)
. (29)

For arbitrary uk ∈ B(k,nk)γ,δ , let x̄nk be such that

PY nk |Xnk
(
A(nk)|x̄nk

)
≥ γ, (30)

and PXnk |Uk
(
x̄nk |uk

)
> 0. (31)

The existence of such a x̄nk follows by definition of B(k,nk)γ,δ .

For any set D ⊂ Xn, let Γl(D) denote the Hamming
l−neighbourhood of D, i.e.,

Γl(D) := {x̃n ∈ Xn : dH(xn, x̃n) ≤ l for some xn ∈ D}.

Due to (29), it follows by the application of the blowing-
up lemma [2] that there exists sequences of non-negative
numbers, {λk}k∈Z+ and {lk}k∈Z+ such that, λk

(k)−−→ 0,
lk
k

(k)−−→ 0 and

PY nk |Xnk
(

Γlk
(
A(nk)

)
|x̄nk

)
≥ 1− λk. (32)

Let Ā(nk) := Γlk
(
A(nk)

)
. Note that Ec < ∞, if and only if

PY |X(y|x) > 0, ∀ (x, y) ∈ X × Y . Let

¯
v := min

(x,y)∈X×Y
PY |X(y|x) > 0. (33)

For each ȳnk ∈ Ā(nk), there exists a ynk ∈ A(nk) such that
dH(ȳnk , ynk) ≤ lk. Hence, for each such ȳnk and arbitrary
xnk ∈ Xnk , we have

PY nk |Xnk (ȳnk |xnk)
¯
vlk ≤ PY nk |Xnk (ynk |xnk). (34)

Also, for each ynk ∈ A(nk), the number of ȳnk ∈ Ā(nk) is
|Y|lk . Hence, from (34), we have

PY nk |Xnk
(
Ā(nk)|xnk

)
≤ |Y|lkPY nk |Xnk

(
A(nk)|xnk

)
¯
v−lk .

This implies that

PY nk |Uk
(
Ā(nk)|uk

)
≤ |Y|lkPY nk |Uk

(
A(nk)|uk

)
¯
v−lk .

(35)

Let the new encoding function f̃ (k,nk) : Uk → Xnk and
decision rule g̃(nk) : Ynk → {0, 1} be defined as follows:

f̃ (k,nk)(uk) =

{
x̄nk , ∀ uk ∈ T k[PU ]δ

f (k,nk)(uk), otherwise,
(36a)

and g̃(nk)(ynk) := 1− 1
(
ynk ∈ Ā(nk)

)
. (36b)

From (27), (32) and (36), it follows that

α
(
k, nk, f̃

(k,nk), g̃(nk)
)
≤ 1− (1− λk)(1− γ′) (k)−−→ γ′.

Also,

β
(
k, nk, f̃

(k,nk), g̃(nk)
)
≤

∑
uk∈Tk

[PU ]δ

QUk(uk)

+
∑

uk /∈Tk
[PU ]δ

QUk(uk)PY nk |Uk
(
Ā(nk)|uk

)



≤
∑

uk∈Tk
[PU ]δ

QUk(uk)

+
¯
v−lk |Y|lk

∑
uk /∈Tk

[PU ]δ

QUk(uk)PY nk |Uk
(
A(nk)|uk

)
(37)

≤
∑

uk∈Tk
[PU ]δ

QUk(uk)

+
¯
v−lk |Y|lk

∑
uk∈Uk

QUk(uk)PY nk |Uk
(
A(nk)|uk

)
=

∑
uk∈Tk

[PU ]δ

QUk(uk)

+
¯
v−lk |Y|lkβ

(
k, nk, f

(k,nk), g(nk)
)

≤ e−k(D(PU ||QU )−O(δ))

+
¯
v−lk |Y|lkβ

(
k, nk, f

(k,nk), g(nk)
)
,

where (37) follows from (35). Thus, it follows from the facts
lk
k

(k)−−→ 0 and
¯
v > 0 that, for any γ′′ > 0,

− 1

k
log
(
β
(
k, nk, f̃

(k,nk), g̃(nk)
))

≥ min

(
D(PU ||QU )−O(δ),

− 1

k
log
(
β
(
k, nk, f

(k,nk), g(nk)
))
− γ′′

)
,

provided k is sufficiently large. Since D(PU ||QU ) is the
maximum T2EE achievable for any type 1 error probability
constraint ε ∈ (0, 1), when Uk is directly observed at the
detector, it follows by taking δ, γ′′ → 0 that

lim inf
k→∞

−1

k
log
(
β
(
k, nk, f̃

(k,nk), g̃(nk)
))

≥ lim inf
k→∞

−1

k
log
(
β
(
k, nk, f

(k,nk), g(nk)
))

.

This completes the proof for the case when Ec <∞.

Next, consider the case Ec = ∞. Then, there exist y
such that PY |X(y|b) = 0 and PY |X(y|a) > 0, where a
and b are defined as in (8). Assume τ > 0. Since the
proofs of steps (i) and (ii) given above carry over, it follows
that limε→0 κ(τ, ε) = κ0(τ) = D(PU ||QU ). On the other
hand, if τ = 0, then taking nk = k

2
3 and using the same

encoding and decision rule as in step (i) above, it follows
from (13) that P(E2|H = 1) = 0. From (10) and (11), the
type 1 error probability tends to zero, asymptotically with k.
Also, notice that (12) holds and that the above choice of nk
satisfies (6). Hence, κ(0, ε) ≥ D(PU ||QU ). Noting again that
D(PU ||QU ) is the maximum T2EE achievable for any type
1 error probability constraint ε ∈ (0, 1), when Uk is directly
observed at the detector, it follows that

κ(0, ε) = D(PU ||QU ), ∀ ε ∈ (0, 1).

This completes the proof of the theorem.

III. CONCLUSION

In this paper, we obtained a single-letter characterization
of the optimal T2EE for HT over a noisy channel. The
achievability scheme shows that the optimal T2EE is achieved
by a scheme, in which the observer makes a decision about
the hypothesis locally, and communicates it to the detector
using a channel code of maximum reliability. This implies
that “separation” holds, in the sense that, there is no loss in
optimality incurred by separating the tasks of HT and channel
coding. It is also interesting to note that the optimal T2EE is
independent of the constraint on the type 1 error probability.
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