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Abstract—Federated learning (FL) is a promising technology
which trains a machine learning model on edge devices in a
distributed manner orchestrated by a parameter server (PS). To
realize fast model aggregation, the uplink phase of FL could
be carried out by over-the-air computation (OAC). On the one
hand, engaging more devices in FL yields a model with higher
prediction accuracy. On the other hand, the edge devices in OAC
need to perform appropriate magnitude alignment to compensate
for underlying channel coefficients. However, due to the limited
power budget, this is not possible for devices experiencing deep
fade. Consequently, these devices are excluded from the FL
algorithm. In this paper, we propose a channel perturbation
method so that no edge device is excluded due to experiencing
deep fade. To this end, OAC is performed in multiple phases. In
each phase, the radio frequency (RF) vicinity of PS’s antenna is
intentionally perturbed by means of RF mirror structure coined
in [1]. This yields independent realizations of channels between
PS and devices in each phase. By using proper transmit scalars,
all devices concurrently transmit their local model updates in
each phase subject to a total power constraint. Then, the PS
estimates the arithmetic sum of the local updates by properly
combining the aggregated models obtained across all phases.
The devices’ transmit scalars and PS’s de-noising factors can
be efficiently found by solving a tractable optimization problem.

Index Terms—Federated learning, over-the-air computation,
edge machine learning, wireless communications.

I. INTRODUCTION

Conventionally, a machine learning (ML) model is trained

in a centralized approach where the training data is available at

a data center or a cloud server [2]. However, in many emerging

applications, data samples are collected by edge devices, e.g.

smartphones, which brings up two concerns: (i) the devices

often do not want to share their private data with a remote

server, and (ii) sharing extremely large datasets is a huge

burden on the communication links between the devices and

the server. As a remedy to these concerns, federated learning

(FL) was proposed in [3] where each device participates in

training using only locally available dataset with the help of a

parameter server (PS). Specifically, in FL, devices share only

model parameters and their local updates with the PS, and not

their raw dataset, to (i) preserve the privacy of the devices,

and (ii) decrease the communication load. In FL, a global

trained model is obtained after a number of communication

rounds between the PS and devices. Each communication

round consists of transmitting the current global model from

the PS to the devices, training local models at the devices

in parallel, and then aggregating the local updates by PS to

update the global model.

A common way to carry out such communications is to

divide the channel resources among devices, e.g., by using

frequency division multiplexing (FDM), where each device

transmits its own model update by encoding it against channel

imperfections. The PS tries to decode as many of them as

possible, and computes a global update by averaging the local

updates. An alternative FL approach has recently emerged [4]–

[8] from the fact that the PS is only interested in finding

the average of the model updates, and not in their individual

values. Therefore, if all the devices simultaneously transmit

their updates with appropriate magnitude alignment, the model

updates are averaged out. This method, referred to as over-

the-air computation (OAC) [9], [10], can improve the com-

munication efficiency and reduce the required bandwidth by

combining communication and computation.

Participating in OAC requires each device to compensate

for the underlying channel gain between itself and the PS

by means of channel inversion precoding. However, in order

to avoid excessive transmit power due to channel inversion,

transmission is possible only if the channel gain is above a

certain threshold [5]–[8]. Consequently, devices with weak

channel coefficients under deep channel fading are excluded

from the learning task [5]. However, in FL, it is known

that engaging more devices participating in each round can

improve both the convergence time of training, and the final

prediction accuracy [3], [4]. Engaging more devices in the

learning task is even more important when the datasets across

devices are not independent and identically distributed (non-

IID). In this case, excluding devices may lead to omitting some

training samples from the learning process, resulting in a bias.

To tackle the above issue, we propose a setup in which

no active device is excluded from FL due to channel state.

To this end, the uplink transmission of local model updates

is carried out over N transmissions, referred to as phases
hereafter. In each phase, the radio frequency (RF) environment

in the vicinity of the PS’s antenna is intentionally perturbed

by means of an RF mirror structure, as proposed in [1].

This guarantees that in each phase, independent realizations

of channels between the devices and PS are obtained [11],

[12], and all active devices simultaneously transmit their local

updates using a precoding scalar subject to an individual



total power constraint (the available power at each device for

transmitting the model updates is distributed over N phases;

this is in accordance with assuming an average power budget

for each device [13]). The probability that channel realizations

across all phases experience deep fade is very low, and

therefore, as a rule of thumb, a device can transmit its update

over the channel with a better condition at a lower power

cost. Then, the PS employs N de-noising factors to linearly

combine the aggregated models received in all N phases to

minimize the aggregation error. More precisely, we optimize

the devices’ precoding scalars and the PS’s de-noising factors

to efficiently obtain the desired global model update with

minimum noise.

We refer to the proposed method as OAC via channel

perturbation, wherein all active devices participate in each FL

iteration. The numerical experiments highlight that, in com-

parison to the channel inversion method [5], [8], the proposed

approach is more accurate and efficient. More precisely, it can

simultaneously improve the convergence time and the training

accuracy. The improvement becomes more significant when

the number of phases is small.

The rest of this paper is organized as follows. Section II

describes the synchronous FL setup and also the RF mirror

structure used by the PS. Section III formalizes the OAC

via channel perturbation which boils down to solving an

alternating optimization problem in Section IV. Section V

presents numerical results, and Section VI concludes the paper.

II. SYSTEM MODEL

A. Synchronous FL System

ML algorithms often entail minimization of the empirical

loss function of the form F (θ) = 1
K

∑K
i=1 f(θ,ui), where

θ ∈ R
d are model parameters to be optimized, ui for i ∈ [K],

are the training data samples, and f(·) is the loss function

that depends on the ML model. Iterative stochastic gradient

descent (SGD) is often employed to minimize F (θ). In SGD,

the model parameters at iteration t, denoted by θt, are updated

as θt+1 = θt−αtg(θ), where E[g(θ)] = ∇F (θ), and αt is the

learning rate. SGD can easily be implemented in a distributed

fashion across multiple devices, where device Dk has access

to only its local dataset Dk. At each iteration of distributed

SGD (DSGD), Dk computes a gradient vector based on the

global parameter vector with respect to Dk, and sends back the

result to the PS. Afterwards, PS updates the global parameter

vector as follows

θt+1 = θt − αt 1

K

K∑
k=1

gk(θ
t), (1)

where K is the number of devices, and gk(θ
t) �

1
|Dk|

∑
ui∈Dk

∇f(θt,ui) is the gradient estimate of device k

with respect to the global parameter vector θt using its local

dataset Dk. In FL, each device can carry out a number of local

updates between two global aggregations. In a synchronous FL

setup, the PS would wait for all the clients to complete local

training at each iteration. Iterations continue until a certain

convergence criterion is met. To simplify the notation, we omit

the dependency of gk(θ
t) on θt, and simply use gk.

B. Channel Perturbation by RF Mirrors

In the proposed method, we assume that the PS’s antenna

is equipped with the RF mirror structure as proposed in [1].

This structure consists of a number of switchable parasitic

elements, referred to as RF mirrors. This is an essential part of

the proposed system by means of which the RF environment of

the PS’s antenna is intentionally perturbed. Each surrounding

mirror can be selectively turned on (to reflect light back to the

interior of the structure), or off (to let the light rays leave the

structure). Therefore, if the mirror structure has M mirrors,

then 2M mirror states could be realized. As discussed in [11],

[12], the outgoing RF signal corresponding to each mirror state

will take various independent paths in reaching the distant

receiver, resulting in a different complex gain for multi-path

fading in a rich scattering environment. Therefore, switching

the mirrors to a new on-off state yields an independent

realization of the underlying channel between each device and

PS. In addition, we assume that the channel realizations are

quasi-static; that is, they are random, yet remain the same

throughout the FL algorithm. Our simulation results show that

a small number of mirror states is sufficient to obtain good

results in our scenario.

III. OAC VIA CHANNEL PERTURBATION

Prior to transmitting the local gradient vectors, device Dk,

k ∈ [K], transforms its gradient vector gk ∈ R
d into a

normalized symbol vector xk ∈ R
d with zero mean and unit

variance such that E[xkx
H
k′ ] = 0 and E[xkx

H
k ] = Id, where

0 is the all-zero matrix. Denote by xk[i] the i-th entry of

xk. The vectors xk, k ∈ [K], are transmitted in an uncoded

fashion; therefore, d symbols are required to send xk. In the

proposed method, however, each entry xk[i] is transmitted over

N symbols spread over N phases (see Fig. 1). In each phase,

PS switches to a different mirror state. Therefore, if using N
phases, N different mirror states are utilized. We label the

selected mirror states by 1, 2, . . . , N . The PS uses the same

N mirror states for the entire course of training. We assume

that channel state information (CSI) for the specified N mirror

states is known at the PS. To this end, for each of these N
states, devices are required to transmit pilot sequences to the

PS. In addition, we assume that the channels are static, and

therefore, pilot transmission is required only once before the

FL algorithm starts. In the following, the proposed method is

elaborated for Phase n, n ∈ [N ].

• Phase n, n ∈ [N ]: RF mirrors at the PS are switched to

state n, and all the devices concurrently transmit the i-th entry

of their gradient vector. Device Dk scales its input by scalar

ak,1 ∈ C before transmission. Then, the d-dimensional signal

received at the PS in phase n is given by

yn =

K∑
k=1

hk,nak,nxk + zn, (2)
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Fig. 1. The uplink transmission in the proposed method takes place in N phases. In each phase, the RF mirror structure at the PS is switched to a new state
to realize independent channels between the PS and devices. The devices use transmit scalars in each phase subject to an individual power constraint for the
total power utilized in all the transmissions.

where hk,n denotes the channel gain from Dk to the PS when

the mirrors are at state n, and zn ∈ C
d is a complex Gaussian

noise vector with its i-th entry zn[i] IID according to N (0, σ2).

We consider an individual transmit power constraint for

each communication round, which is calculated as follows in

our setup:

E

[
N∑

n=1

|ak,nxk[i]|2
]
=

N∑
n=1

|ak,n|2 ≤ P0, (3)

for k ∈ [K], where the expected value is taken over the d
entries of the gradient vector, and P0 > 0 is the maximum

transmit power. Equation (3) implies that the average power

used by Dk for sending xk over N phases is bounded. In

other words, P0 must be distributed over N phases.

After receiving the signals yn for n ∈ [N ] over the N
phases, the PS uses N de-noising factors ηn ∈ C, n ∈ [N ],
to linearly combine them to calculate its estimate of x =∑K

k=1 xk as follows

x̂ �
N∑

n=1

ηnyn =

N∑
n=1

K∑
k=1

ηnhk,nak,nxk +

N∑
n=1

ηnzn. (4)

Based on this estimation, the PS broadcasts the updated global

gradient vector to the devices. In the next iteration, devices

will carry out the same N phases using the same N mirror

states to upload their local updates. This process will continue

until a certain pre-defined termination criterion is met. We

refer to the above design as over-the-air model aggregation

using channel perturbation. To quantify the performance of the

proposed method of data aggregation, similarly to [4], we use

mean square error (MSE) that measures the distortion between

x[i] and x̂[i] calculated as

MSE (x̂[i], x[i]) = E
[
[|x̂[i]− x[i]|2]

=

K∑
k=1

∣∣∣∣∣
N∑

n=1

ηnhk,nak,n − 1

∣∣∣∣∣
2

+ (

N∑
n=1

|ηn|2)σ2. (5)

As discussed in [14], a smaller MSE yields a larger learning

convergence rate. Thus, in Section IV, we aim to minimize

the MSE calculated in (5). However, for brevity and ease of

notation, the minimization problem is solved when N = 2, i.e.,

only two phases are exploited for uploading the local updates.

The derivations could be easily generalized for N phases.

Remark 1: In this paper, we assumed that the number of

training samples is the same across devices, and thus the PS

aims to find the arithmetic sum of the local updates (and not

their weighted sum) for an unbiased estimate of the gradient

at each iteration. The generalization to the imbalanced training

datasets of different sizes is straight-forward.

Remark 2: As discussed earlier, here we assumed quasi-

static channels over the course of training. Note that our

method is orthogonal to exploiting frequency diversity when

the channels experience non-flat fading; in this case, as another

source of diversity, the PS can appropriately combine the

received signals over different frequency bands.

Remark 3: By assuming that all the devices are in the

communication range of the PS, the proposed scheme tackles

the problem of deep fade incurred by small-scale fading.

IV. OPTIMIZATION FOR MSE MINIMIZATION

In this section, our goal is to minimize the MSE in (5) for

N = 2. The minimization is over the devices’ transmit scalars

{ak,1, ak,2, ∀k} and PS’s de-noising factors {η1, η2} subject

to a power constraint at each device, which can be written as

min
{ak,1,ak,2,η1,η2}

K∑
k=1

|η1hk,1ak,1 + η2hk,2ak,2 − 1|2 (6a)

+ (|η1|2 + |η2|2)σ2

s.t. |ak,1|2 + |ak,2|2 ≤ P0, ∀k ∈ [K]. (6b)

The optimization problem in (6) is non-convex because of the

coupling variables in its objective function. We use a low-

complexity alternating minimization method to solve (6). To

this end, we split our parameters into two groups, namely

G1 = {ak,1, ak,2}k=1:K , and G2 = {η1, η2}. In each iteration,

we start by optimizing over G1 parameters, for given G2 values,

and then switch the roles of G1 and G2. We next characterize

the closed-form solutions for each optimization problem.

Optimizing over G1 given G2. For k ∈ [K] introduce

ak, ck ∈ C
2 as ak = [ak,1, ak,2], ck = [η1hk,1, η2hk,2]. In

particular, for given values of η1, η2 the optimization problem

(6) can be written as the following:

min
a1,...,aK∈C2

K∑
k=1

|aTkck − 1|2 (7a)

s.t ‖ak‖2�2 ≤ P0, ∀k ∈ [K] . (7b)



The Lagrangian is given by

L(a1:K , λ1:K) =

K∑
k=1

|aTkck − 1|2 + λk(‖ak‖2�2 − P0)

λk ≥ 0.

The optimization problem in (7) involves the summation of

K independent objective functions; therefore, it is separable

into K sub-problems that can be solved independently. It is

a quadratic program with �2-ball constraints, whose feasible

region has a non-empty interior. Therefore, strong duality

holds, and the solutions obtained by Karush–Kuhn–Tucker

(KKT) conditions are given by

a∗k =
ck

λ∗
k + ‖ck‖2�2

, λ∗
k =

(‖ck‖�2√
P0

− ‖ck‖2�2
)+

, (8)

where (·)+ represents the ramp function with (x)+ =
max(0, x), and (·)∗ denotes the optimal value for a parameter.

In this case, the optimal parameters of optimization (6) for

given values of η1, η2 are the following

a∗k,1 =
η1hk,1

vk
, a∗k,2 =

η2hk,2

vk
, ∀k ∈ [K] , (9)

where for uk = η21h
2
k,1 + η22h

2
k,2, the value of vk is given by

vk = uk +
(√

uk/P0 − uk

)+

.

Optimizing over G2 given G1. For given values of a1:K , the

optimization problem (6) is a quadratic programming with no

constraints. We first introduce dj ∈ C
K , j = 1, 2,

dj = [a1,jh1,j , ..., aK,jhK,j ]
T.

The first order optimality conditions imply

η∗1(σ
2 + ‖d1‖2�2) + η∗2d

T
1 d2 = dT11 , (10)

η∗1d
T
1 d2 + η∗2(σ

2 + ‖d2‖2�2) = dT21 , (11)

where 1 � [1, 1, ..., 1]T. Solving the system of linear equations

(10)-(11) gives us

η∗1 =
dT1 1(σ

2 + ‖d2‖2�2)− dT2 1d
T
1 d2

(σ2 + ‖d1‖2�2)(σ2 + ‖d2‖2�2)− (dT1 d2)
2
, (12)

η∗2 =
−dT1 1d

T
1 d2 + dT2 1(σ

2 + ‖d1‖2�2)
(σ2 + ‖d1‖2�2)(σ2 + ‖d2‖2�2)− (dT1 d2)

2
. (13)

In order to deploy the above iterative relations, we need to

initialize the optimization parameters with proper values. To

this end, we initialize {ak,1, ak,2, ∀k, η1, η2} as follows: the

power budget is equally allocated to each transmission phase
(i.e., each phase has P0/2 power budget), and then the channel

inversion power control is exploited for each transmission

phase separately. The algorithm is terminated when either (i)

relative increase in the objective function (6a) is less than

a predefined threshold ε, or (ii) the maximum number of

iterations Jmax is reached. The optimization problem (6) can

be solved efficiently by Algorithm 1.
Remark 4: We assume that the PS performs Algorithm 1,

and then broadcasts the solution to the devices (the PS has

sufficient power to solve such iterative problems). In addition,

by assuming that the channels are static, the PS performs

Algorithm 1 only once.

Algorithm 1 Alternating Method for Solving (6)

Input: Jmax and ε
Output: {a∗k,1, a∗k,2, η∗1 , η∗2}

1: Initialization:
a
(0)
k,1 = P0/2

hk,1 maxk∈[K]
1

|hk,1|
, a

(0)
k,2 = P0/2

hk,2 maxk∈[K]
1

|hk,2|
∀k;

η
(0)
1 = 1√

2P0
max
k∈[K]

1
|hk,1| , η

(0)
2 = 1√

2P0
max
k∈[K]

1
|hk,2| .

2: Calculate MSE by plugging {a(0)k,1, a
(0)
k,2, ∀k, η(0)1 , η

(0)
2 }

into (6a);

3: for i = 1 to Jmax do
4: Calculate {a(i)k,1, a

(i)
k,2, ∀k} from (9);

5: Calculate η
(0)
1 from (12);

6: Calculate η
(0)
2 from (13);

7: Calculate MSE(i) by plugging

{a(i)k,1, a
(i)
k,2, ∀k, η(i)1 , η

(i)
2 } into (6a);

8: if MSE(i)−MSE(i−1)

MSE(i) ≤ ε then
9: break;

10: end if
11: end for
12: return {a(i)k,1, a

(i)
k,2, η

(i)
1 , η

(i)
2 }.

V. SIMULATION RESULTS

In this section, we conduct numerical experiments to eval-

uate the performance of the proposed method. To this end,

we consider classification of handwritten digits using MNIST

dataset [15]. This dataset contains 60,000 training and 10,000

testing hand-written images of 10 digits. We use a neural

network (NN) with one hidden layer of 128 hidden nodes, and

ReLU activation function. We consider K = 20 active edge

devices for our FL problem. Each device uses a mini-batch

size of 10 and the learning rate is set to αt = 0.01, ∀t. We

set the number of local iterations at the devices to 3.

We assume that the training dataset is evenly distributed,

each device having the same number of training samples.

On the other hand, we consider non-IID data distribution

by introducing a new variable L in the following manner:

each device first selects L digits/labels at random, and then

uniformly samples its local dataset from the whole dataset

with labels being among the L selected digits. To illustrate

this better, for L=2, the first device may uniformly sample

from digits '0' and '5', and device two does the same for digits

'4' and '7'. Based on this definition, L = 1 implies a high level

non-IID distribution.

The channel coefficient between the PS and device k at

transmission phase n follows the IID complex normal distri-

bution, i.e., hk,n ∼ CN (0, 1). The noise power is set to σ2 = 1
and the average power constraint is P0 = 20. Additionally, in

Algorithm 1, we set Jmax = 100 and ε = 10−4.

We use two benchmarks to evaluate the performance of the

proposed method: (i) benchmark 1, devices with a channel

gain below a certain threshold are excluded, and the others use

channel-inversion power control [13]; (ii) benchmark 2, error-

free transmission, which is equivalent to the centralized SGD
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Fig. 2. The test accuracy for the benchmarks and proposed method Vs. time
units for (a) L = 1 and (b) L = 5. The figures are obtained using the Monte-
Carlo method by averaging over 1000 random realizations.

algorithm. For a fair comparison between the benchmarks and

the proposed method, we need to consider the effect of the

delay caused by our method that results from multiple-phase

transmission. To this aim, we assume that the transmission

of a single gradient vector takes one time unit. Based on this

assumption, a communication round in the traditional FL using

OAC takes two time units, where a one-shot transmission by

the users is followed by a transmission by the PS. However, in

the proposed setup, since OAC is performed over N phases,

each communication round would take N +1 time units; that

is, N time units for uploading the local updates and one time

unit for the downlink transmission from the PS. Henceforth,

the performance of the proposed method is measured as the

accuracy with respect to the test data samples, called test

accuracy, versus time units.

Fig. 2 shows the test accuracy for six FL methods, namely

the two benchmarks, and the proposed method using N =
{2, 3, 4, 5} phases. In Fig. 2a, we have L = 1, i.e., the non-

IID level of the local datasets is high. For the same time units,

the proposed method achieves a higher test accuracy than the

benchmark 1. As the number of phases N increases, (i) the

number of independent channel realizations available to the

users increases, and (ii) the probability that all the N channel

realizations experience deep fade becomes smaller. Thus, with

more phases available, the PS can more accurately estimate the

sum of the local updates at each iteration. Specifically, since

the accuracy of PS’s estimations becomes more important after

some iterations, the test accuracy curves in Fig. 2a will be

ordered by their respective phase numbers after enough time

units (after time ≈ 70). On the other hand, it is seen that

the test accuracy has an inverse relation with the number of

phases at the beginning of the FL communication rounds (prior

to time ≈ 45). This is because a noisy estimate of the sum of

the local updates can be sufficient in the first few iterations,

and using more phases only incurs excessive delay.

Additionally, it is observed that the ultimate test accuracy

achieved by using N = 4 and N = 5 phases is almost the

same, suggesting that using more than N = 4 phases does not

noticeably enhance the test accuracy. We also observe that the

proposed method yields a better accuracy than the benchmark

1 for both L = 1 and L = 5 cases, but the improvement of the

proposed method is more significant when the non-IID level

of the local datasets is high.

VI. CONCLUSION

In this work, we considered federated edge learning with

OAC, and aimed at increasing the number of devices partic-

ipating in the learning process by mitigating channel fading.

To this end, by means of an RF mirror structure at the PS’s

antenna, independent realizations of the underlying channels

between the PS and edge devices are obtained. Then, the

devices concurrently transmit their local updates in each

phase exploiting a proper precoding scalar subject to a power

constraint over the phases. The PS linearly combines the

aggregated updates obtained in each phase aiming to minimize

the MSE of the estimated sum of the local updates. In essence,

the proposed scheme exploits bandwidth expansion to improve

the computation accuracy over fading channels. The simulation

results justify that the proposed algorithm increases the test

accuracy of the trained model, and decreases the convergence

time of training. For future work, we plan to extend our

framework to support the digital OAC as well.
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