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Abstract—We consider a communication scenario, in which
an intruder tries to determine the modulation scheme of the
intercepted signal. Our aim is to minimize the accuracy of
the intruder, while guaranteeing that the intended receiver can
still recover the underlying message with the highest reliability.
This is achieved by constellation perturbation at the encoder,
similarly to adversarial attacks against classifiers in machine
learning. In image classification, the perturbation is limited to
be imperceptible to a human observer, while in our case the
perturbation is constrained so that the message can still be
reliably decoded by a legitimate receiver that is oblivious to the
perturbation. Simulation results demonstrate the viability of our
approach to make wireless communication secure against both
state-of-the-art deep-learning- and decision-tree-based intruders
with minimal sacrifice in the communication performance.

I. INTRODUCTION

Securing wireless communications is as essential for mili-
tary, commercial as well as consumer communication systems.
The standard approach is to encrypt the data; however, encryp-
tion may not always provide full security (e.g., side-channel
attacks), or strong encryption may not be available due to
complexity limitations (e.g., IoT devices). Encryption can be
complemented with other techniques, preventing the adversary
from even recovering the encrypted bits. As outlined in [1], an
adversary implements its attacks in four steps: 1) tunes into the
frequency of the transmitted signal; 2) detects whether there is
signal or not; 3) intercepts the signal by extracting its features;
and 4) demodulates the signal by exploiting the extracted
features, and obtains a binary stream of data. Preventing any
of these steps can strengthen the security. While encryption
focuses on protecting the demodulated bit stream, physical
layer security [2], [3] targets the fourth step. Recently, there
has also been significant interest in preventing the second step
through covert communications [4]. In this work, we instead
focus on the third step, and aim at preventing the adversary
from detecting the modulation scheme.

Modulation detection is the step between signal detection
and demodulation, and thus plays an important role in data
transmission, as well as in detection and jamming of unwanted
signals in military communications and other sensitive appli-
cations [5]. Recently, deep learning techniques have led to
significant progress in modulation detection accuracy, where
convolutional neural networks (CNNs) and other deep neural
networks (DNNs) were applied for modulation detection di-
rectly from the received symbols, without any explicit feature
representation, surpassing the accuracy of traditional detectors
based on likelihood function or feature-based representations
[6]–[8].

Our goal is to prevent an intruder that employs a state-of-
the-art modulation detector from successfully identifying the
modulation scheme being used. We argue that, if the intruder
is unable to identify the modulation scheme, it is unlikely to
be able to decode the signal, or employ modulation-dependent
jamming techniques. This would be trivial by sacrificing the
performance of the intended receiver. The main challenge here
is to guarantee that the intended receiver can continue to
receive the underlying message at a reasonable probability of
error. Here, we assume that the intended receiver is oblivious
to the modifications employed by the transmitter to confuse
the intruder; and therefore, the goal of the transmitter is to
introduce as small modifications to the transmitted signal as
possible, which are sufficient to fool the intruder but not larger
than the error correction capabilities of the intended receiver.

Introducing small variations into the modulation scheme
that can fool an intruder is similar to adversarial attacks
on classifiers, in particular DNNs [9]–[11]. While the goal
in these attacks is to expose the vulnerability of classifiers
against small changes in the input, we exploit the same
approach to defend a communication link against an intruder
that employs DNNs or other standard classification methods
for interception.

II. SYSTEM MODEL

The transmitter maps a binary input sequence w ∈ {0, 1}m
into a sequence of n complex symbols, x ∈ Cn, employing
forward error correction. Formally, x = Ms(w), where s ∈ S
is the modulation scheme, S the set of available modulation
schemes. We assume that Ms satisfies the power constraint
(1/n)‖x‖22 ≤ 1, ∀w. Signals y1 and y2, received by the
receiver and the intruder, respectively, are given by

yi = Ms(w) + zi = x + zi, i = 1, 2,

where z1, z2 ∈ Cn are independent channel noise (also inde-
pendent of x) with independent zero-mean complex Gaussian
components of variance σ2

1 and σ2
2 , respectively. The intended

receiver, upon receiving y1, decodes the underlying message
with the goal of minimizing the bit error rate

e(w,y1) =
∑m
i=1 I{wi 6= ŵi}, (1)

where ŵ is the decoded bit sequence from y1.1

The intruder aims to determine, for any y2 ∈ Cn, the
modulation scheme used by the transmitter, whereas the
transmitter wants to communicate without its modulation
scheme being detected by the intruder, while keeping the

1For any event E, I{E} = 1 if E holds, and 0 otherwise. Furthermore,
for any real or complex vector v, vi denotes its ith coordinate.
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BER in an acceptable range. We consider that the intruder
implements a score-based classifier and assigns to y2 the label
ŝ = argmaxs′∈S fθ(y2, s

′), where fθ : Cn × S → R is a
score function parametrized by θ ∈ Rd, which assigns a score
(pseudo-likelihood) to each possible class s′ ∈ S for every
y2, and finally selects the class with the highest score. With a
slight abuse of notation, we denote the resulting class label by
ŝ = fθ(y2). The goal of the intruder is to maximize its success
probability Pr(s = ŝ).2 For the state-of-the-art modulation
detection scheme of [7], fθ is a CNN classifier, with θ being
the weights of the neural network, while f(y2, s

′) are the so-
called logit values for the class labels s′ ∈ S.

III. MODULATION PERTURBATION TO AVOID DETECTION

Our goal is to modify the encoder Ms such that, given
s ∈ S, the new encoding method M ′s ensures that the intruder’s
success probability is smaller, while the BER of the receiver
(using the same decoding procedure for Ms) does not increase
substantially. Our solution is motivated by adversarial attacks
for image classification, where modifications imperceptible to
a human observer can fool state-of-the-art image classifiers
[9], [10]. Adversarial examples are particularly successful in
fooling high-dimensional DNN classifiers. Applying the same
idea to our problem, we aim to find modified modulation
schemes M ′s such that M ′s(w) ≈ Ms(w), but the intruder
misclassifies the new received signal y′2 = M ′s(w) + z2 with
higher probability.

A. Adversarial attacks in an idealized scenario

Similarly to adversarial attacks on image classifiers [10],
an idealized adversarial attack to classifier fθ of the intruder
would modify a correctly classified channel output sequence
y2 (i.e., for which s = fθ(y2)) with a perturbation δ ∈ Cn
such that fθ(y2 + δ) 6= fθ(y2), the true label. In parallel, we
require that the same modification to the input of the decoder
does not hurt its performance, that is, the sequence y1 + δ
is decoded at a similar accuracy as y1. To facilitate this, we
impose ‖δ‖2 ≤ ε for some small positive constant ε. Thus, to
mask the modulation scheme and keep the BER reasonable,
we aim to find, for each correctly classified y2 separately, a
perturbation δ that maximizes the zero-one loss:

maximize I{fθ(y2 + δ) 6= s} such that ‖δ‖2 ≤ ε , (2)

where s = fθ(y2) is the true modulation label.
Such a δ results in a successful adversarial perturbation and

a successful adversarial example y2 + δ (i.e., one for which
the intruder makes a mistake), while the BER is likely still
small. Thus, in practice we could achieve our goal if we could
modify the encoder such that the channel output at the intruder
is y2 + δ, and y1 + δ at the receiver. However, in practice we
can only control the channel input x, and the channel outputs
y1 and y2 depend not only on x, but also on the channel
noise. Therefore, we refer to the above mechanism, which was

2Here we assume an underlying probabilistic model about how the bit
sequence w and the modulation scheme are selected.

analyzed in [12], as an idealized and impractical scenario, and
use it only as a baseline.

We note that the target function I{fθ(y2 + δ) 6= fθ(y2)} in
(2) is binary, hence flat, and thus, no gradient-based search
is directly possible. To alleviate this, usually a surrogate
loss function L(θ,y2, s) to the zero-one loss is used (which
is also used in training the classifier fθ, i.e., finding the
parameter vector θ with the best classification performance
over a training data set), which is amenable to gradient-based
optimization. For classification problems, a standard choice is
the cross-entropy loss, L(θ,y2, s) = − log(1 + e−fθ(y2,s)),
and one can search for adversarial perturbations by solving

maximize L(θ,y2 + δ, s) such that ‖δ‖2 ≤ ε. (3)

Different methods are used in the literature to solve (3)
approximately [10], [13]. In this paper we use the state-of-
the-art projected (normalized) gradient descent (PGD) attack
[14] to generate adversarial examples, which is an iterative
method: starting from y0 = y2, in iteration t it calculates

yt = ΠBε(y2)

(
yt−1 + β sign( ∇yL(θ,yt−1, s))

)
, (4)

where β > 0 denotes the step size, ‘sign’ denotes the
sign operation, and ΠBε(y2) denotes the Euclidean projection
operator to the L2-ball Bε(y2) of radius ε centered at y2.The
attack is typically run for a given number of steps, depending
on the computational resources; in practice yt is more likely
to be a successful adversarial example for larger values of t.
We will refer to this idealized scheme as the Oracle Defensive
Modulation Scheme (ODMS).

Note that this formulation assumes that we have access
to the logit function fθ of the intruder; these methods are
called white-box attacks. If fθ is not known, one can create
adversarial examples against another classifier fθ′ , and hope
that it will also work against the targeted model fθ. Such
methods are called black-box attacks, and are surprisingly
successful against image classifiers [15].

B. Practical methods

The perturbation method in Section III-A is infeasible
as the channel noise at the intruder is not known, and a
practical scheme can only modify x = Ms(w). Thus, the new
modulation scheme is defined as

M ′s(w) = α(Ms(w) + δ),

where we will consider different choices for δ ∈ Cn, and
the multiplier α =

√
n/‖Ms(w) + δ‖2 is used to ensure that

the new channel input x̄ = M ′s(w) satisfies the average power
constraint (1/n)‖x̄‖22 ≤ 1. The signals received at the receiver
and the intruder are ȳ1 = x̄+z1 and ȳ2 = x̄+z2, respectively.
The difficulty in this scenario is that the effect of any carefully
designed perturbation δ may (and, in fact, will) be at least
partially masked by the channel noise. Furthermore, since now
the perturbed signal is transmitted at the actual channel SNR,
the effective SNR of the system is decreased, as the transmitted
signal already includes the perturbation δ, which can be treated
as noise from the intended receiver’s point of view.
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We present three practical methods to find a perturbation δ.
The first and simplest one disregards the effects of the channel
noise and the resulting BER at the receiver:

1) Defensive modulation scheme without BER control
(DMS): In this method we aim to solve the optimization
problem (3) with x in place of y2, via (4) initialized at y0 = x,
and with projection to Bε(x) (for a given number of iterations
t and perturbation size ε).

Next, we consider methods that also take into account the
BER, e(ȳ1,w) at the receiver (see Eqn. 1): that is, instead of
enforcing the perturbation δ to be small and hoping for only
a slight increase in the BER, we also explicitly optimize for
the latter. There is an inherent trade-off between these two
targets: a larger δ results in a bigger reduction in the detection
accuracy of the intruder, but will also increase the BER at the
receiver. We consider two methods to handle this trade-off:

2) BER-aware defensive modulation scheme (BDMS): Con-
sider a (signed) linear combination of the two target functions

Lλ(θ, x̄, s, z1, z2) = L(θ, x̄ + z2, δ)− λe(x̄ + z1,w)

for some λ > 0, where ȳi = x̄+zi, i = 1, 2, and aim to find a
perturbation δ, or, equivalently, a modulated signal x̄ = x+δ,
that maximizes the expectation

Ez1,z2
[Lλ(θ,x, s, z1, z2)] (5)

with respect to the channel noise z1, z2. Here we can use
stochastic gradient descent (ascent) to compute an approximate
local optimum, but in practice we find that enforcing δ to be
small during the iterations improves the performance; hence,
we use a stochastic version of PGD (4): starting at x0 = x,
our candidate for x̄ is iteratively updated as

xt = ΠBε(x)

(
xt−1 + β sign(∇xL(θ,xt−1, s, zt1, z

t
2))

)
, (6)

where zti are independent copies of zi, for i = 1, 2, and t =
1, 2, . . .. Although Ez1

[e(x̄+z1,w)] is differentiable, e(y,w)
for a given fixed y is not (since it takes values from the finite
set {0, 1/n, . . . , 1}). Similarly to [16], we approximate the
gradient of the expected error using SPSA [17] as

∇̄y e(y,w)=
1

K

K∑
k=1

e(y+ηrk,w)− e(y−ηrk,w)

2η
r>k ,

where r1, . . . , rK are random vectors selected independently
and uniformly from {−1, 1}n.

3) BER-aware orthogonal defensive modulation scheme
(BODMS): An alternative method is that instead of maximiz-
ing the combined target (5), we try to maximize the cross-
entropy loss L(θ, ȳ2, s), without increasing (substantially) the
BER e(ȳ1,w). In order to do so, we maximize L(θ, ȳ2, s)
using stochastic PGD (again, in every step we choose indepen-
dent noise realizations), but we restrict the steps to directions
in which the bit error rate does not change. Thus, in every
step we update xt−1 in a direction orthogonal to the gradient
of the BER defined as

∇xL(θ,xt−1 + zt2, s)−
〈
∇xL(θ,xt−1 + zt2, s), de

〉
de,
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Fig. 1: Modulation classification accuracy of the intruder
and bit error rates for PSK8 (dashed lines) and QAM64
(solid lines) as a function of the SNR for different defensive
modulation schemes.

where de = ∇̄xe(x
t−1 + zt1,w)/‖∇̄xe(x

t−1 + zt1,w)‖2 is the
(approximate) gradient direction of the BER.

IV. EXPERIMENTAL EVALUATION

We assume that the binary source data is generated inde-
pendently, uniformly at random, and is encoded using a rate
2/3 convolutional code. Eight modulation schemes are consid-
ered: ‘GFSK’, ‘CPFSK’, ‘PSK8’, ‘BPSK’, ‘QPSK’, ‘PAM4’,
‘QAM16’, ‘QAM64’, and the channel signal-to-noise ratio
(SNR) varies between -20dB and 20dB. After demodulation,
the receiver uses Viterbi decoding to estimate the original
source data. Modulation detection should be completed based
on a short sequence of intercepted complex I/Q (in-phase
/quadrature) channel symbols; as in [7], we set the sequence
length to n = 128. As the classifier, we first consider the same
CNN architecture in [7] for the intruder, which operates on the
aforementioned 256-dimensional data.

For each modulation scheme, we generate data resulting in
approximately 245000 I/Q channel symbols, split into blocks
of 128 I/Q symbols. The last 300 blocks for each modulation
scheme are reserved for testing the performance (tests are
repeated 20 times), while we train a separate classifier for
each SNR value based on the data in the preceding blocks. As
shown in Fig. 1a (see the graph with label ’NoPerturb’), for
high SNR values the accuracy is close to 90%.

We compare (i) our three defensive modulation schemes,
DMS, BDMS, and BODMS; (ii) the oracle defensive modu-
lation scheme ODMS; (iii) adding uniform random noise of
L2-norm ε to a block, called DMS-uniform (DMSU ); (iv) a
black-box mechanism that calculates DMS against a classifier
that has the same architecture as the intruder, but is trained
separately (assuming no channel noise); we call this substitute
DMS (DMSS).

All the above schemes, except for DMSU , are implemented
using the PGD method (6) from the CleverHans Library [18],
with 20 iterations, β = 0.2 and ε = 3. DMSU uses the
same ε. Note that a perturbation of this size accounts for
about 7% of the total energy of a block (which is 128 due
to our normalization to the energy constraint). ODMS serves
as an upper bound on the achievable defensive performance
in practice, while the role of DMSU is to analyze the effect
of carefully crafted perturbations instead of selecting them
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Fig. 2: Effect of SPR on the modulation classification accuracy
and the bit error rate (QAM64).

randomly. DMSS explores the more practical situation where
the exact classifier of the intruder is not known, but its training
method and/or a similar classifier is available.

Fig. 1a shows the modulation classification accuracy for
the different methods. It can be seen that adding random
noise (DMSU ) helps very little compared to no defense at
all (NoPerturb). The basic defense mechanism DMS and its
black-box version (DMSS) become effective from about −5
dB SNR, and—as expected—DMS outperforms DMSS . For
smaller SNR values the classification accuracy is relatively
small (the channel noise already makes classification hard),
and only the oracle defense ODMS could gives noticeable
improvement. As expected, the performance of DMS gets
closer to its lower bound, ODMS, as SNR increases (note
that the two methods coincide at the limit of infinite SNR).
Similar performance of DMSS and DMS at medium SNR
illustrates transferability of adversarial perturbations in our
model, as was observed in other machine learning problems,
e.g., in image classification [15], although DMS becomes more
effective as SNR increases. Observe that the classification
accuracy of DMS increases up to 0 dB SNR, where the noise
is the main cause of the performance limitation of the intruder,
while the accuracy decreases for larger SNR where the defense
mechanism starts working.

The reduced classification accuracy of the intruder for DMS
and DMSS are countered by the increased BER at the receiver.
To illustrate this effect, Fig. 1b shows the BER for PSK8
and QAM64; for other modulation schemes the BER behaves
similarly to the case of PSK8, with up to 5dB difference
of where it starts to drop sharply. On the other hand, the
price of using any defense mechanism on QAM64 is severe,
causing orders of magnitude larger BER in the high SNR
regime. This can be suppressed if the perturbation size is
decreased, which—at the same time—results in increased
detection accuracy. This is shown in Fig. 2, as a function of the
signal-to-perturbation ratio, SPR , n/‖δ‖22 (recall n = 128,
and SPR ≈ 11.5dB corresponds to ε = 3). In every case,
DMS trades off increased BER for reduced detection accuracy
compared to no-defense.

In addition to DNN-based detectors, we also examine de-
fense against one of the best “standard” modulation detection
schemes in the literature, a multi-class decision tree trained
with expert features obtained from [19], [20].
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Fig. 3: Classification accuracy and BER (QAM64) for BER-
aware schemes (ε = 3), against the DNN-based detector
(dashed lines) and for the decision tree (solid lines).

Fig. 3 shows the modulation classification accuracy and
the BER for BDMS and BODMS, also compared with DMS,
DMSU and without any defense mechanism, for both DNN-
and decision-tree-based intruders. For BDMS, multiple λ val-
ues are considered. Due to space constraints, the BER is
only shown for QAM64 as this is the modulation scheme
most affected by our perturbations (similarly to the previous
experiments, the error rate for other modulation schemes
becomes very small for all defense mechanisms for larger SNR
values, but the relative performance of the schemes is similar
to that of QAM64).

For each modulation detector, it can be seen that for large
SNR (≥ 12dB), all defensive schemes achieve roughly the
same accuracy (much smaller than for the no-defense case
and DMSU ), while BODMS and BDMS for large λ provide
significant improvements in the BER (shown for QAM64).
Note, however, that the errors are still significantly higher than
for the standard QAM64 modulation. The BER values for the
DNN- and tree-based classifiers are approximately the same
for BDMS and BODMS, while the accuracy of the DNN classi-
fier is consistently higher, except for some cases for high SNR,
when they are approximately the same. For larger λ values, the
BER of BDMS is smaller than or approximately the same as
for DMSU , which adds uniform random noise of the same
perturbation size, while it significantly outperforms DMSU
in classification accuracy. Note that BODMS approaches the
performance of BDMS with a large λ (103−106), without the
need to tune the hyperparameter λ, and these methods provide
a good compromise between the effectiveness of the defense
and the increase in the BER.

V. CONCLUSIONS

We proposed a novel secure communication scheme against
an intruder whose goal is to detect the modulation scheme
(which is typically the first step of a more advanced attack).
In the proposed scheme, the constellation at the transmitter
is perturbed using an adversarial perturbation derived against
intruder’s modulation classifier. Experimental results on syn-
thetic problems verify the viability of our approach by showing
that our method is able to substantially reduce the modulation
classification accuracy of the intruder with minimal sacrifice
in the communication performance.
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