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Abstract—A multi-hop relay channel with multiple antenna My
terminals in a quasi-static slow fading environment is conislered. Y Y

For both full-duplex and half-duplex relays the fundamentd

diversity-multiplexing tradeoff (DMT) is analyzed. It is shown

that, while decode-and-forward (DF) relaying achieves theopti-

mal DMT in the full-duplex relay scenario, the dynamic decoc-
and-forward (DDF) protocol is needed to achieve the optimal
DMT if the relay is constrained to half-duplex operation. Far  Fig. 1. The(M1, M2, M3) MIMO multi-hop relay channel model consid-
the latter case, static protocols are considered as well, dnthe ered in the paper. There is no direct link from the source iteaih(S) to the

corresponding achievable DMT performance is characterize. destination terminal (D).
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|I. INTRODUCTION

Relays are commonly used in wireless networks to improve ) )
performance, although the fundamental capacity limitetfy a”‘?' the relay termllnalg cooperate to transmit .the message
channels have yet to be fully characterized, even for simﬁ% Its |_ntended ‘?'es““a“P” [7], [8]. DMT analysis has been
systems [1]. Rather than focus on capacity limits, we aft€nsively applied to this general relay channel modei-ho
interested in characterizing the tradeoff between rate g£ver, a full characterization of the DMT curve is still an ape
through multiplexing versus the robustness gain through diroblem. In [9] the DMT of the half-duplex single-antenna
versity associated with multiple-antenna relays. We vaidius relay channel IS analyzed and a dynamic decode-.and-.forward
on a multiple antenna multi-hop system in which the souréQDF) protocol is prqpo_sed. In_ DDF’ the relay terminal Irste
transmission can only be received by the relay terminal, §sthe source transmission until it can decode the messade, a
shown in Fig. 1. We call this the multiple-input multipleput then_st?rtshtransmntlpg the mer;ssage Joc;ntly_ with tr?e S:’ULC
(MIMO) multi-hop relay channel. The links are assumed trMinal. The DMT of DDF is shown to dominate that of a
be quasi-static, frequency non-selective Rayleigh fadimgl other protocols, but for high multiplexing gains it does not

the channel state information (CSI) is available only at tnget. the cut-set upper bound, which dictates the maximym
receiving end of each transmission. possible of such gains [10]. In [11] DDF performance is

We analyze this system in terms of the diversityMmProvedslightly by using superposition coding. In [12jder
multiplexing tradeoff (DMT) in the high signal-to-noisetiea the assumption of full CSI at the relay terminal, the comgpres

(SNR) regime introduced in [2]. DMT analysis is useful irgnd-forward protocol is shown to achieve the opt|m_al DMT_
characterizing the fundamental tradeoff between thebititin Performance. There has also been some recent interest in
and the number of degrees of freedom of a communicatifff DMT analysis for multi-hop relay systems; in [13] and
system. In DMT analysis, reliability is measured in terms di-4] multiple single antenna relays operating in a distiol
the diversity gain, which characterizes the rate of decapef manner are cons!dered. Due to the qllstr_|buted _nature of the
error probability with increasing SNR. The degrees of frged €12y nodes, amplify-and-forward relaying is consideretjer
is measured by the spatial multiplexing gain, which is th&hich the achievable DMT is characterized.
rate of increase in the transmission rate with SNR. While the In contrast to these prior works, we consider a MIMO multi-
DMT analysis is a tool to characterize the fundamental mihop relay channel. For this model, the relay can decode the
of a communication system in a fading environment, pratticaessage without sacrificing degrees of freedom. While we
space-time codes that approach these theoretical limits hanly derive results for a single relay in this paper, our ssu
been designed [3]- [6]. can be extended to multiple relays. In the case of a full-ehupl

In a channel with relays, the source’s transmission is reglay, we show that the DF protocol with a block Markov
ceived by both the relays and the destination, and the sousteicture achieves the optimal DMT performance. In the-half

. ) ) ) duplex relay case, we first find the DMT of static protocols
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hand, we show that the DDF protocol of [9], in which then which P.(SNR) is the error probability. For each define
time allocation depends on the realization of the sourtaytre d(r) as the supremum of the diversity gain over all families
channel, achieves the optimal DMT performance. In the mulof codes. The full characterization of the DMT curve for a
hop scenario, since the relay and the source do not transMIMO system is given in the following theorem [2].
simultaneously, they do not need to use distributed spaceTheorem 2.1:For a MIMO system withM; transmit and
time codes, which are harder to realize in practice [15]].[16M> receive antennas and sufficiently long codewords, the
Furthermore, there is no need to inform the source or tptimal DMT curvedas, ar, (r) iS given by the piecewise-
destination terminals about the relay decision time as sggo linear function connecting the pointgk,d(k)), k& =

to the general relay scenario. Hence, the dynamic relayifig .., min(M;, Ms), whered(k) = (M1 — k)(Mz — k).

scheme in the case of the multi-hop relay channel can beFor the rest of the paper, we always consider codes with
realized by using an incremental redundancy code at thefficiently long codewords so that the error event is doteitha
source [6], and any DMT-optimal space-time code at the reldyy the outage event.

Although the DMT of DDF has been previously shown to
dominate that of other protocols in the case of general half-
duplex relay channels, our results prove its optimalityia t A- Full-duplex Relaying

multi-hop relay scenario. In a concurrent work [17], Gharan We first consider the full-duplex relay case. The next
et al. prove the optimality of the DDF protocol in a singletheorem shows that the DMT tradeoff of the end-to-end system
antenna multiple access relay network. is equal to the worst-case DMT tradeoff of each link along
the multi-hop path. The DMT characterization given here for

Il. SYSTEM MODEL : ; : :
_ _ a single relay can be easily generalized to multiple fuiex
We consider a three node multi-hop channel composed @fays.

source, relay and destination terminals with,, M> and M3 Theorem 3.1:The DMT  df, ,, ., (r) of an
1y, Ms, Ms

antennas, respectively, as in Fig. 1. We call this system @iy, 17, Ms) full-duplex system is characterized by
(My, Ms, Ms) multi-hop relay channel. The source-relay and

I1l. DMT oF MIMO M ULTI-HOP RELAY CHANNELS

the relay-destination channels are given by A, wvoan, (1) = min{dag an (1), dar, s (1)} (2)
SNR Proof: The result follows easily as DF achieves the
Y, = WHiXi + Wi, (1)  capacity for a full-duplex multi-hop relay channel [1]. =

for i = 1,2, respectively, wher&’;, i = 1,2, are the received B. Static Protocols for Half-duplex Relaying

signals at the relay and the destination, respectivelyeMwat | the half-duplex relay scenario, the tofakime units need

the source transmission is not received at the destinationtd pe divided among the source and the relay transmissions.
our multi-hop relay channel model. Channels are assumedjg first consider static protocols for which the time allowat

be frequency non-selective, quasi-static Rayleigh fadind s fixed, independent of the channel states. However, simila
independent of each other; that is, for= 1,2, H; is an to the generalized decode-and-forward protocol in [18], we
M;41 x M; channel matrix whose entries are independeggnsider unequal division of the time slot among the source
and identically distributed (i.i.d.) complex Gaussiandam gand the relay. The source transmits during the {ifschannel
variables with zero means and unit variances (i.e., they ajges, wher® < a < 1. The relay tries to decode the message
CN(O, 1)) The additive white Gaussian terms also have ||6.nd forwards over the remainir{g _ Q)T channel uses. We
entries withCA/(0,1). X;, @ = 1,2, are M; x T source call this protocoldecode-and-forward with fixed allocation

and relay input matrices, wher€ is the total number of (fpF), and its DMT is given in the next proposition.
transmissions over which the channel is constant. We haveProposition 3.2: The DMT of the half-duplex

short-term power constraints at the source and the relangi M1, M2, M3) relay channel with fixed time allocation

by trace( E[XF X;]) < M,T. Fori = 1,2, we define a(0<a<l)is

M; £ min{M;, Mis1}. A (1) = min{dMl,Ab (2) s iy, My (ﬁ) }(3)
We assume that only the receivers have channel state infor- prgof: This result follows easily from Theorem 2.1 with
mation. simple scaling of the DMT curve due to time division. &

Following [2], for increasingSN' R we consider a family of ~ \ve can see from the above DMT that the highest multi-
codes and say that the system achieves a multiplexing gainy@dxing gain for the fDF scheme isin{alM;, (1 — a)M3}.

r if the rate R(SN R) satisfies On the other hand, the highest diversity gain is limited to
R(SNR) M, min{M,, Ms}. We illustrate the DMT of 44, 2, 3) system
SR oo log(SNR) = with a fixed time allocation of: = 0.3 in Fig. 2.

. . . ) L ! Since different time allocations result in different DMT
The diversity gaind of this family is defined as curves, we can optimize the time allocation based on the
log P.(SNR) multiplexing gain [18], [19]. We call this protocdDF with

d=- SN RS0 log(SNR) ’ variable time allocation(vDF). Note that this is still a static
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Fig. 2. The dotted and the dashed curves correspord tdr) anddsz 3(r), Fi :
. ) o ig. 3.  The DMT curve of a4, 1,3) multi-hop relay channel. The two
respectively. Note that the dashed curve also correspantt®etDMT in the togmost curves correspond toa(the cu%—set boun%s, w)rlmereetmed curve is

case of a full-duplex relay terminal. The solid curve is thelDcurve of a h
- . - also the DMT for a full-duplex relay. The DDF, vDF and fDF pyool with
(4,2,3) half-duplex multi-hop relay with the fDF protocol and= 0.3. a = 0.5 are also illustrated, where the DDF curve is the optimal DMihw
half-duplex relaying.

protocol since the time allocation variable is determinasgdul

only on the_ m?'t'p'ex'”g gain apd IS mdependept o_f th"?mtennas. In DDF for the relay channel, the source transmits
channel realization. For each multiplexing gairthe diversity g, ring the entire timeslot using an incremental redundancy
gain is the minimum of the two diversity gains in (3); hence thy e ¢odehook. This code design enables the relay to decode
optimal time allocation variable(r) is the one that satisfies the message after receiving only a portion of the codeword:
JuDF (r) = d T\ T ( )hence the relay decodes the message when the accumulated

My Mo My AT = OMuMa { Gy | = OMaMa | 77770 mutual information over the source-relay channel is sffiti

Corollary 3.3: The number of degrees of freedom ofor the transmission rate. Thus, the relay decoding time
an (M, My, Ms) multi-hop relay channel with the vDF becomes a rgndom variable that depends on the source—rela_y
protocol is ]\%ﬁi while the maximal diversity gain is channel quah_ty_. As soon as the relay decodes the message, it
My min{ M Ve } 2 starts transmitting.

2 bensl The achievable DMT of the DDF scheme in the case of

We now present the DMT for some special cases because. . ) .
single-antenna cooperative relay channel is charaeteiiz

a general closed form expression is not tractable. We fi . : ;
consider the(M,, 1, M) system. Since the hops for this%ﬁ’ where it is shown to dominate the DMTs of amplify-and-

setup are multiple-input single-output (MISO) and singpit forward (AF) "?“'?d decode—aljd—forward (DF) based protocols
multiple-output (SIMO) systems, the DMTs are charactetiz nd,. more stnIgneg, to achieve the DMT upper pounq for
asdy, ., = Mf(1—r), i = 1,2. From (4) and defining tmhgluplexmg ?ZIB.InSr <|t(_).5|. I—_|ence,_DDfF |sthDM'_r—op|)t|maIt|n
AL MM andB 21— r— A(1 +r), we find is range of low multiplexing gains for the single antenna
cooperative relay channel.
a(r) = —B+ /B2 —4A(A—1)r Here, we consider using the DDF protocol for the multi-
2(A-1) antenna multi-hop relay channel, and show that it achieves

for A # 1. We havea(r) = 0.5 if A= 1. The DMT achieved the DMT cut-set upper bound; that is, DDF is DMT-optimal.
by the VDF protocol in &4, 1,3) system is plotted in Fig. 3. The intuitive explanation behind the optimality of DDF in

In this figure, we also plot the DMT for the fDF scheme wittjhis setting is as follows: In the multi-hop relay scenario,
a fixed time allocatior = 0.5 the message needs to be decoded at the relay terminal, since

If we haveM,; = M; = M, then the optimal time allocation otherwise the destination W(_)uld not be able to decodg ieEith
is a = 0.5 independent of the multiplexing gain, and the DMTAU€ O the data processing inequality. However, any fixee tim
is given bydiPE, (1) = dagr, (21). aIIocatlon. _scheme either wastes multiplexing gain, sirtce i

T ’ cannot utilize the good states of the source-relay charmmel,

C. Dy_namlc Decode-and-Forward Protocol for Half-duplexegyits in outage in the case of a poor quality (IGNR)
Relaying source-relay channel. DDF, by enforcing decoding at thegyrel

In [9], Azarian et al. proposed the dynamic decode-andnd dynamically allocating the source transmission tineeta
forward protocol for the cooperative relay channel withgégn on the source-relay channel state, achieves the optimal DMT
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Fig. 4. The DMT of a(2,2,2) system. From top to bottom, the three

in which we have defined curves correspond to the full-duplex relay DMT, the halpkix relay DMT
N which is achievable by DDF protocol, and the DMT of the statfotocol
R M with a = 0.5.
Si(eu) £ (1 —ai )", fori=1,2. (6)
=1

Proof: The proof can be found in Appendix A. - Corollary 3.8: The DMT of the(2, 2, 2) system with a half-

The optimality of the above DMT achieved by the DDFIUPIEX relay is given by
protocol is shown in the following theorem.

Theorem 3.5:DDF is DMT-optimal for MIMO multi-hop @ if 0<b<1/2
half-duplex relay channels. dPPF(r)y = =i if 1/2<b<2/3 (7)
Proof: The proof can be found in Appendix B. ] 4(21::) if 2/3<b<1

Corollary 3.6: The number of degrees of freedom of an

. - My M3 .
(My, M2, M) multi-hop relay channel \Sr7 a3 while the The DMT of the(2,2,2) system is plotted in Fig. 4. The

. . . L . 2
maximal diversity gain is\ min{M, Ms}. Hence, the end- topmost curve in the figure is the DMT of Zax 2 MIMO

point; of.the DMT curve can alsp be achieved. by Statgﬂ/stem, which can be achieved by a full-duplex relay. The
relaying, i.e., with fixed time allocation correspondingthe lowest curve is the DMT of the vDF protocol. Note that for

multiplexing gain. this symmetric scenario vDF reduces to fDF with= 0.5.
It can be seen from Theorem 3.4 that the DMT of a

half-duplex multi-hop relay channel is not a piecewisedn
function as in the case of a point-to-point MIMO channel. IV. CONCLUSIONS
While it is hard to give a general closed form expression for

the DMT of MIMO multi-hop channels, for gived/;, M>  we have derived the diversity-multiplexing tradeoff of
and M3z and a fixed multiplexing gain, the optimization ;MO multi-hop relay channels for both full-duplex and half
problem in (5) can be converted into a convex optimizatiofyplex relays. For full-duplex relays, it is easy to showttha
problem, and hence can be solved efficiently [20]. We noWe decode-and-forward protocol achieves the optimal DMT,
give an explicit characterization of the DMT for some class§ynich is simply the minimum of the DMTs of the two links.

of multi-hop relay channels. _ This applies to multiple relays as well; that is, the DMT of
Corollary 3.7: The DMT of an(Mi, 1, M3) system is the end-to-end system will be limited by link with the smatle
1—9r DMT. In the case of a half-duplex relay, we have shown that

dyPT a, (1) = min(My, M) the dynamic decode-and-forward protocol, in which theyrela
listens until decoding and then forwards, achieves thaoti
for 0 <r <1/2, and0 elsewhere. DMT, which is no longer a piecewise-linear function of the
In Fig. 3 we illustrate the DMT of thé4, 1,3) multi-hop multiplexing gain. We have also shown that this optimal DMT
relay channel, which is achieved by the DDF protocol. Weerformance cannot be achieved by static time allocation.
see that the DDF DMT dominates that of the static protocdinally, we have provided explicit expressions for the DMT
at all multiplexing gains except the end-points. As stated of some classes of half-duplex multi-hop relay systems, and
Corollary 3.6 these end-points can be achieved by the statmmpared the achievable performances with fixed and dynamic

fixed time allocation fDF protocol as well. time allocation.

1—1r



APPENDIXA
PROOF OFTHEOREM 3.4

For the achievability scheme, we assume that the inputs &f1
both the source and the relay are Gaussian with identityreova

ance matrices. Let the transmission ratebe= rlog SNR,
and define

SNR
(H;) £ logdet (I
C;(H,) oge<+M

i

HHT> . (8)

We define
{(ar,az2) : 7> Si(a1)}
{(al,ag) : Sl(al) >r >

O U0,

Sl (al)Sg(ag)
S1(an) + Sa(az)

(@

}

Then using the joint probability of the eigenvalueﬂij

o

The relay listens foraT' channel uses until it decodes thegiven in [2], the outage probability can be computed as

message. Hence, we have
rlog SNR
c;

If a > 1 then the relay is in outage, which leads to an outage

for the whole system. Ifi < 1, then the relay transmits during
the rest of the timeslot fofl —a)7T" channel uses. Conditioned
on successful decoding at the relay, ie.< 1, the outage
probability over the second hop is given by

P{rlogSNR > (1 — a)Cy(H,)}
) CQ(HQ)}
Cl (Hl)Cg(Hg)

rlog SNR
Ci(Hy) + 02(H2).}

=PJrlogSNR > (1-—
{ s ( C1(Hy)
A1, Mz be the nonzero eigenvalues HZ—HZT

=P {rlog SNR > 9)

Let Ai,la- cey

for i = 1,2. Suppose\; ; = SNR™“% for j = 1,..., M7,
i=1,2. We havé
./ SNR
Ci(H;) = 1ogH (1 + WA”)
j=1 !
M;
= log [[ SNRO-e0)" (10)
j=1
where(z)™ £ max{0, z}. Using these exponential equalities,

we can rewrite (9) as follows
P{rlogSNR > (1 — a)Cy(H,)}
Cl(Hl)CQ(Hg) }
Ci(Hy) + C2(Hy)
log SNR (1) Jog SNR 2(ex2)
= P {logSNRr > (085N log SRR
log SNRI1(@1) 4 1og SNRF2(2)

Sl(al)Sg(ag) }
Psr>
{ Si(ar) + Sa(a2)
where we haves;(a;) = Zﬁfl(l a; i)t
Then the overall outage probability can be written as

=P {rlogSNR >

Pout(r) = P{T > Sl(al)}
Sl(al)SQ(Oéz) }
P<Si(ay) >r >
{ (o) Si(aq) + Sa(az)
1Define  the exponential equality as f(SNR)=SNR¢, fif
limg N R— oo logﬂSNR) = c¢. The exponential inequalitesx and >

are defined S|m|Far

Pyt (1) / ploa, az)dadog

2 M}

/ [TI] sNR-GimtHIM=MiDeds doy doy

1=17=1

where©Q’ 2 O N (RMi+ RM:+),

Using Laplace’s method as in [2], we obtain the expo-
nential behavior of the outage probability &,.:(r) =
SNR=4"""(") where

dDDF(T) = inf fla, asz) (11)
(al,ag)eO’
and
2 M
al, az Z Z 2] -1+ |M Mi+1|)04i,j- (12)
=1 j=1
Next, we define
O, 2 {(al,az) € RMi+ x RM:+|
i > > o > 0,7 > S (o)}
D, {(01,02) e RMiT x RM:H|
Sl(al)SQ(Oéz) }
i1 > s> o > 0,0 >
i1 Qi M; r S1(a1) £ Sa(az)
O 2 0,U0,
We can see thad’ = O. Hence,
dPPE(ry = inf  flag,as)
(al,ag)e(’)
= inf inf  flog,a2), inf  flo,a2)
(al,az)eol (a1,a2)602
= inf  f(ai,a2)

(o1,02)€O0,

in which the last equality follows since we have

Sl (al)Sg(az)
Si(en) 2 Si(aq) + Sa(az)

for all (a1, az), and henc&); C O,.



APPENDIXB Similar to Appendix A, we obtain the exponential behavior
PROOF OFTHEOREM 3.5 of the above outage probability using Laplace’s methodeNot
We first give an upper bound for the DMT of the MIMOthat, since0” = O, the outage probability upper bound has
multi-hop half duplex relay channel, and show that the ppibe same diversity gain function as the DDF protocol. Hence,
DMT given in Theorem 3.4 matches this upper bound. L&DF is DMT-optimal.
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