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Abstract—Motivated by the practical requirement for delay
and complexity constrained broadcasting, we study uncoded
transmission of a pair of correlated Gaussian sources over a
two-user Gaussian broadcast channel with unit-delay noiseless
feedback links (GBCF). Differently from previous works, in
the present work we focus on the finite horizon regime. We
present two joint source-channel coding schemes, one is based
on the Ozarow-Leung (OL) coding scheme for the GBCF and
the other is based on the linear quadratic Gaussian (LQG)
code by Ardestanizadeh et al. Our LQG-oriented code uses an
improved decoder which outperforms the original decoder of
Ardestanizadeh et al. in the finite horizon regime. We further
derive lower and upper bounds on the minimal number of
channel uses needed to achieve a specified pair of distortion
levels for each scheme, and using these bounds, we explicitly
characterize a range of transmit powers in which the OL code
outperforms the LQG-oriented code.

I. INTRODUCTION

We study the transmission of a pair of correlated Gaussian
sources over a two-user Gaussian broadcast channel (GBC)
with correlated noises at the receivers in the presence of
noiseless causal feedback (FB) from both receivers to the
transmitter. Motivated by practical broadcast scenarios with
strict delay constraints, e.g., live multimedia broadcast, we
focus on linear uncoded transmission, namely, we do not
consider source coding over sequences of source symbol
pairs. We further assume that each pair of source symbols
is transmitted using a finite number of channel symbols. Our
objective is to characterize the minimal number of channel
symbol transmissions needed to achieve a target non-zero
distortion pair.

Previous works on GBCs with noiseless FB (GBCF) links
mainly considered independent messages at the transmit-
ter, i.e., the channel coding problem, [2]–[8]: In [2] the
Schalkwijk-Kailath (SK) scheme of [1] was extended to the
two-user GBCF with two independent messages, and achieved
reliable communications at rates which are outside the capacity
region of the GBC without FB. The scheme of [2] was later
extended to GBCs with more than two users as well as to
interference channels (ICs) in [3].

Another approach to the channel coding problem for the
GBCF is based on control theory. Elia [4] derived a (linear)
code for the two-user GBCF with independent noises at the
receivers which outperforms the scheme of [2]. Then, using
tools from the theory of linear quadratic Gaussian (LQG)
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control, the work [5] removed the restriction of independent
noises in [4], and studied the case of more than two users. For
independent noises, the scheme of [5] was shown to outper-
form the schemes of [2] and [3] in terms of achievable rates.
Furthermore, in [6] it was shown that for independent and
equal noise variances, the scheme of [5] achieves the largest
sum-rate among all linear-FB schemes.

In [7], GBCs and Gaussian ICs with noiseless FB were
considered and a scheme that achieves a sum-rate which
approaches the full-cooperation bound, as the signal-to-noise
ratio (SNR) increases to infinity, was presented. Finally, the
work [8] presented a non-linear FB scheme which is optimal
for the two-user GBCF and only a common message. In this
work, however, we focus on linear schemes.

While the works [1]–[8] focused on channel coding prob-
lems, the work [9] studied the transmission of correlated
Gaussian sources over the two-user multiple-access channel
(MAC) with noiseless FB, via the uncoded scheme developed
in [10]. The work [9] also established an upper bound on the
energy-distortion tradeoff for the symmetric scenario.

All previous studies on GBCFs applied an infinite horizon
analysis, i.e., the results are valid as the number of channel
uses increases to infinity. In the present work we study lossy
joint source-channel coding (JSCC) for GBCFs, thus, our
focus is on the finite horizon regime. Specifically, we imple-
ment uncoded transmission based on two coding schemes: The
scheme developed in [2], which is referred to as OL (Ozarow-
Leung), and the scheme derived in [5], which is referred to as
LQG. We apply both schemes for the transmission of corre-
lated Gaussian sources over the GBCF and derive bounds on
the number of channel symbol transmissions needed to achieve
a target non-zero distortion pair. Our main contributions are
as follows:

Main Contributions: We derive a new decoder for the
LQG-oriented scheme based on the minimum mean-square
error (MMSE) criterion, which, in the finite horizon regime
outperforms the LQG decoder presented in [5]. These two
LQG-decoders are shown to be equivalent in the infinite
horizon regime. We then derive lower and upper bounds on the
minimal number of channel uses needed to achieve a specified
pair of distortion levels for the OL-based scheme and the
LQG-oriented scheme (for the LQG we use our new decoder).
Finally, for the symmetric case with independent noises we
explicitly characterize a range of transmit powers for which
OL outperforms LQG. This result is in contrast to the infinite
horizon regime in which LQG strictly outperforms OL.



Fig. 1: Gaussian broadcast channel with correlated sources and feedback
links. Ŝ1,k, Ŝ2,k are the reconstructions of S1, S2, respectively, after the
k’th transmission, and D represents a unit delay.

The rest of this paper is organized as follows: The problem
formulation is introduced in Section II. The OL and LQG
schemes, along with the improved LQG decoder, are presented
in Section III in the context of JSCC, and the finite horizon
analysis is presented in Section IV. A discussion and a
numerical example are given in Section V and conclusions
appear in Section VI.

Notations: We use capital letters to denote random variables
(RVs), e.g., X , boldface letters to denote column vectors, e.g.,
X and sans-serif font to denote matrices, e.g., M. [M]m,n
denotes the entry at the m’th row and n’th column of a matrix
M and det(M) denotes its determinant. We use E {·}, (·)T ,
log(·) and R to denote expectation, transpose, natural basis
logarithm, and the set of real numbers, respectively. Lastly,
define [x]+ , max{x, 0}, let sgn(x) to be the sign of x, where
sgn(0) , 1, and denote the ceiling function of x by dxe.

II. PROBLEM FORMULATION

The two-user GBCF is depicted in Fig. 1. The encoder
observes a realization of a jointly Gaussian correlated pair
of sources denoted by S = (S1, S2), and is required to send
the source Si, i = 1, 2, to the i’th receiver. Let S∼N (0,Qs),

where Qs =

[
σ2
1 ρsσ1σ2

ρsσ1σ2 σ2
2

]
, ρs = E{S1S2}

σ1σ2
, |ρs| < 1.

Each pair of source symbols is transmitted using K channel
uses indexed by k = 1, 2, . . . ,K. The channel outputs at
the decoders are given by Yi,k = Xk + Z0,k + Zi,k, i =
1, 2, where Zj,k ∼ N (0, σ2

z,j), j = 0, 1, 2, are i.i.d for
k = 1, 2, . . . ,K, and mutually independent of each other. Let
B , [1, 1]T ,Yk , [Y1,k, Y2,k]T and Zk , [Z0,k+Z1,k, Z0,k+
Z2,k]T . Note that Zk ∼ N (0,Qz), where Qz = E

{
ZkZ

T
k

}
.

Thus, we have the following vector representation for the
signal model:

Yk = BXk + Zk, k = 1, 2, . . . ,K. (1)

The i’th receiver, i = 1, 2, uses the first k channel outputs,
Yk
i,1, to estimate Si: Ŝi,k = φi,k(Yk

i,1), φi,k : Rk → R, k =
1, 2, . . . ,K. The encoder has access to a noiseless causal chan-
nel output feedback from both receivers. At time k, the encoder
maps the observed pair of sources and the received noiseless
FB into a channel input via Xk=fk(S1, S2,Y

k−1
1,1 ,Yk−1

2,1 ), fk :

R2k → R. The transmitted signal is subject to a per-symbol
average power constraint defined as:

E
{
X2
k

}
≤ P, ∀k = 1, 2, . . . ,K. (2)

For a specific set of parameters (P, σ2
z,0, σ

2
z,1, σ

2
z,2, σ

2
1 , σ

2
2 , ρs),

we define a (D1, D2,K) code to be a collection of K encoding

functions that satisfy (2), and two decoders such that the MSEs
of the received source symbols satisfy:
E{(Si − Ŝi,K)2} ≤ Di, 0 < Di ≤ σ2

i , i = 1, 2. (3)
Our objective is to characterize the minimal number of channel
uses K for a given distortion pair (D1, D2) such that a
(D1, D2,K) code exists.

Next, we recall some results and definitions from [2] and
[5], and present an improved decoder for the LQG scheme.

III. THE OL AND THE LQG SCHEMES

A. The OL Scheme
In the OL scheme, prior to the transmission of a channel

symbol, the transmitter calculates the estimations at the re-
ceivers using the causal noiseless FB, from which it computes
the estimation errors. The transmitter then sends a linear
combination of these estimation errors. Thus, each receiver
obtains its estimation error corrupted by a correlated noise
term, consisting of the other receiver’s error, and additive
noise. Each receiver then updates its estimation accordingly,
thereby, decreasing the variance of its estimation error. The
scheme is terminated after K channel uses, where K is chosen
such that the target MSE for each source is achieved at the
corresponding receiver.
Definitions: Define Ŝi,k to be the estimate of Si at the i’th
receiver after the reception of the k’th channel output Yi,k. Let
εi,k , Ŝi,k−Si be the estimation error after k transmissions,
and define ε̂i,k−1 , Ŝi,k−1− Ŝi,k, which implies that εi,k =
εi,k−1− ε̂i,k−1. Further define αi,k,E{ε2i,k} to be the MSEs
after k transmissions, ρk , E{ε1,kε2,k}√

α1,kα2,k
to be the correlation

between the estimation errors, and Ψk−1,
√

P
1+g2+2g|ρk| .

Encoding: Set εi,0 = Si, αi,0 = E
{
ε2i,0
}

= σ2
i and Ŝi,0 = 0.

It follows that ρ0 = ρs. Next, let g > 0 be a constant which
facilitates a tradeoff between the information rates to receivers
1 and 2. At the k’th iteration, 1 ≤ k ≤ K, the transmitter
sends Xk = Ψk−1

(
ε1,k−1√
α1,k−1

+
ε2,k−1√
α2,k−1

· g · sgn(ρk−1)
)

, and
the corresponding channel outputs are given by (1).
Decoding: The receivers estimate εi,k−1, i = 1, 2, based only
on Yi,k: ε̂i,k−1 =

E{εi,k−1Yi,k}
E{Y 2

i,k}
Yi,k. Let πi ,P + σ2

z,0 + σ2
z,i.

The variances of εi,k are given by the recursive expressions
[2, Eqs. (5)–(6)]:

α1,k = α1,k−1
σ2
z,0 + σ2

z,1 + Ψ2
k−1g

2(1− ρ2k−1)

π1
(4a)

α2,k = α2,k−1
σ2
z,0 + σ2

z,2 + Ψ2
k−1(1− ρ2k−1)

π2
, (4b)

with a recursive expression for ρk given in [2, Eqn. (7)].

Remark 1. The OL scheme described above does not apply the
initialization procedure described in [2, pg. 669], since when
only a finite number of channel uses is allowed it might result
in higher MSE. Instead we set εi,0 =Si and ρ0 =ρs in order
to take advantage of the correlation among the sources.

B. The LQG scheme

The LQG scheme of [5] is based on a mapping from
the noiseless FB control problem to a linear code for the



GBCF. The asymptotic performance of this scheme is deter-
mined by the eigenvalues of the open-loop matrix of a linear
system. These eigenvalues are determined by the minimal
power required to stabilize the system using the noiseless FB.
Similarity to the OL scheme, the considered LQG scheme is
also terminated after K channel uses.

Consider a two-dimensional unstable dynamical system
which is stabilized by a controller which observes the entire
system state vector, Uk = [U1,k, U2,k]T . The controller
outputs a scalar signal, Xk = fk(Uk

1), fk : R2k → R. The
control signal is received at the system via a noisy channel.
Let Yk denote the noisy observed control signal at the output
of the channel at time k, given in (1). Let A = diag(a1, a2),
where ai ∈ R, a1 6= a2, |ai| > 1, and let S = [S1, S2]T . The
system state vector at time k, Uk, is recursively given by:

U1 = S, Uk = AUk−1 + Yk−1, k = 2, 3, . . . ,K. (5)
In the corresponding communication problem the encoder
consists of the system given in (5) and of the controller. At
each time index the encoder recursively computes Uk and
transmits Xk. In this work we use the controller that minimizes
the asymptotic average power which is presented in [5, Lemma
4]. This is motivated by: 1) The approximate optimality of this
controller for large K’s (alternatively low Di’s), and 2) This
choice results in a linear time-invariant scheme. The output
of the linear controller is given by Xk = −CTUk, where
C = [c1, c2]T is given by C = (BTGB + 1)−1AGTB, and G
is the unique positive-definite solution of the discrete algebraic
Riccati equation G = ATGA− ATGB(BTGB + 1)−1BTGA,
such that all the eigenvalues of the matrix A − BCT have
magnitudes smaller than 1. From [5, Lemma 4] it follows
that for this controller, the covariance matrix of Uk, Qu,k,
converges as k → ∞ to Qu, which is the solution of
Qu = (A − BCT )Qu(A − BCT )T + Qz within the class of
positive semidefinite matrices. Finally, from [5, Lemma 4] it
follows that the minimum asymptotic average power of this
controller is given by P (A,Qz) = CTQuC = trace(GQz).

The work [5] used a decoder which follows the zero
trajectory. First it estimates Ui,k via:
Ûi,1 = 0, Ûi,k = aiÛi,k−1 + Yi,k−1, k = 2, 3, . . . ,K. (6)

Then it estimates Si from Ûi,k+1 via:
Ŝi,k = −a−ki Ûi,k+1, (7)

thus, resulting in the MSE: E{(Si−Ŝi,k)2}=a−2ki E{U2
i,k+1}.

C. An Improved LQG Decoder
The estimation (7) is clearly suboptimal in the MMSE sense.

The optimal estimator of Si, based on the observation Ûi,k+1,
obtained as in (6), is stated in the following theorem:
Theorem 1. Let M , A−BCT and Qu,k , E

{
UkU

T
k

}
with

Qu,1 = Qs. The optimal estimator of Si, i = 1, 2, at time k,
based on the observation Ûi,k+1, given in (6), is:

Ŝi,k =
[MkQs]i,i − σ2

i a
k
i

[Qu,k+1]i,i − 2aki [MkQs]i,i + σ2
i a

2k
i

Ûi,k+1. (8)

Furthermore, the MSE of Ŝi,k is given by:

E
{

(Si−Ŝi,k)2
}

=
σ2
i [Qu,k+1]i,i −

(
[MkQs]i,i

)2
[Qu,k+1]i,i − 2aki [MkQs]i,i + σ2

i a
2k
i

, (9)

and as k →∞ the MSE expression (9) converges to the MSE
of the decoder in (7).

Proof: The proof is detailed in Appendix A.

Remark 2. Since the estimator (8) is the optimal estimator
of Si, based on the observation Ûi,k+1, it clearly achieves
an MSE smaller than or equal to the MSE achieved by the
estimator (7). In particular, (8) outperforms (7) in the finite
horizon regime, i.e., for large distortions, see Section V.

IV. FINITE HORIZON ANALYSIS

The considered OL and LQG-oriented schemes terminate
after K channel uses, where K is chosen such that the target
distortions 0 < Di, i = 1, 2, are achieved for both sources. We
now analyze the finite horizon performance of these schemes.

A. Finite Horizon Analysis of LQG
In contrast to the OL scheme which has a constant average

instantaneous transmission power, the average instantaneous
transmission power in the LQG scheme, Pk, changes over time
and converges to P as k → ∞. In general Pk may be larger
than P and (2) may not be satisfied. This implies that for
a specific value of P and for specific noise variances there
are pairs of sources which cannot be transmitted using the
LQG-oriented scheme of Subsection III-B. Let KLQG denote
the minimal number of channel uses for achieving a target
distortion pair (D1, D2) by the LQG-oriented scheme with the
decoder (8) (regardless whether (2) is satisfied or not). Thm. 2
below provides an upper bound on KLQG, denoted by Kub

LQG. It
follows that (2) needs to be verified only for k ≤ Kub

LQG. This
can be done numerically using a finite number of calculations.

Let D = diag(λ1, λ2) be a diagonal matrix of the eigen-

values of M, and V ,

[
v1 v2
v3 v4

]
be a 2 × 2 matrix whose

columns are the corresponding eigenvectors of M. We now
have the following theorem:

Theorem 2. Let η1,
σ1(|v1v4λ1|+|v2v3λ2|)+|ρsσ2v1v2|(|λ2|+|λ1|)

| det(V)| ,

η2 , |σ1v3v4|(|λ1|+|λ2|)+|ρsσ2|(|v1v4λ2|+|v2v3λ1|)
| det(V)| ,

η3 ,
σ2

√
1−ρ2s(|v1v2|(|λ2|+|λ1|))

| det(V)| , and η4 ,
σ2

√
1−ρ2s(|v1v4λ2|+|v2v3λ1|)

| det(V)| . Furthermore, define
ϑ1 , η21 + η23 + [Qu]1,1 and ϑ2 , η22 + η24 + [Qu]2,2. Then,

Kub
LQG,

max


[
log
(
ϑ1

D1

)]+
2 log |a1|

,

[
log
(
ϑ2

D2

)]+
2 log |a2|


, (10)

is an upper bound on KLQG.
Proof: The proof is detailed in Appendix B.

Next, we present a lower bound on KLQG. This is summa-
rized in the following theorem:

Theorem 3. Let β1,
σ2
1(|v1v4λ1|+|v2v3λ2|)+|ρsσ1σ2v1v2|(|λ2|+|λ1|)

| det(V)| ,

β2 , σ2
2(|v1v4λ2|+|v2v3λ1|)+|ρsσ1σ2v3v4|(|λ2|+|λ1|)

| det(V)| , µ1 ,
[σ2

1 [Qz ]1,1−β
2
1−D1[Qz ]1,1]

+

(2β1+σ2
1)D1

and µ2 ,
[σ2

2 [Qz ]2,2−β
2
2−D2[Qz ]2,2]

+

(2β2+σ2
2)D2

.
Then,



K lb
LQG,

⌈
max

{
[log(µ1)]

+

2 log |a1|
,

[log(µ2)]
+

2 log |a2|

}⌉
, (11)

is a lower bound on KLQG.

Proof: The proof is detailed in Appendix C.
B. Finite Horizon Analysis of OL

The following theorem presents upper and lower bounds on
KOL, the minimal number of channel uses required to achieve
distortion pair (D1, D2) with the OL scheme:

Theorem 4. Define

Kub
OL=

⌈
(1+g2)

P
max

{
π1 log

(
σ2
1

D1

)
,
π2
g2

log

(
σ2
2

D2

)}⌉
, (12a)

K lb
OL=

⌈
max

{
π1−P
P

log

(
σ2
1

D1

)
,
π2−P
P

log

(
σ2
2

D2

)}⌉
. (12b)

Then K lb
OL ≤ KOL ≤ Kub

OL.

Proof: The proof is detailed in Appendix D.

V. A DISCUSSION AND A NUMERICAL EXAMPLE

The bounds presented in Thm. 3 and Thm. 4 help in
answering the question whether the considered schemes can
be used to communicate a given pair of sources over a specific
GBCF within strict delay constraints.

Remark 3. Recall that in the infinite horizon regime LQG
outperforms OL, see [5, Subsection V.A]. However, since the
LQG scheme is time invariant while the OL scheme is time
varying, one may expect that in the finite horizon regime OL
may outperform LQG. To check this conjecture, we sought
for power constraint value P for which Kub

OL < K lb
LQG which

would imply that KOL < KLQG, i.e., OL would outperform
LQG. Using Thm. 3 and Thm. 4, the following corollary
characterizes a region of power constraint values P for which
OL outperforms LQG, for the symmetric case with indepen-
dent noises:

Corollary 1. Consider a symmetric case: D1 =D2, σ
2
1 =σ2

2 ,
σ2
z,1 = σ2

z,2 = σ2
z , σ

2
z,0 = 0, and g = 1. Let 0 < δ ≤

4, and define ϕ0(P, δ) , 4P 2

(4+δ2)σ4
z

√
1+ 2P

(4+δ)σ2z

, ϕ1(P, δ) ,(
1+ P

2σ2z

)2

−1

2

(
1+ 2P

(4+δ)σ2z

) 3
2

, ϕ2(P ) , P 2

8σ4
z

(
1+ 2P

(4+δ)σ2z

) and τ(P, δ) ,

σ2
1

((
1+ P

2σ2z

)
ϕ2

1(P,δ)+ϕ
2
2(P,δ)+2|ρs|ϕ1(P,δ)ϕ2(P,δ)

√
1+ P

2σ2z

)
ϕ0(P,δ)

.
If the following conditions hold:

P

σ2
z

log

(
σ2
1

D1

)
<

[
log

([
σ2
z(σ2

1−D1)−τ2(P,δ)
]+

σ2
1(σ2

1 + 2τ(P,δ))

)]+
, (13a)

P <
1

4
δ(4 + δ)σ2

z +

√
1

4
δ((4 + δ)σ2

z)2(1 +
δ

4
), (13b)

then KOL < KLQG.

Proof: The proof is detailed in Appendix E.

Remark 4. Corollary 1 implies that for the symmetric case
with independent noises, if the target distortion D1 is large
enough and if P is sufficiently small, then the OL scheme can
outperform the LQG scheme.
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Lastly, we demonstrate our results via a numerical example:
Consider the transmission of a pair of Gaussian sources with
σ2
1 = σ2

2 = 1, ρs = 0.9, over a GBCF with σ2
z,0 =

0, σ2
z,1 = σ2

z,2 = 7 and g = 1. Furthermore, let P = 0.1
and D1 = D2 = 0.1. For these parameters (10) is evaluated
to be Kub

LQG = 1293, (11) is evaluated to be K lb
LQG = 404,

(12a) is evaluated to be Kub
OL = 327, and (12b) is evaluated

to be K lb
OL = 162. Therefore, for the considered scenario we

have that OL outperforms LQG. Furthermore, using numerical
methods it can be shown that for δ = 0.011 condition (13a)
holds for P < 1.5516, while condition (13b) also requires that
P < 1.5516.

Fig. 2 depicts the MSEs (4a) and (9), and the MSE of
the estimator in (7), for the scenario considered above. It
can be observed that KOL = 298, KLQG = 1278, and the
LQG scheme using the estimator (7) achieves D1 = 0.1 at
K = 1293. Thus, here the upper bound (10) is very close.
Finally, it can be observed that Fig. 2 supports the result of
Thm. 1: at large values of k, the lines corresponding to the
decoders (7) and (8) are nearly the same. Therefore, (8) is
superior compared to (7) for large distortions. Based on Fig. 2,
“large” for the present scenario corresponds to approximately
D1 > 0.05.

VI. CONCLUSIONS
In this work we studied uncoded transmission of two

correlated Gaussian sources over the two-user GBCF. We first
derived a decoder for the LQG approach based on the MMSE
criterion. Then, we presented bounds on the minimal number
of channel uses required to achieve a target distortion pair
for the OL scheme and LQG scheme with the new decoder.
For the symmetric case with independent noises we presented
an explicit characterization of a range of transmit power con-
straint for which the OL scheme outperforms the LQG scheme.
This is in contrast to the situation at the infinite horizon
scenario. These results were also demonstrated via a numerical
example. These results are a step towards identifying efficient
and simple coding schemes for the transmission of correlated
sources over multi-user channels with noiseless FB subject to
delay constraints.



APPENDIX A
PROOF OF THEOREM 1

First, recall that the MMSE estimator of Si based on Ûi,k
is the conditional expectation E{Si|Ûi,k}, [11, Eqn. (11.10)].
Furthermore, from (5), from the fact that the optimal control
is linear and from the fact that Ûi,k = aiÛi,k−1 + Yi,k−1 it
follows that for i = 1, 2, Ûi,k and Si are jointly Gaussian,
both with zero mean. From [11, Eqn. (10.16)] it follows that

E
{
Si|Ûi,k

}
=

E{SiÛi,k}
E{Û2

i,k}
Ûi,k. Now, from (5) we have:

Uk = AUk−1 + Yk−1

= A2Uk−2 + AYk−2 + Yk−1

= Ak−1U1 +

k−2∑
m=1

Ak−m−1Ym

= Ak−1S +

k−2∑
m=1

Ak−m−1Ym. (A.1)

From (6) we have:
Ûk = AÛk−1 + Yk−1

= Ak−1Û1 +

k−2∑
m=1

Ak−m−1Ym

= 0 +

k−2∑
m=1

Ak−m−1Ym. (A.2)

Therefore, combining (A.1) and (A.2) we have that Uk+1 −
Ûk+1 = AkS ⇒ Ûk+1 = Uk+1 − AkS, and since A is a
diagonal matrix it follow that Ûi,k+1 = Ui,k+1 − aki Si. Thus,
we have:

Ŝi,k =
E
{
Si(Ui,k+1 − aki Si)

}
E
{

(Ui,k+1 − aki Si)2
} Ûi,k+1.

=
E {SiUi,k+1} − aki σ2

i

E
{
U2
i,k+1

}
− 2akiE {SiUi,k+1}+ a2ki σ

2
i

Ûi,k+1.

(A.3)
Next, from (5) we have:

Uk = AUk−1 + Yk−1

= AUk−1 −BCTUk−1 + Zk−1

= (A−BCT )Uk−1 + Zk−1. (A.4)
From the independence of S and Zk we have that
E
{
Uk+1S

T
}

= (A−BCT )E
{
UkS

T
}

, and since U1 = S it
follows that E

{
Uk+1S

T
}

= (A−BCT )kQs. Recalling that
M = A−BCT we conclude that:

E {SiUi,k+1} = [MkQs]i,i. (A.5)
Plugging (A.5) and denoting E{U2

i,k+1} = [Qu,k+1]i,i into
(A.3) we obtain (8). Next, we use (8) to write the MSE. By
plugging the expression for Ŝi,k in (A.3) into E{(Si− Ŝi,k)2}
we obtain that:

E{(Si − Ŝi,k)2} = σ2
i −

(
[MkQs]i,i − σ2

i a
k
i

)2
[Qu,k+1]i,i − 2aki [MkQs]i,i + σ2

i a
2k
i

=
σ2
i [Qu,k+1]i,i −

(
[MkQs]i,i

)2
[Qu,k+1]i,i − 2aki [MkQs]i,i + σ2

i a
2k
i

(A.6)

which is Eqn. (9). Finally, we consider (A.6) for k→∞. As
the magnitudes of eigenvalues of the matrix M are smaller
than unity it follows that limk→∞

(
[MkQs]i,i

)2
= 0 and

limk→∞[MkQs]i,i = 0. Furthermore, since |ai| > 1 and
since limk→∞Qu,k = Qu it follows that for k large enough(
[Qu,k+1]i,i − 2aki [MkQs]i,i + σ2

i a
2k
i

)
≈ σ2

i a
2k
i .1 Therefore,

for k large enough we have:
σ2
i [Qu,k+1]i,i −

(
[MkQs]i,i

)2
[Qu,k+1]i,i − 2aki [MkQs]i,i + σ2

i a
2k
i

≈ a−2ki [Qu,k+1]i,i

= a−2ki E
{
U2
i,k+1

}
.
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From Remark 2 it follows that the MSE in (9) is upper
bouned by the MSE of the decoder (7). Recall that the MSE of
the decoder (7) is given by E{(Si−Ŝi,k)2}=|ai|−2kE{U2

i,k+1}.
Thus, we upper bound the MSE in (9) via upper bounding
E{U2

i,k+1} which leads to an upper bound on K.
From (A.4) and from the fact that Uk and Zk are indepen-

dent we have:

E
{
Uk+1U

T
k+1

}
= ME

{
UkU

T
k

}
MT + Qz,

= MkE{U1U
T
1 }(MT )k+

k−1∑
l=0

MlQz(M
T )l

= MkQs(M
T )k +

k−1∑
l=0

MlQz(M
T )l. (B.1)

Since the eigenvalues of M are inside the unit circle (the con-
troller stabilizes the system), it follows that

[
MkQs(M

T)k
]
i,i
→

0 as k→∞, and therefore from the fact that Qu,k → Qu for
k → ∞ we have from (B.1) that

[∑k−1
l=0 MlQz(M

T )l
]
i,i
→

[Qu]i,i as k→∞.2 Thus, we have:

E
{
U2
i,k+1

}
≤
[
MkQs(M

T )k
]
i,i

+ [Qu]i,i.

Next, we upper bound
[
MkQs(M

T )k
]
1,1

. The bound for
i = 2 is obtained by following similar steps. First, we note
that (MT )k = (Mk)T . Furthermore, we can apply Cholesky
decomposition [12, Subsection 19.2.1.2] to Qs:3

MkQs(M
k)T = MkLLT (Mk)T , L =

[
σ1 0

ρsσ2 σ2
√

1− ρ2s

]
.

Now, we write Mk in terms of the eigenvalues and eigenvectors
of M, see [12, Subsection 4.5.2.2]. Let D = diag(λ1, λ2) be a

diagonal matrix of the eigenvalues of M, and let V =

[
v1 v2
v3 v4

]
be a 2 × 2 matrix whose columns are the corresponding
eigenvectors of M. We have:

M = VDV−1 ⇒ Mk = VDkV−1.

1From the fact that limk→∞
(
[MkQs]i,i

)2
= 0 it follows that

aki [M
kQs]i,i increases to infinity slower than σ2

i a
2k
i .

2Note that
[∑k−1

l=0 MlQz(MT )l
]
i,i
≥ 0, k = 1, 2, . . . , i = 1, 2, since

the diagonal elements are sums of variances of the noise.
3Since Qs is a correlation matrix, and ρs 6= 1 we have that Qs is positive-

definite, hence, Cholesky decomposition exists.



Next, we define R , VDkV−1L =

[
r1 r2
r3 r4

]
. This implies

that: [
MkQs(M

T )k
]
1,1

=
[
RRT

]
1,1

= r21 + r22. (B.2)

The next step is to upper bound r1 and r2. Writing VDV−1

explicitly we have:

VDkV−1 =

[
v1 v2
v3 v4

] [
λk1 0
0 λk2

] [
v1 v2
v3 v4

]−1
=

[
v1λ

k
1 v2λ

k
2

v3λ
k
1 v4λ

k
2

] [
v1 v2
v3 v4

]−1
=

1

det(V)

[
v1λ

k
1 v2λ

k
2

v3λ
k
1 v4λ

k
2

] [
v4 −v2
−v3 v1

]
=

1

det(V)

[
v1v4λ

k
1 − v2v3λk2 v1v2(λk2 − λk1)

v3v4(λk1 − λk2) v1v4λ
k
2 − v2v3λk1

]
.

(B.3)

Therefore, we have:

VDkV−1L =

[
v1v4λ

k
1 − v2v3λk2 v1v2(λk2 − λk1)

v3v4(λk1 − λk2) v1v4λ
k
2 − v2v3λk1

]
×[

σ1 0

ρsσ2 σ2
√

1− ρ2s

]
· 1

det(V)
,

which implies that

r1 =
1

det(V)

(
σ1
(
v1v4λ

k
1 − v2v3λk2

)
+ ρsσ2

(
v1v2(λk2 − λk1)

) )
(B.4a)

r2 =
1

det(V)
σ2
√

1− ρ2s
(
v1v2(λk2 − λk1)

)
. (B.4b)

Now, we upper bound |r1| as follows:

|r1| ≤
1

|det(V)|

(
σ1
(
|v1v4||λ1|k + |v2v3||λ2|k

)
+ |ρs|σ2

(
|v1v2|(|λ2|k + |λ1|k)

) )
(a)

≤ σ1 (|v1v4λ1|+ |v2v3λ2|) + |ρsσ2v1v2|(|λ2|+ |λ1|)
|det(V)|

, η1

where (a) follows from the fact that |λi| < 1, i = 1, 2.
Following similar arguments we bound |r2| as follows:

|r2| ≤
σ2
√

1− ρ2s (|v1v2|(|λ2|+ |λ1|))
|det(V)|

, η2.

Hence, we have that
[
MkQs(M

T )k
]
1,1
≤ η21 + η22 , and this

implies that:

E
{
U2
1,k+1

}
≤ η21 + η22 + [Qu]1,1 , ϑ1.

Following similar arguments we have that
[
MkQs(M

T )k
]
2,2
≤

η23 + η24 , where:

η3 ,
|σ1v3v4|(|λ1|+ |λ2|) + |ρsσ2| (|v1v4λ2|+ |v2v3λ1|)

|det(V)|

η4 ,
σ2
√

1− ρ2s (|v1v4λ2|+ |v2v3λ1|)
|det(V)|

,

and therefore:

E
{
U2
2,k+1

}
≤ η23 + η24 + [Qu]2,2 , ϑ2.

Finally, we Let E{(Si − Ŝi,k)2} , Di,k be the achieved
distortion at time instance k. Therefore we have Di,k =

a−2ki E
{
U2
i,k+1

}
. Thus, we have:

K ≤
log
(

ϑi
Di,k

)
2 log |ai|

, i = 1, 2,

and by setting Di,k = Di we obtain the bound (10).
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In order to lower bound KLQG, we lower bound the MSE
in (9) as follows:

E
{

(Si − Ŝi,k)2
}

= σ2
i

[Qu,k+1]i,i − 1
σ2
i

(
[MkQs]i,i

)2
[Qu,k+1]i,i − 2aki [MkQs]i,i + σ2

i a
2k
i

(a)

≥ σ2
i

[Qz]i,i − 1
σ2
i

(
[MkQs]i,i

)2
[Qz]i,i − 2aki [MkQs]i,i + σ2

i a
2k
i

, (C.1)

where (a) follows from the fact that [Qu,k+1]i,i≥[Qz]i,i, see

(B.1), and from the fact that
[Qu,k+1]i,i− 1

σ2
i
([MkQs]i,i)

2

[Qu,k+1]i,i−2aki [MkQs]i,i+σ2
i a

2k
i

≤

1. To see this recall that E
{

(Si−Ŝi,k)2
}

=σ2
i−E

{
Ŝ2
i,k

}
, and

therefore we have:

σ2
i

1−
[Qu,k+1]i,i− 1

σ2
i

(
[MkQs]i,i

)2
[Qu,k+1]i,i−2aki [MkQs]i,i+σ2

i a
2k
i

=E
{
Ŝ2
i,k

}
≥0,

which implies that
[Qu,k+1]i,i− 1

σ2
i
([MkQs]i,i)

2

[Qu,k+1]i,i−2aki [MkQs]i,i+σ2
i a

2k
i

≤ 1. Next,
we lower bound the numerator of (C.1) and upper bound the
denominator of (C.1).

Recall that Mk = (A−BCT )k and consider upper bounding
[MkQs]1,1. Similarly to Appendix B writing Mk in terms of
its eigenvalues matrix D and eigenvectors matrix V we obtain
Mk = VDkV−1. Using (B.3) we obtain:

VDkV−1Qs =

[
v1v4λ

k
1 − v2v3λk2 v1v2(λk2 − λk1)

v3v4(λk1 − λk2) v1v4λ
k
2 − v2v3λk1

]
×[

σ2
1 ρsσ1σ2

ρsσ1σ2 σ2
2

]
· 1

det(V)
,

from which we compute:

[MkQs]1,1 =
σ2
1

(
v1v4λ

k
1−v2v3λk2

)
+ρsσ1σ2v1v2(λk2−λk1)

det(V)
.

(C.2)

Next, using the fact that the eigenvalues of M are inside the
unit circle we obtain the following upper bound on [MkQs]1,1,
for k = 1, 2, . . . :



[MkQs]1,1 ≤
1

|det(V)|

(
σ2
1 (|v1v4λ1|+ |v2v3λ2|)

+ |ρsσ1σ2v1v2|(|λ2|+ |λ1|)
)
, β1.

Following similar arguments we also bound:

[MkQs]2,2 ≤
1

|det(V)|

(
σ2
2 (|v1v4λ2|+ |v2v3λ1|)

+ |ρsσ1σ2v3v4|(|λ2|+ |λ1|)
)
, β2.

Now, plugging into (C.1) and recalling that E{(Si−Ŝi,k)2}=
Di,k we have:

Di,k ≥
σ2
i [Qz]i,i − β2

i

[Qz]i,i + 2|ai|kβi + σ2
i |ai|2k

,

which can also be written as

Di,k[Qz]i,i−σ2
i [Qz]i,i+β

2
i ≥−Di,k

(
2|ai|kβi+σ2

i |ai|2k
)

⇒σ2
i [Qz]i,i − β2

i −Di,k[Qz]i,i
Di,k

≤ 2|ai|kβi + σ2
i |ai|2k.

Next, we recall that |ai| > 1 and obtain the following bound:

σ2
i [Qz]i,i − β2

i −Di,k[Qz]i,i
Di,k

≤ (2βi + σ2
i )|ai|2k.

Taking the log from both sides we have

log

(
σ2
i [Qz]i,i − β2

i −Di,k[Qz]i,i
Di,k

)
≤ log

(
(2βi + σ2

i )|ai|2k
)
,

which can be written as:

log

(
σ2
i [Qz]i,i − β2

i −Di,k[Qz]i,i
(2βi + σ2

i )Di,k

)
≤ 2k log |ai|,

and therefore we have

log
(
σ2
i [Qz ]i,i−β

2
i−Di,k[Qz ]i,i

(2βi+σ2
i )Di,k

)
2 log |ai|

≤ k,

which is stated in Eqn. (11).
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Recall that αi,0 = σ2
i . From (4a) we have:

log

(
α1,K

σ2
1

)
=

K∑
k=1

log

(
σ2
z,0 + σ2

z,1 + Ψ2
k−1g

2(1− ρ2k−1)

π1

)
.

As |ρk| ∈ [0, 1], it follows that:

Ψ2
k−1g

2(1− ρ2k−1) =
Pg2(1− ρ2k−1)

1 + g2 + 2g|ρk − 1|
≤ Pg2

1 + g2
.

Thus, we obtain the following upper bound:
σ2
z,0 + σ2

z,1 + Ψ2
k−1g

2(1− ρ2k−1)

π1
≤
σ2
z,0 + σ2

z,1 + π1g
2

π1 + π1g2
.

Next, we use the fact that log(x) ≤ x− 1 to obtain

log

(
σ2
z,0 + σ2

z,1 + π1g
2

π1 + π1g2

)
≤
σ2
z,0 + σ2

z,1 + π1g
2

π1 + π1g2
− 1

= − P

π1 + π1g2
,

and therefore it follows that

log

(
α1,K

σ2
1

)
= log

(
D1

σ2
1

)
≤ − KP

π1 + π1g2
,

which implies that

Kub
OL=

⌈
(1 + g2)

P
max

{
π1 log

(
σ2
1

D1

)
,
π2
g2

log

(
σ2
2

D2

)}⌉
.

To obtain K lb
OL we note that 0 ≤ Ψ2

k−1g
2(1 − ρ2k−1) where

equality is obtained by setting ρk−1 = 1. Then, we use the
inequality 1− 1

x ≤ log x to obtain:

‘ log

(
σ2
z,0 + σ2

z,1

σ2
z,0 + σ2

z,1 + P

)
≥ 1−

σ2
z,0 + σ2

z,1 + P

σ2
z,0 + σ2

z,1

= − P

σ2
z,0 + σ2

z,1

.

Thus, we have:

log

(
D1

σ2
1

)
≥ − KP

σ2
z,0 + σ2

z,1

,

which results in the following lower bound:

K lb
OL=

⌈
max

{
σ2
z,0+σ2

z,1

P
log

(
σ2
1

D1

)
,

σ2
z,0+σ2

z,2

P
log

(
σ2
2

D2

)}⌉
.
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We begin with explicitly writing the condition Kub
OL <

K lb
LQG, for the symmetric case:

2(P + σ2
z)

P
log

(
σ2
1

D1

)
<

log
(
σ2
1σ

2
z−β

2
1−D1σ

2
z

(2β1+σ2
1)D1

)
2 log |a1|

. (E.1)

As we aim to provide a characterization of P ’s for which OL
outperforms LQG, we lower bound the right-hand-side (RHS)
of (E.1) by upper bounding β1 and 2 log |a1| in terms of P
and of the system parameters (noise and source parameters).
We begin with an upper bound on 2 log |a1|.

A. An Upper Bound on 2 log |a1|
We follow steps similar to the steps presented in [5, Section

IV.C], for the symmetric case without common noise, and
obtain that a21 = x0, where x0 is the unique real positive
root4 of the equation:

σ2
zx

3 + σ2
zx

2 − (σ2
z + 2P )x− σ2

z = 0.

This equation can be written as:

x3 + x2 −
(

1 +
2P

σ2
z

)
x− 1 = 0. (E.2)

Next, we use Budan’s theorem [13] to upper bound x0:
Theorem. (Budan’s theorem) Let p(x) = a0 + a1x + · · · +
anx

n be a polynomial of degree n, and let p(j)(x) be its

4The uniqueness of a real positive root follows from Descartes rule, [12,
Subsection 1.6.3.2]



β1 =
f20 (a1, c1)

(
σ2
1

a1

(
a21c

2
1 + (1− (a1 − c1)a1)2

)
+ 2|ρsσ1σ2|

a1
|a1c1(1− (a1 − c1)a1)|

)
f20 (a1, c1) (|a21c21 − (1− (a1 − c1)a1)2|)

(a)
=

σ2
1

(
a21c

2
1 + (1− (a1 − c1)a1)2

)
+ 2|ρsσ1σ2| |a1c1(1− (a1 − c1)a1)|

|a1(a21c
2
1 − (1− (a1 − c1)a1)2)|

, (E.6)

j’th derivative. Define the function V (α) to be the number
of sign variations in the sequence p(α), p(1)(α), . . . , p(n)(α).
Then, the number of roots of the polynomial p(x) in the open
interval (a, b) is either equal to V (a) − V (b) or less by an
even number.

Let p(x) be the polynomial in (E.2). Then we have:

p(0)(x) = x3 + x2 −
(

1 +
2P

σ2
z

)
x− 1, (E.3a)

p(1)(x) = 3x2 + 2x−
(

1 +
2P

σ2
z

)
, (E.3b)

p(2)(x) = 6x+ 2, (E.3c)

p(3)(x) = 6. (E.3d)

For x = 1 we have V (1) = 1. Note that sgn(p(1)(1))
depend on the term 2P

σ2
z

, however, since sgn(p(0)(1)) = −1

and sgn(p(2)(1)) = 1, in both cases we have V (1) = 1. Next,
we let χ = P

2σ2
z

and set x = 1 + χ to obtain:

p(0)(1 + χ) = χ3 > 0,

p(1)(1 + χ) = 3χ2 + 4χ+ 4 > 0,

p(2)(1 + χ) = 6χ+ 8 > 0,

p(3)(1 + χ) = 6 > 0.

Therefore, V (1 +χ) = 0. Thus, Budan’s theorem implies that
the number of roots of (E.2) in the interval (1, 1 + χ) is 1.
From Descartes rule we know that there is a unique positive
root, therefore 1 + χ is an upper bound on x0: x0 < 1 + P

2σ2
z

.
Next, recall that a21 = x0, which implies that 2 log(|a1|) =

log(x0) ≤ log
(

1 + P
2σ2
z

)
. Using the fact that log(x) ≤ x− 1

we have the following bound on 2 log(|a1|):

2 log(|a1|) ≤
P

2σ2
z

. (E.4)

Next, we upper bound β1.

B. An Upper Bound on β1
Recall the definition of β1:

β1 =
σ2
1 (|v1v4λ1|+ |v2v3λ2|) + |ρsσ1σ2v1v2|(|λ2|+ |λ1|)

|det(V)|
.

For the symmetric case the diagonal elements of A can be

selected as in [5, Subsection IV.C]: A =

[
a1 0
0 −a1

]
, where

a1 > 1.5 In the following we will show that due to symmetry
we can equivalently interchange a1 with −a1 on the main

5Recall that a1 6= a2, see Subsection III-B.

diagonal of A, which implies that λ1 = −λ2, v1 = v4, v2 =
v3, and that c2 = −c1. Therefore, we write β1 as follows:

β1 =
σ2
1 |λ1|

(
v21 + v22

)
+ 2|λ1||ρsσ1σ2v1v2|

|v21 − v22 |
.

Let I denote the identity matrix. Next, we explicitly express
λ1, v1, and v2. From [14, Lemma 2.4] we know that λ1 = 1

a1
.

Furthermore, recall that M =

[
a1 − c1 c1
−c1 −(a1 − c1)

]
. Now,

an eiegenvector v of M, corresponding to the eigenvalue λ1,
obeys Mv = λ1v. This equation can also be written using a
matrix form:

(M− λ1I)v =

[
a1 − c1 − λ1 c1
−c1 −(a1 − c1)− λ1

] [
v1
v2

]
= 0.

Therefore, recalling that eigenvectors has unity norm, we
obtain an explicit expression for v:[

v1
v2

]
=

 c1√
c21+(a1−c1−λ1)2

− a1−c1−λ1√
c21+(a1−c1−λ1)2

 .
Now, plugging the expression for λ we write:

v1 =
c1√

c21 + (a1 − c1 − 1
a1

)2

=
a1c1√

a21c
2
1 + ((a1 − c1)a1 − 1)2

(E.5a)

v2 = −
a1 − c1 − 1

a1√
c21 + (a1 − c1 − 1

a1
)2

=
1− (a1 − c1)a1√

a21c
2
1 + ((a1 − c1)a1 − 1)2

. (E.5b)

Let f0(a1, c1) = 1√
a21c

2
1+((a1−c1)a1−1)2

. Using (E.5) we write

β1 as in (E.6) at the top of this page, where (a) follows from
the fact that a1 > 1. Since we are interested in an upper bound
on β1, we lower bound the denominator of (E.6) and upper
bound the numerator. For this purpose, we first explicitly write
c1 in terms of a1. From the definition of the vector C, see
Subsection III-B we have:

C = (BTGB + 1)−1AGTB,

where G is the unique positive-definite solution of the discrete
algebraic Riccati equation G = ATGA − ATGB(BTGB +
1)−1BTGA, such that all the eigenvalues of the matrix A −
BCT have magnitudes smaller than 1. Let G =

[
g1 g2
g3 g4

]
.



From [15, Prop. 1] we have that for the symmetric case and
the considered A, the elements of G are given by:

g1 = g4 =
(a21 − 1)(1 + a21)2

4a21
,

g2 = g3 =
(1− a21)2(1 + a21)

4a21
.

Writing AGTB = AGB explicitly we have:

AGB =

[
a1 0
0 −a1

] [
g1 g2
g3 g4

] [
1
1

]
=

[
a1g1 a1g2
−a1g3 −a1g4

] [
1
1

]
=

[
a1(g1 + g2)
−a1(g3 + g4)

]
.

Writing BTGB + 1 explicitly we have:

BTGB + 1

= 2(g1 + g2) + 1

= 2

(
(a21 − 1)(1 + a21)2

4a21
+

(1− a21)2(1 + a21)

4a21

)
+ 1

= 2

(
(a21 − 1)(1 + a21)2 + (1− a21)2(1 + a21)

4a21

)
+ 1

= 2

(
(1 + a21)(a21 − 1)(1 + a21 − 1 + a21)

4a21

)
+ 1

= (1 + a21)(a21 − 1) + 1.

Therefore, since g1 + g2 =
(1+a21)(a

2
1−1)

2 , we have:

c1 =
a1(g1 + g2)

2(g1 + g2) + 1

=
a1(1 + a21)(a21 − 1)

2((1 + a21)(a21 − 1) + 1)

=
a41 − 1

2a31
(E.7)

Computing c2 via following similar arguments it follows that
c2 = −c1. Note that (E.7) implies that 0 ≤ c1 ≤ a1. Next, we
lower bound the denominator of β1 in (E.6). We write:

a1(a21c
2
1 − (1− (a1 − c1)a1)2)

= a1(a21c
2
1 − (1− 2(a1 − c1)a1 + (a1 − c1)2a21))

= a1(a21c
2
1 − (1− 2a21 + 2a1c1 + a41 − 2a31c1 + a21c

2
1))

= a1(a21c
2
1 − 1 + 2a21 − 2a1c1 − a41 + 2a31c1 − a21c21))

= 2a31 + 2a41c1 − 2a21c1 − a51 − a1
= 2a31 + 2a21c1(a21 − 1)− a51 − a1
= 2a21c1(a21 − 1)− a1(1− a21)2

, f1(a1, c1). (E.8)

In order to lower bound f1(a1, c1) we present the following
lemma:

Lemma 1. For a1 > 1, the function f1(a1, c1) in (E.8) is
positive and monotonic increasing in a1.

Proof: First, we write f1(a1, c1) only in terms of a1. By
plugging (E.7) into (E.8) we obtain:

f1(a1, c1) =
2a31(a21 − 1)2(1 + a21)

2((1 + a21)(a21 − 1) + 1)
− a1(1− a21)2

= a1(1− a21)2
(

2a21(1 + a21)

2((1 + a21)(a21 − 1) + 1)
− 1

)
= a1(1− a21)2

(
a41 + a21
a41

− 1

)
=
a31(1− a21)2

a41

=
(a21 − 1)2

a1

=
a41 − 2a21 + 1

a1
, f2(a1). (E.9)

As a1 > 1, we have that f2(a1) > 0. Furthermore, we have:

f
(1)
2 (a1) =

3a41 − 2a21 − 1

a21
> 0, ∀a1 > 1. (E.10)

Therefore, as the derivative of f2(a1) is positive for a1 >
1 we conclude that in this regime f2(a1) is monotonically
increasing.

Lemma 1 implies that if 1 ≤ alb
1 < a1 then f2(alb

1 ) <
f2(a1). Therefore, in order to lower bound the denominator
of β1 in (E.6), i.e., lower bound f1(a1, c1) in (E.8) we derive
a lower bound on a1. The following lemma presents a class
of lower bounds on a1.

Lemma 2. Let 0 < δ ≤ 4. If P < 1
4δ(4 + δ)σ2

z +√
1
4δ((4 + δ)σ2

z)2(1 + δ
4 ) then

√
1 + 2P

(4+δ)σ2
z
< a1.

Proof: From Budan’s theorem, see Appendix E-A, it
follows that if V (x̃) = V (1), then x̃ is a lower bound on x0,
where x0 is the unique root of (E.2) which is real and larger
than 1 (see Appendix E-A for the steps leading to an upper
bound on x0). Now, let χ = 2P

(4+δ)σ2
z

, for some 0 < δ ≤ 4,
and evaluate (E.3) at x̃ = 1 + χ:

p(0)(1+χ) = (1 + χ)3 + (1 + χ)2

− (1 + χ)(1 + (4 + δ)χ)− 1

= χ3 − δχ2 − δχ, (E.11a)

p(1)(1+χ) = 3(1 + χ)2 + 2(1 + χ)− (1 + (4 + δ)χ)

= 3χ2 + (4− δ)χ+ 4 > 0, (E.11b)

p(2)(1+χ) = 6(1 + χ) + 2 = 6χ+ 8 > 0, (E.11c)

p(3)(1+χ) = 6 > 0. (E.11d)

Note that (E.11b) holds since δ ≤ 4. Thus, in order to have
V (1+χ) = 1 we must have χ3−δχ2−δχ < 0, or equivalently
χ2 − δχ − δ < 0. Plugging the value of χ we obtain the
following polynomial inequality in terms of P :

q(P ) = P 2 − 1

2
δ(4 + δ)σ2

zP −
1

4
δ((4 + δ)σ2

z)2 < 0.



σ2
1

(
a21c

2
1 + ((a1 − c1)a1 − 1)2

)
+ 2|ρsσ1σ2|a1c1((a1 − c1)a1 − 1)

≤ σ2
1

((
1 +

P

2σ2
z

)
ϕ2
1(P, δ) + ϕ2

2(P, δ)

)
+ 2|ρsσ1σ2|ϕ1(P, δ)ϕ2(P, δ)

√
1 +

P

2σ2
z

. (E.17)

β1≤
σ2
1

((
1 + P

2σ2
z

)
ϕ2
1(P, δ) + ϕ2

2(P, δ)
)

+ 2|ρsσ1σ2|ϕ1(P, δ)ϕ2(P, δ)
√

1 + P
2σ2
z

ϕ0(P, δ)
, τ(P, δ). (E.18)

The roots of q(P ) are given by:

P0 =
1

4
δ(4 + δ)σ2

z ±
√

1

4
δ((4 + δ)σ2

z)2(1 +
δ

4
),

which implies that one of the roots is positive while the other
is negative. Therefore, we have that V (1 + χ) = 1 for

P <
1

4
δ(4 + δ)σ2

z +

√
1

4
δ((4 + δ)σ2

z)2(1 +
δ

4
). (E.12)

If (E.12) holds then 1 + 2P
(4+δ)σ2

z
is a lower bound on x0. The

bound on a1 directly follows.
Recalling the definition of f2(a1) in (E.9), Lemma 1 and

Lemma 2 imply that if (E.12) holds then a lower bound on
the denominator of (E.6) is given by:

ϕ0(P, δ) , f2

(√
1 +

2P

(4 + δ)σ2
z

)
≤ |a1(a21c

2
1 − (1− (a1 − c1)a1)2)|, (E.13)

Next, we address the upper bound on the numerator of (E.6):

σ2
1

(
a21c

2
1 + (1− (a1 − c1)a1)2

)
+ 2|ρsσ1σ2| |a1c1(1− (a1 − c1)a1)| . (E.14)

First, we write:

a1(a1 − c1)− 1 = a1

(
a1 −

(a41 − 1)

2a31

)
− 1

=
a51 + a1

2a31
− 1

=
a41 + 1

2a21
− 1

=
(a21 − 1)2

2a21
,

which is clearly positive. Hence, we write (E.14) explicitly
without the absolute value sign as follows:

σ2
1

(
a21c

2
1 + ((a1 − c1)a1 − 1)2

)
+ 2|ρsσ1σ2|a1c1((a1 − c1)a1 − 1). (E.15)

Next, we upper bound c1. Recall from Subsection E-A that
x0 < 1 + P

2σ2
z

which implies that a1 <
√

1 + P
2σ2
z

. Fur-

thermore, Lemma 2 implies that if P < 1
4δ(4 + δ)σ2

z +

√
1
4δ((4 + δ)σ2

z)2(1 + δ
4 ) then

√
1 + 2P

(4+δ)σ2
z
< a1. Thus, we

write:

c1 =
a41 − 1

2a31
≤

(
1 + P

2σ2
z

)2
− 1

2
(

1 + 2P
(4+δ)σ2

z

) 3
2

, ϕ1(P, δ). (E.16)

Similarly, we also have:

a1(a1 − c1)− 1 =
(a21 − 1)2

2a21

≤ P 2

8σ4
z

(
1 + 2P

(4+δ)σ2
z

)
, ϕ2(P, δ).

Hence, we upper bound (E.15) with (E.17) which appears at
the top of the page. Finally, combining (E.13) and (E.17) we
have that if P < 1

4δ(4+δ)σ2
z+
√

1
4δ((4 + δ)σ2

z)2(1 + δ
4 ) then

(E.18) at the top of this page constitutes an upper bound on
β1.

C. Lower bound the RHS of (E.1)

Next, we use the upper bounds on β1 and on 2 log |a1| to
lower bound the RHS of (E.1):

log
(
σ2
1σ

2
z−β

2
1−D1σ

2
z

(2β1+σ2
1)D1

)
2 log |a1|

≥
2σ2

z log
(
σ2
1σ

2
z−τ

2(P,δ)−D1σ
2
z

(2τ(P,δ)+σ2
1)D1

)
P

.

Thus, using this bound explicitly in (E.1) we obtain a sufficient
condition for Kub

OL < K lb
LQG:

2σ2
z log

(
σ2
1σ

2
z−τ

2(P,δ)−D1σ
2
z

(2τ(P,δ)+σ2
1)D1

)
P

− 2(P + σ2
z)

P
log

(
σ2
1

D1

)
> 0,

which can also be written as:

σ2
z log

(
σ2
1σ

2
z − τ2(P, δ)−D1σ

2
z

(2τ(P, δ) + σ2
1)D1

)
− (P + σ2

z) log

(
σ2
1

D1

)
> 0.



Therefore, we obtain (13):

σ2
z log

(
σ2
1σ

2
z,1−τ2(P, δ)−D1σ

2
z,1

(2τ(P, δ) + σ2
1)σ2

1

)

− P log

(
σ2
1

D1

)
>0,

which concludes the proof of Corollary 1.
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