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Abstract— Smart meters (SMs) measure and report users’
energy consumption to the utility provider (UP) in almost real-
time, providing a much more detailed depiction of the consumer’s
energy consumption compared to regular electricity meters. This
increased rate of information flow to the UP, together with its
many potential benefits, raise important concerns regarding user
privacy. In this work, privacy in a multi-user SM system is
studied from an information theoretic perspective, where the
privacy is measured by the mutual information between the
users’ real energy consumption profile and the SM readings that
are available to the UP. Assuming that the SM readings cannot
be tempered, privacy can be achieved thanks to the existence of
an alternative energy source (AES), which can provide energy to
the users with a given average power constraint. The privacy-
power function, which characterizes the minimal information
leakage rate that can be achieved for a given average AES
power constraint is introduced. When the energy demand of the
users is independent and identically distributed over time, the
privacy-power function is characterized in a single-letter form,
which can be numerically computed in the case of discrete input
loads. It is shown that the optimal privacy is achieved through
a memoryless stochastic energy management policy. Explicit
characterization of the privacy-power function is provided for
binary and exponentially distributed input loads. In the multi-
user scenario, when the users’ energy demands are independent
and exponentially distributed with different average values, the
optimal allocation of the AES energy is identified as the solution
of a reverse waterfilling algorithm, which typically allocates more
energy from the AES to the users with higher average energy
demand.

I. INTRODUCTION

With the adoption of smart meters (SMs) in energy dis-

tribution networks the utility providers (UPs) are able to

monitor the grid more closely, and predict the changes in

the demand more accurately. This, in turn, allows the UPs

to increase the efficiency and the reliability of the grid by

dynamically adjusting the energy generation and distribution,

as well as, the prices, thereby, also influencing the user

demand. Besides, SMs also benefit the users by allowing them

to monitor their own energy consumption profile in almost real

time. Consumers can use this information to cut unnecessary
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consumption, or to reduce the cost by dynamically shifting

consumption based on the prices dynamically set by the UPs.

Adoption of SMs is increasing rapidly [1]. In Europe, the

adoption of SMs has been mandated by a directive of the

European Parliament [2], which requires 80% SM adoption

in all European households by 2020 and 100% by 2022.

However, the massive deployment of SMs at homes have

also raised serious concerns regarding user privacy [3]. High

resolution SM readings can allow anyone who has access to

this data to infer valuable private information regarding user

behaviour, including the type of electrical equipments used,

the time, frequency and duration of usage [4], and even the

TV channel that is being watched, as reported in [5].

Several methods have been proposed to provide privacy

to SM users while keeping the benefits of providing SM

readings to the UP for control and monitoring of the grid.

In [6] user anonymization is proposed by the participation of

a trusted third party. Bohli et al. [7] proposes sending the

aggregated energy consumption of a group of users and in [8]

users protect their privacy by adding random noise to their

SM readings before reporting them to the UP. Similarly, [9]

proposed quantizing SM readings before reporting them to the

UP.

In all of the above work, the privacy is obtained by distort-

ing/transforming the SM readings before being forwarded to

the UP. However, given that the energy is provided to the user

by the UP, the UP can easily track user’s energy consumption

by installing its own smart measurement devices at points

where the user connects to the grid. It seems that no level

of privacy can be achieved under such a strong assumption;

however, users can conceal the patterns corresponding to

individual devices and usage patterns by manipulating their

energy consumption. This can be achieved either by filtering

the energy consumption over time by means of a storage

device, as considered in [10], [11], [12] and [13], or by

considering the availability of an alternative energy source

(AES) as in [13], [14]. An AES can model a connection to

a second energy grid, an electric car battery or a renewable

energy source, such as a solar panel.

In our model, we assume that the users can satisfy part

of their energy demand from the AES. While the UP can

track the energy it provides to the users perfectly, it does

not have access to the instantaneous values of the amount of
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energy the user receives from the AES. Hence, the information

leakage to the UP will be limited, and a certain level of privacy

will be achieved depending on the amount of power available

from the AES. Obviously, if the average power that AES can

provide is sufficient enough to satisfy all the energy demand

of the appliances, the privacy problem can be resolved in a

straightforward manner. However, in general, the AES will

be limited in terms of the average power it can support, and

as we show in this paper, how the user utilizes the energy

provided by the AES is critical from the privacy perspective.

We measure the privacy through the mutual information rate

between the user’s real energy consumption and the energy

provided by the UP (the SM readings). Mutual information has

previously been proposed as a measure of privacy in several

works [15]–[17] and in particular for SM systems in [9], [11]

and [13].

In our previous work [14], [18] we have characterized the

minimum information leakage rate in the case of a single user

with an average and peak power constrained AES. We have

shown that there is a very close connection with this problem

and the rate-distortion problem in lossy source compression

[19] albeit with significant differences. Here we generalize

our results to multiple users. In this scenario (see Fig. 1),

multiple users, each with its own independent energy demand,

share a single AES. We assume that there is one separate

SM for each user, and the privacy is measured by the total

information leaked to the UP about the users’ energy consump-

tion. A single energy management unit (EMU) receives users’

instantaneous energy demands and decides how much energy

to provide to each user from the AES, while satisfying the

average power constraint. We first introduce the privacy-power

function which characterizes the minimal information leakage

rate to the UP for a given AES average power constraint.

We then provide a single-letter information theoretic char-

acterization of the privacy-power function for the multi-user

scenario when the input loads are independent and identically

distributed (i.i.d.) random variables. While the EMU can

employ energy management policies with memory in general,

our result shows that a memoryless energy management policy

which randomly requests energy from the AES is optimal,

significantly simplifying the implementation.

We consider both discrete and continuous input loads. For

discrete input load distributions, we first show that the optimal

output alphabet can be limited to the input alphabet without

loss of optimality, which allows us to write the privacy-power

function as the solution of a convex optimization problem

with linear constraints. As a result, the privacy-power function

with discrete input loads can be evaluated numerically in

polynomial time. We also provide a closed-form expression for

the privacy-power function when the input loads are indepen-

dent and binary distributed. Using numerical optimization, we

compare the optimal privacy-power function with two heuristic

power allocation schemes in order to highlight the potential

privacy benefits. We consider a time-division scheme which,

at each time instant, obtains the requested energy either from

the grid or from the AES, but not from both simultaneously.

We also consider an output load limiting scheme which limits

the output load to a fixed maximum value in order to cover

U1 SM
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Power Grid 
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XN(t) YN(t)
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+
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Fig. 1. Smart meter model studied in this paper. The EMU receives the
energy demand from multiple users, U1, . . . , UN , and decides how much
of the energy demand of each user should be provided from the AES.
The remainder of the energy demands are satisfied from the grid, which
is measured and reported by the SMs to the UP. The privacy is measured
through the information leakage rate, which measures how much information
the UP receives about the input load [X(1), . . . ,X(n)] by observing the SM
readings [Y(1), . . . ,Y(n)].

up any variation in the energy demand beyond this value. We

numerically show that our optimal scheme provides significant

privacy gains compared to these heuristic energy management

policies.

While the numerical evaluation of the privacy-power func-

tion for general continuous input load distributions is elusive,

we derive the Shannon lower bound (SLB) on the privacy-

power function, and show that this lower bound is tight when

the the users have independent exponentially distributed input

loads. For the latter case, we also show that the optimal

allocation of the energy generated by the AES among the

users can be obtained by the reverse waterfilling algorithm

[19]. In order to reduce the total information leakage rate,

AES resources are allocated to all the users, such that the users

with low average input load satisfy all their demand from the

AES, while the users with high average load receive the same

amount of energy from the grid.

The rest of the paper is organized as follows. In Section II,

we introduce the system model, and provide a single-letter

information theoretic characterization of the privacy-power

function when users have and i.i.d. energy demand over time.

Then we show that the privacy-power function for independent

users can be solved by simply minimizing the sum of the

individual privacy-power functions with a sum average power

constraint. The derivation of the privacy-power function for

discrete input loads and its particularization to binary input

loads is addressed in Section III. Then in Section IV the

privacy-power function for continuous input loads is studied

and particularized to the exponential distribution. Numerical

results are provided in Section V. Finally, conclusions are

drawn in Section VI.

II. SYSTEM MODEL

We consider the discrete time SM model depicted in Fig.

1. We have N users connected to the energy grid. The energy

requested by user i at time instant t is denoted by Xi(t) ∈ Xi,

where Xi is the support set of the energy demand of user i.
We consider the availability of an AES in the system. The

AES can provide energy to the users at a maximum average

power of P . The AES reduces the energy requested from the



3

grid; but the primary use of the AES here is to create privacy

against the UP and other third parties.

The energy flow in the system is managed by the EMU.

The EMU receives, at time t, the energy demands of all the

users, i.e., the vector X(t) = [X1(t), ..., XN (t)]. Part of the

energy demand of the users can be supported by the AES,

while the remainder is provided directly from the energy grid.

We denote by Yi(t) ∈ Yi, the amount of energy user i gets

from the grid at time t, or equivalently, the reading of SM i at

time t. We define Y(t) = [Y1(1), ..., YN (t)] as the aggregated

SM readings available to the UP at time t. The energy demand

of each user has to be satisfied fully at any time, that is, we

do not allow outages or delaying/shifting the user demand.

Moreover, we do not allow increasing privacy at the expense

of wasting energy, i.e., we have 0 ≤ Yi(t) ≤ Xi(t) for all t.

At the EMU, we consider energy management policies

which, at each time instant t, decide on the amount of power

that will be provided from the AES to each of the users based

on the input loads up to time t, Xt = [X(1), ...,X(t)], and

the output loads up to the previous time instant, Yt−1 =
[Y(1), ...,Y(t− 1)]. We allow stochastic energy management

policies, that is, the output load at time t, Y(t), can be a

random function of Xt and Yt−1. We assume that, while the

UP knows P , the average power generated by the AES, it does

not have access to the instantaneous values of the energy users

receive from the AES.

Definition 1: Denote the vector of input and output load

alphabets for all the users as XN = [X1, ...,XN ] and YN =
[Y1, ...,YN ], respectively. A length-n energy management

policy is composed of, possibly stochastic, power allocation

functions

ft : X
N × t × YN × (t−1) → YN , (1)

for t = 1, ..., n, such that

Y(t) = ft(X(1), . . . ,X(t),Y(1), . . . ,Y(t− 1)), (2)

with Xi(t) ≥ Yi(t) ≥ 0 for all 1 ≤ i ≤ N and 1 ≤ t ≤ n.

We measure the privacy achieved by an n−length energy

management policy with the information leakage rate. As-

suming that the statistical behavior of the energy demand is

known by the UP, its initial uncertainty about the real energy

consumption can be measured by the entropy rate 1
n
H(Xn).

This uncertainty is reduced to 1
n
H(Xn|Yn) once the UP

observes the output load. Hence, the information leaked to

the UP can be measured by the reduction in the uncertainty,

or equivalently, by the mutual information rate between the

input and the output loads,

In ,
1

n
I (Xn;Yn) . (3)

Notice that if we could provide all the energy required by the

users from the AES, we could achieve perfect privacy, i.e., we

would have In = 0 for all n, by letting Yi(t) = 0 for all i
and t. However, in general the AES will be limited in terms

of the average power it can provide.

We are thus interested in characterizing the achievable level

of privacy as a function of the average power P that is

provided by the AES, given by

Pn = E

[

N
∑

i=1

1

n

n
∑

t=1

(Xi(t)− Yi(t))

]

, (4)

where the expectation is take over the joint probability distri-

bution of the input and output loads.

Definition 2: An information leakage rate - average power

pair (I, P ) is said to be achievable if there exists a sequence of

energy management policies of duration n with limn→∞ In ≤
I , and limn→∞ Pn ≤ P .

Definition 3: The information leakage rate - average power

region is the closure of the set of all achievable (I, P ) pairs.

Definition 4: The privacy-power function, I(P ), is the in-

fimum of the information leakage rates I such that (I, P ) is

achievable.

The privacy-power function characterizes the level of pri-

vacy that can be achieved by an average power limited AES.

The goal of the EMU is to achieve the minimum information

leakage rate by optimally allocating the limited energy from

the AES over the users and time.

This model of an AES is appropriate for energy sources with

their own large energy storage unit, which can provide energy

at a certain rate for a sufficiently long duration of time. A

peak power constraints on the AES in addition to the average

power constraint is also considered in [18]. On the other hand,

in [13] we have explicitly considered the energy generation

process at the AES, in which case the EMU is limited not

only by the average power it can pull from the AES, but

also the generated energy plus the energy available in the

battery at each time instant. These instantaneous constraints

that vary over time depending on the energy management

policy and the energy arrival process at the AES render the

analysis significantly harder as they prevent us from invoking

the information theoretic arguments that will be instrumental

in obtaining the single-letter results in this work.

Our goal is to give a mathematically tractable expression

for the privacy-power function, and identify the optimal energy

management policy that achieves it. In the rest of the paper, we

consider for simplicity i.i.d. input loads. In the next theorem,

we show that if the input load vectors X(t) are i.i.d. over time

with fX(x), we can characterize the function I(P ) in a single-

letter format. Note that the instantaneous energy demands of

the users can be correlated with each other.

Theorem 1: The privacy-power function I(P ) for an i.i.d.

input load vector X = [X1, . . . , XN ] with distribution fX(x)
is given by

I(P ) = inf
fY|X(y|x):E[

∑
N
i=1(Xi−Yi)]≤P,

0≤Yi≤Xi, i=1,..N

I(X;Y), (5)

where Y = [Y1, . . . , YN ] is the corresponding vector of SM

readings.

Some basic properties of the privacy-power function I(P )
are characterized in the following lemma. The proof follows

from standards techniques based on time-sharing arguments

[19].

Lemma 1: The privacy-power function I(P ), given above,

is a non-increasing convex function of P .
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Next we prove Theorem 1.

Proof: We first prove the achievability. Given a con-

ditional probability distribution fY|X(y|x) that satisfies (5),

we generate each Y(t) independently using fY|X(y(t)|x(t)).
The mutual information leakage rate is then given by I(X;Y)
whereas the average power constraint in (5) is trivially satis-

fied.

For the converse, assume that there is an n−length energy

management policy that satisfies the instantaneous and average

constraints in (5). Let H(X) denote the entropy of the random

variable X. The information leakage rate of the resulting out-

put load vector will satisfy the following chain of inequalities:

1

n
I(Xn;Yn) =

1

n
[H(Xn)−H(Xn|Yn)] , (6a)

=
1

n

n
∑

t=1

[

H(X(t))−H(X(t)|Xt−1Yn)
]

,

(6b)

≥
1

n

n
∑

t=1

[H(X(t)) −H(X(t)|Y(t))] , (6c)

=
1

n

n
∑

t=1

I(X(t);Y(t)), (6d)

≥
1

n

n
∑

t=1

I

(

E

[

N
∑

i=1

Xi(t)− Yi(t)

])

, (6e)

≥ I

(

1

n

n
∑

t=1

E

[

N
∑

i=1

Xi(t)− Yi(t)

])

, (6f)

≥ I(P ), (6g)

where (6b) follows from the assumption that the input loads

are i.i.d. over time, (6c) follows as conditioning reduces

entropy; (6e) follows from the definition of the privacy-power

function I(·); (6f) follows from the convexity of function I(·)
stated in Lemma 1 and Jensen’s inequality; and finally (6g)

follows since the energy management policy has to satisfy the

average power constraint and I(·) is a non-increasing function

of its argument.

Remark 1.1: The achievability part of the proof reveals that

the optimal energy management policy is memoryless; that

is, it can be achieved by simply looking at the instantaneous

input load, and generating the output load randomly using the

optimal conditional probability, which simplifies the operation

of the EMU significantly. This results in a stochastic energy

management policy rather than a deterministic one.

We note here that the same performance in Theorem 1

can also be achieved by a deterministic block-based energy

management policy if the user knew all the future energy

demands over a block of n time instants.

We also note here the similarity between the privacy-power

function in (5) and the classical rate-distortion function [19].

The characterization of the privacy-power function for a multi-

user SM system is equivalent to the rate-distortion function for

a vector source with a difference distortion measure

d(x,y) =

{

∑N

i=1 xi − yi, if yi ≤ xi, ∀i
∞, otherwise.

(7)

However, despite the similarity between the expressions of the

rate-distortion and the privacy-power functions, their opera-

tional definitions are quite different. In the case of lossy source

compression, there is an encoder and a decoder and the rate-

distortion function characterizes the minimum number of bits

per sample that the encoder should send to the decoder, such

that the decoder can reconstruct the source sequence within the

specified average distortion level. In lossy source compression,

the encoder observes the whole block of n source samples, and

maps them to an index from the compression codebook, which

is agreed upon in advance.

There are major differences between the two problems. In

the SM privacy problem, there is neither an agreed codebook

nor a digital interface. Here Yn is the direct output of the

“encoder”, rather than the reconstruction of the decoder based

on the transmitted index. The EMU does not operate over

blocks of input load realizations; instead, the output load

is decided instantaneously based on the previous input and

output loads. Similarly, in the SM privacy problem, there

is no encoder or decoder either, although the EMU can be

considered as an encoder and Yn as the reconstruction of the

input load Xn. However, the “distortion” constraint between

the input and output loads in the SM privacy problem stems

from the constraint on the available power that the AES can

generate, rather than the limited rate of encoding as in the rate

- distortion problem.

Having clarified the distinctions between the privacy-power

and rate-distortion functions, we also remark the differences

between our formulation of the SM privacy problem and the

privacy-utility framework studied in [9]. While in our privacy

model the SM readings are not tempered, and thus, report the

exact energy provided by the grid, in [9], the SM readings are

considered as the samples of an information source, which are

compressed before being forwarded to the UP in order to hide

their real values, and hence, create privacy at the expense of

distorting the SM measurements. The distortion constraint in

[9] is explicit and measures the utility of the compressed SM

samples.

If the users’ input loads are independent from each other, but

not necessarily identically distributed, the multi-user privacy-

power function in (5) simplifies further. The following chain

of inequalities lower bound the privacy-power function under

this assumption:

I(X;Y) =
N
∑

i=1

H(Xi)−H
(

Xi|X
i−1, Y N

)

, (8a)

≥
N
∑

i=1

H (Xi)−
N
∑

i=1

H (Xi|Yi) , (8b)

=
N
∑

i=1

I (Xi;Yi) , (8c)

≥
N
∑

i=1

IXi
(Pi) , (8d)

where we have defined Pi = E[Xi − Yi], and IXi
(·) denotes

the privacy power function for a system with an input load

distribution fXi
(xi). We can achieve equality in (8b) with
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independent EMU policies for individual users, fY|X(y|x) =
∏N

i fYi|Xi
(yi|xi). Consequently, we can achieve equality in

(8d) by using the single user optimal energy management

policy for each of the input loads separately, while satisfying

the total average power constraint,
∑N

i=1 Pi ≤ P .

Following the above arguments, the problem of character-

izing the optimal privacy-power function for a multi-user SM

system is reduced to the following optimization problem

I(P ) = inf∑
N
i=1 Pi≤P

N
∑

i=1

IXi
(Pi) . (9)

to study privacy in a SM system.

In the following sections, we use the information theoretic

single-letter characterization of the privacy-power function in

order to obtain either closed-form solutions or numerical al-

gorithms that give us the optimal energy management policies

in multi-user SM systems with certain input load distributions

and an average power constraint on the AES.

III. DISCRETE INPUT LOADS

In the previous section we have characterized the privacy-

power function for i.i.d. input loads as an optimization problem

in a single-letter format in (5). Now we will show that this

problem can always be efficiently solved for any discrete input

load distribution. In addition, for the particular case where

all the users have binary input loads, we give a closed-form

expression for the privacy-power function.

For discrete input and output alphabets, the characterization

of the privacy-power function I(P) in (5) is a convex opti-

mization problem since the mutual information is a convex

function of the conditional probabilities, fY|X(y|x), for y ∈
YN , x ∈ XN , and the constraints are linear. Then, (5) can

be solved numerically, e.g., by the efficient Blahut-Arimoto

(BA) algorithm [19]. However, while the input load alphabet,

defined by the system based on the energy demand profiles

of the users, can be discrete, the output load alphabet is not

necessarily discrete, and in general can take any real value. The

next theorem shows that for discrete input load alphabets, the

output load alphabet can be constrained to the input alphabet

Y = X without loss of optimally and consequently, for any

given discrete input alphabet the privacy-power function can

always be computed efficiently. This result is only valid for

i.i.d. input loads but does not require user’s input loads to be

independent from each other.

Theorem 2: Without loss of optimality, for discrete input

load alphabets, the output load alphabet YN can be constrained

to the input load alphabet, i.e., YN= XN .

Proof: Let the discrete input load alphabets for each user

be defined as a possibly infinite set

Xi = {xi,1, ..., xi,mi
: xi,j < xi,j+1},

where mi = +∞ if the input alphabet is countably infinite.

Define XC
i as the set of non-negative real numbers that are

not in the input load alphabet for each user i. Next, for any

vector x = [x1, ...., xN ] ∈ XN define the set

Ω (x) , (x−
1 , x1]× · · · × (x−

N , xN ]

where × denotes the Cartesian product and x−
i =

{x ∈ {0,Xi} : x < xi}. Now assume that the optimal privacy-

power function in (5) is achieved by the conditional probability

distribution fY|X(y|x), which might take positive values for

some yi ∈ XC
i . We define the following new conditional

probability distribution:

f
Ŷ|X(ŷ|x) =

{

0, if ∃i : ŷi ∈ XC
i ,

∫

Ω(ŷ)
fY|X(y|x)dy, if ŷi ∈ Xi, ∀i.

The new conditional probability function does not allow

any output value in XC
i for any i, i.e., the output alphabet

is limited to the input alphabet. Instead, any output vector

Y = [y1, . . . , yN ], which has a non-zero probability according

to fY|X(y|x), is assigned to a new output vector [ŷ1, . . . , ŷN ]
such that

ŷi = min{x ∈ Xi : x ≥ yi}. (10)

Notice that the energy management policy, f
Ŷ|X(ŷ|x), is still

feasible since the output load, at any time instant, is still

less than what is requested by the appliances ŷi ≤ xi, ∀i.
Moreover, observe that with this new conditional distribution

the power load demanded from the AES can only have

a smaller average value compared to the original energy

management policy, since the output load is not reduced for

any input load value. Thus, it only remains to show that the

new conditional distribution leaks at most the same amount of

information to the UP. Notice that the new output load Ŷ is

a deterministic function of Y define in (10). Hence, from the

information processing inequality, we have that X −Y − Ŷ

form a Markov chain, and consequently, I(X,Y) ≥ I(X, Ŷ),
which completes the proof.

A. Binary Input Loads

The simplest discrete input load model we can consider

is a binary input alphabet with independent Bernoulli input

load distributions for all the users, i.e., Xi ∼ Ber(pi), where

pi = pXi
(Li) and Xi = {Li, Hi} for i = 1, ..., N . Observe

that the average power required by the i−th user is given by

PXi
= Li + ∆i (1− pi), where ∆i = Hi − Li. This power

consumption model corresponds to a scenario in which the

users, at each time instant, require either a constant high power

load level Hi, or a constant low power load level Li, i.e.,

the standby power consumption level. When there is a power

demand, the EMU fulfills this demand either obtaining the

energy from the UP, or from the AES according to pY|X.

From Theorem 2, the optimal output distribution Yi is also

binary for all i. Hence, the power allocated from the AES to

each user is a binary random variable over the set {0,∆i}.

Note that, since we require Yi ≤ Xi, we can only provide

energy from the AES to user i if Xi(t) = Hi and Yi(t) = Li,

and consequently, pXiYi
(Li, Hi) = 0 and pXiYi

(Li, Li) =
pXi

(Li) = pi. The energy obtained from the AES is then

directly related to pXiYi
(Hi, Li) by Pi = ∆ipXiYi

(Hi, Li),
and we can express the mutual information I (Xi;Yi) for the

bivariate binary distribution

pXiYi
=

[

pi 0
Pi

∆i
1− pi −

Pi

∆i

]

,
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as a function of Pi as follows:

IBi
(Pi) =

Pi

∆i

log2

(

Pi

∆i

)

−

(

pi +
Pi

∆i

)

log2

(

pi +
Pi

∆i

)

− (1− pi) log2 (1− pi) .

Observe that IBi
(Pi) is a monotonically decreasing function

of Pi, and IBi
(∆i (1− pi)) = 0. Consequently, the privacy-

power function for the binary model for a single user is given

by

IBi
(Pi) = (IBi

(Pi))
+
, (11)

where (x)+ = max(x, 0).

By particularizing (9) with IXi
(Pi) = IBi

(Pi) for all i,
and solving the resultant problem, we find the optimal power

allocation P ∗
i as

P ∗
i =

{

∆ipi
1−p∆i

p∆i

if pi < p∆i
,

∆i(1− pi) otherwise,
(12)

where p∆i
(λ) = 1 − e−λ∆i , and λ is chosen such that

∑N

i=1 P
∗
i = P . Note that p∆i

satisfies 0 ≤ p∆i
≤ 1. Then, the

privacy-power function for the multiple users with independent

binary input load distributions is given by

IB(P ) =

N
∑

i=1

IBi
(P ∗

i ), (13)

=

N
∑

i=1

(

HB(pi)−
pi
p∆i

HB(p∆i
)

)+

, (14)

where HB(p) denotes the entropy of a Ber(p) distribution.

Each user can achieve full privacy IBi
(P ∗

i ) = 0 by

obtaining an average power of PXi
− Li = ∆i(1 − pi) from

the AES, the remaining power Li is obtained from the grid

without incurring any lost of privacy. However, if the average

power obtained from the AES is below PXi
− Li then the

energy obtained from the grid comes at the expense of a

loss in privacy. Note that P ∗
i and IB(P ) depend on the input

load parameters PXi
, Li, ∆i, and pi in a non-straightforward

manner. We postpone the detailed analysis of this privacy-

power function to Section V.

IV. CONTINUOUS INPUT LOADS

For continuous input loads, the optimal output alphabet

is also continuous. Consequently, efficient algorithms, such

as the BA algorithm, do not yield the optimal solution to

(5). In this case, we provide a lower bound on the privacy-

power function by using the Shannon lower bound. We then

show that this lower bound is achievable when the users have

independent exponentially distributed input loads.

Using the SLB [19], for any input load distribution, we have

IXi
(Pi) ≥ (h(Xi)− ln (Pi))

+
nats, (15)

where h(X) denotes the differential entropy of the continuous

random variable X . Observe that,

I(Xi, Yi) = h(Xi)− h(Xi|Yi), (16a)

= h(Xi)− h(Xi − Yi|Yi), (16b)

≥ h(Xi)− h(Xi − Yi), (16c)

≥ h(Xi)− h(Exp(E [Xi − Yi])), (16d)

= h(Xi)− ln (Pi) , (16e)

where we have used Exp(λ) to denote an exponential random

variable with mean λ. In the above chain of inequalities, (16c)

follows as conditioning reduces entropy, and (16d) follows

since exponential distribution maximizes the entropy among

all nonnegative distributions with a given mean value [19].

Next, we present the necessary and sufficient conditions

for any piecewise continuous input load distribution fX(x)
to achieve the SLB, together with the conditional probability

distribution fY |X(y|x) achieving it. We denote by u(x), the

unit step function which assigns 0 for x < 0, and 1 for x ≥ 0.

The Dirac delta function is denoted by δ(x). We use f ′(x) to

denote the first order derivative of f(x) and f(x+
i ) = lim

x→x
+
i

f(x) and f(x−
i ) = lim

x→x
−
i

f(x) and x → x+
i and x → x−

i

mean that x → xi from the left and right, respectively. Finally,

we define ∆f (xi) = f(x+
i )− f(x−

i ).

Theorem 3: Suppose that the input load distribution fX(x)
is continuous on R+ except for a countable number of

jump discontinuities or non-differentiable points XD =
{x1, ..., xD}. Then, the SLB (15) is achieved for all P
satisfying gY (y) ≥ 0, ∀y ∈ R+, where

gY (y) = gYC
(y) + gYD

(y) (17)

is a mixture of a continuous and a discrete functions specific

as follows:

gYC
(y) = fX(y) + E[V ]f ′

X(y), y ∈ R+/XD,

gYD
(y) = E[V ]

D
∑

i=0

∆X(xi)δ(y − xi), y ∈ XD.

For all P , at which the SLB is achieved, the output distribution

is given by fY (y) = gY (y) and the optimal conditional output

load distribution reads fY |X(y|x) = fV (x − y) fY (y)
fX (x) where

fV (v) =
1

E[V ]e
− v

E[V ]u(v).

Proof: To show this results, we need to find the con-

ditional distribution fY |X(y|x) that satisfies the SLB with

equality [19]. We require the random variables V = X − Y
and Y to be independent, and V to be distributed according

to an exponential distribution V ∼ Exp(P ) with mean P .

We first obtain the output distribution fY (y) from its Laplace

transform LfY (s) = L(fY (y))(s) as

LfY (s) =
LfX(s)

LfV (s)
,

= LfX(s) (1 + E[V ]s) .

Then, it follows that fY (y) is given by (17). The condi-

tional distribution fY |X(y|x) is obtained using the fact that

fX|Y (x|y) = fV (x − y). Finally, it can be shown that
∫∞

0
fY (y)dy = 1; and thus, the achievability is guaranteed
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λ1

λ2

λ3

λ

Fig. 2. The reverse waterfilling solution for the optimal power provided to
each user from the AES.

by requiring fY (y) ≥ 0, ∀y ∈ R+.

Remark 3.1: If the achievability condition in Theorem 3 is

satisfied for a given Pmax, it is satisfied at any P ≤ Pmax.

Then it follows that, there is a unique critical average power

level, P0, such that IX(P ) = h(X) − ln (P ) for all P ≤ P0

and IX(P ) > h(X)− ln (P ) for all P > P0.

To find a lowerbound on the privacy-power function in the

case of multiple users with continuous input load distributions,

we replace IXi
(Pi) with (h(Xi)− ln (Pi))

+
in (9), and find

the corresponding optimal power allocation P ∗
i as

P ∗
i =

{

λ, if eh(Xi) > λ,
e h(Xi), otherwise,

(18)

where λ is chosen such that
∑N

i=1 P
∗
i = P . Then the privacy-

power function for multiple users can be lower-bounded by

IX(P ) ≥

N
∑

i=1

(h(Xi)− ln (λ))
+

nats. (19)

A. Exponential Input Loads

For an exponential input load distribution with mean λi,

i.e., Xi ∼ Exp (λi), the SLB in (15) is achievable by using

the conditional distribution [18]

fYi|Xi
(y|x) =

λi

Pi

e
− (x−y)

P
i e

x
λi fYi

(y),

where fYi
is a mixture of a continuous and a discrete distri-

bution specified by

fYi
(y) =

(

1−
P

i

λi

)

1

λi

e
− y

λi +
P

i

λi

δ(y).

Then the privacy-power function for a single user with an

exponential input load with mean λi can be explicitly charac-

terized as follows:

IEi
(P

i
) =

{

ln
(

λi

Pi

)

, if Pi ≤ λi,

0, otherwise.
(20)

By particularizing (9) with IXi
(Pi) = IEi

(P
i
) for all i,

and solving the resultant problem, we find the optimal AES

power allocation among users, P ∗
i , as the well-known reverse
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Fig. 3. Privacy-power function for a binary input-output system with different
p values.

waterfilling solution

P ∗
i =

{

λ, if λ < λi,
λi, if λ ≥ λi,

where λ is chosen such that
∑N

i=1 P
∗
i
= P .

The reverse waterfilling power allocation is illustrated in

Fig. 2 for three users with independent exponentially dis-

tributed energy demands with means λ1, λ2, and λ3, respec-

tively. The optimal reverse water level is given by λ, where

the height of the shaded areas in the figure correspond to the

average AES power allocated to each user. We observe that

the optimal energy management policy satisfies all the energy

demands of the users whose average input load is below λ,

directly from the AES. Hence, no information is leaked to the

UP about the energy consumption of these users; user 1 and

user 3 in the figure. The rest of the users receive exactly the

same amount of power λ from the AES, and the remainder of

their energy demand is satisfied from the grid. Finally, the

privacy-power function for multiple users with exponential

input loads can be expressed as

IE(P ) =
N
∑

i=1

(

ln

(

λi

λ

))+

. (21)

V. NUMERICAL RESULTS

In this section we numerically analyze the privacy-power

function in a SM system with various input load distributions

and number of users, by explicitly evaluating the information

theoretic optimal leakage rate expressions.

A. Single User Scenario

In order to illustrate the behaviour of the privacy-power

function for a simple binary input load system, we first

consider a single user with an input load alphabet X = Y =
{0, 1}, and pX(0) = p. We plot the I(P ) function for the

binary input load in Fig. 3 for different p values. As expected,

the required average power from the AES is maximum when

the user wants perfect privacy, and it is zero when no privacy

is required. We also observe clearly that the privacy-power
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Fig. 4. Privacy-power function for a uniform input load, and different EMU
policies.
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Fig. 5. Privacy achieved by each user IXi
(P ) as a function of the average

AES power P for binary input loads.

function is decreasing in p and convex. Another interesting

observation from the figure is the fact that the I(P ) curves for

two different input load distributions, i.e., different p values,

might intersect. This means that, to achieve the same level

of privacy a lighter input load might require lower or higher

average power than a heavier input load. Also note that the

two different input load distributions, say p = 0.1 and p = 0.9,

have the same level of privacy when there is no AES in the

system; however, the input load with lower average energy

demand, i.e., the one with p = 0.9, achieves perfect privacy

with a much lower P value.

Next, we use the discrete uniform distribution to compare

the privacy protection achieved by the information theoretical

optimal policy derived here, with different heuristic policies.

In this case, the input load has a uniform distribution U(x)
with input load alphabet X = {0, c, 2c, ..., (N − 1)c}, where

c = 2
N−1 is a constant used to impose a mean value of

E[X ] = 1. Based on Theorem 2, the output load alphabet

can be limited to X as well without loss of optimality. We

set N = 21 and in Fig. 4 we plot the privacy-power function

for the optimal strategy obtained by using the BA Algorithm

together with the privacy-power functions of the following two

heuristic strategies:

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

p
1
=0.9, ∆

1
=10

p
2
=0.5, ∆

2
=2

p
3
=0.1, ∆

3
=1.11

I
i
(P

)
b
it

s

P

Fig. 6. Privacy achieved by each user IXi
(P ) as a function of the average

AES power P for binary input loads

Time Division: In this case, at each time instant, the EMU

gets all the energy needed by the user, either from the AES

or from the grid, but not from both simultaneously. Then, to

satisfy the average power constraint at the AES, the EMU

obtains energy from the AES with probability P
E[X] . The

information leaked to the UP, is thus given by

I(X ;Y ) = H(X)−H(X |Y = 0)
P

E[X ]

−H(X |Y = x)

(

1−
P

E[X ]

)

,

= log2(N)

(

1−
P

E[X ]

)

.

Limit Maximum Output Load: In this case, we use the

AES to limit the maximum energy that we get from the grid.

At each time instant, we get all the energy from the grid

X(t) = Y (t) if X(t) < kc, whereas if X(t) ≥ kc we get

Y (t) = kc from the grid and the remaining energy is taken

from the AES. In this case, for each k = 0, ..., N − 1, the

average power requested from the AES is given by

P = (N − 1− k) (N − k)
c

2N

and the information leaked to the UP is

I(X ;Y ) = H(X)− Pr(Y = kc)H(X |Y = kc),

= log2(N)−
N − k

2N
log2(N − k).

In Fig. 4, we can observe that given an average power limited

AES, the optimal EMU policy derived by this information

theoretic framework attains much better privacy protection,

than the simple heuristic algorithms described here.

B. Multiple Users Scenario

Next we consider a multi-user scenario with N = 3 users.

We assume equal binary load levels Hi = 1 and Li = 0, but

different average energy demands with p1 = 0.9, p2 = 0.5,
and p3 = 0.1; thus we have PX1 = 0.1, PX2 = 0.5, PX3 =
0.9. Fig. 6 illustrates the privacy for each user IBi

(P ∗
i ) as a
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Fig. 7. I(P ) with respect to the average AES power P for binary input
loads with different number of users.

function of the average power P available at the AES. Notice

that, although users 1 and 3, in the absence of an AES, leak

the same amount of information to the UP since HB(0.1) =
HB(0.9), User 1 achieves perfect privacy much more rapidly

as the average energy demand of this user is much lower. Also

note that, user 3 achieves perfect privacy for a much higher

value of P , even compared to user 2, which leaks the highest

amount of information when there is no AES, as it has the

highest entropy.

Remember that, as opposed to the exponential input load

scenario, in the binary case, the privacy-power function

IBi
(P ∗

i ) for each user does not depend solely on the average

power demand of the user, but on both of the parameters

∆i and pi. To illustrate this dependence, we consider a

scenario again with N = 3 users, but with equal average

power demands PXi
= ∆i (1− pi), while Li = 0 for all

i. We choose different parameters ∆i and pi for each user.

Fig. 6 shows the privacy achieved by each user, IBi
(P ∗

i ),
as a function of the average power P available at the AES.

Observe that the optimal power allocation quickly reduces the

information leaked by user 2, and achieves perfect privacy

for this user much before the other two, although this is the

user leaking the most amount of information in the absence

of an AES. The input power loads for users 1 and 3 have

equal entropy, but with different behaviours; user 1 demands

large amounts of energy but very rarely, while user 3 demands

low amounts of energy very frequently. The optimal EMU

policy seen by these users also differs significantly. While for

user 1 the privacy-power function is a concave monotonically

decreasing function, for user 3 the privacy-power function is

monotonically decreasing but piecewise convex.

Next, we study the effect of the number of users on the

privacy-power function. In Fig. 7, we depict the optimal

information leakage rate with respect to the available average

AES power for binary input loads with different number of

users N = {1, 2, 3}. We can observe that with more than one

users, we have different regimes of operation corresponding

to the number of users that receive energy from the grid.

Similarly, in Fig. 8 we consider the scenario with exponential

input loads. In both models, regardless of the number of users
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Fig. 8. I(P ) with respect to the average AES power P for exponential
input loads with different number of users.

in the system the total average power consumed by the users

is fixed to PX . In the figures we set PX = 1. As expected,

if the average power provided by the AES is equal to the

total average power demanded by the users, perfect privacy

can be achieved since no energy is requested from the UP.

Instead, as the average power of the AES goes to zero, all the

information is revealed to the UP, and thus, the information

leakage rate is equal to the sum of the entropies of all the

input loads. In between these two extremes the privacy-power

function exhibits a monotone decreasing convex behaviour,

and the information leakage rate increases with the number of

users in the system.

VI. CONCLUSIONS

We have introduced and studied the privacy-power function,

I(P ), which characterizes the achievable information theoretic

privacy in a multi-user SM system in the presence of an AES.

We have provided a single-letter information theoretic charac-

terization for I(P ), and showed that it can be evaluated numer-

ically when the input loads are discrete. We have also provided

explicit characterization of the privacy-power function in the

case of binary and exponential input load distributions. We

have shown that the optimal allocation of the energy provided

by the AES in the exponentially distributed input load scenario

can be derived using the reverse waterfilling algorithm, which

resembles the rate-distortion function for multiple Gaussian

sources.

We believe that the proposed information theoretic frame-

work for privacy in SM systems provides valuable tools

to identify the fundamental challenges and limits for this

critical problem, whose importance will only increase as SM

adoption becomes more widespread. Many interesting research

problems implore further studies, including time correlated

input loads, systems with multiple EMUs, as well as cost and

pricing issues considering dynamic pricing over time.
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