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Abstract—A two-way relay channel in which two users com-
municate with each other over a relay terminal is considered.
In particular, a “separated” two-way relay channel, in which
the users do not receive each other’s signals is studied. Various
achievable schemes are proposed and corresponding achievable
rate regions are characterized. Specifically, a combination of
partial decode-and-forward and compress-and-forward schemes
is proposed. In addition, compress-and-forward relaying with
two layered quantization, in which one of the users receive a
better description of the relay received signal is studied.Extension
of these achievable schemes to the Gaussian separated two-way
relay channel is presented. It is shown that the compress-and-
forward scheme achieves rates within half bit of the capacity
region in the Gaussian setting. Numerical results are also pre-
sented for comparison of the proposed achievable schemes inthe
Gaussian case.

I. I NTRODUCTION

We consider a two-way relay channel (TRC) [1], [2] in
which two users exchange independent messages with the help
of a dedicated relay terminal. TRC models scenarios such
as ad-hoc networks, or two mobile terminals communicating
with each other over a base station or a satellite. In its most
general form, this multi-user channel model can be considered
as a combination of various other well-studied models such as
the relay, the multiple access, the broadcast and the two-way
channels.

If we let one of the messages to be constant and ignore the
channel output at the other user, the system model reduces the
classical relay channel studied by Cover and El Gamal [3]. On
the other hand, if the relay terminal has no channel input, then
the model reduces to the two-way channel model studied by
Shannon [4]. Neither of these two special cases of the TRC
model has been fully understood, in the sense that, we do not
have the corresponding finite letter capacity expressions.

In this paper, we consider a special TRC, which we call
the separated two-way relay channel(sTRC), in which the
two terminals receive signals only from the relay terminal.
This corresponds to a scenario where the two terminals are
physically separated, and can only communicate through the
relay terminal which is located in between the users and is
connected to both of them.

We first propose an achievable rate region for the sTRC
based on a combination of partial decode and forward (pDF)
and compress-and-forward (CF) schemes proposed in [3] for

the classical relay channel. However, different from the usual
relay channel, in the sTRC model, the relay helps both users
simultaneously, hence both the decoded parts of the messages
and the compressed version of the relay’s received signal need
to be broadcast to the two users. On the other hand, this is
also different from the usual broadcast channel in the sense
that, both users already know their own messages, and their
own channel input, which serves as correlated side information
for what the relay is broadcasting. Hence, broadcasting of the
decoded parts and the compressed relay signal can be con-
sidered under the framework of Slepian-Wolf over broadcast
channel [5] and Wyner-Ziv over broadcast channel [6], [7],
respectively.

When broadcasting the relay received signal to the users
in a lossy fashion in the CF scenario, due to the differences
between the channel qualities from the relay to the users as
well as the qualities of the available side information at the
users, a single quantization may not be simultaneously optimal
for both users. It is shown in [6], [7] that, we can improve
the performance by transmitting refinement information to the
“better” user. While the performance measure in those works
is the average distortion of the reconstruction at the users,
here we are interested in the achieved rates. However, similar
arguments apply in the CF scenario, since the achieved rates
increase as the users receive higher quality descriptions of the
relay’s received signal.

We also provide extension of the achievable rate regions to
the Gaussian TRC setting. We present a comparison of the
rate regions achieved by CF with single-layer and two-layer
quantization schemes as well as the combined scheme of pDF
and the CF. In addition, we show that, for Gaussian channels
with symmetric noise variances at the users single-layer CF
suffices to achieve within half bit of the capacity region.

The TRC model has been popular recently, both because it
models many practical communication scenarios, and because
it represents a very simple yet theoretically challenging model
in which we can observe benefits of network coding in the
physical domain. The network coding aspects of this model
has been illustrated in [8] where the capacity region of the
binary additive sTRC is shown to be achievable with binary
linear block codes. The relay only decodes and forward the
binary sum of the messages, which suffices for each user as
they already know their own messages. For this binary setting,
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Fig. 1. Two-way relay channel model. User 1 and User 2 exchange information over the relay terminal.

all the known random coding schemes fall short of achieving
the rates on the boundary of the capacity region. Extension of
this structured coding approach to the Gaussian channel setup
through lattice codes is given in [9], [10].

The rest of the paper is organized as follows. We present
the system model in Section II. Several achievable rate regions
are provided in Section III together with an outer bound. In
Section IV, we focus on the Gaussian channel setting and
extend our achievability results and the outer bound to the
Gaussian setting. We also provide numerical results providing
a comparison between the achievable rate regions and the outer
bound. Finally we conclude the paper in Section V followed
by the Appendices.

II. SYSTEM MODEL

The discrete memoryless two-way relay channel is denoted
by (X1×X2×Xr, p(y1, y2, yr|x1, x2, xr),Y1×Y2×Y), where
X1,X2 andXr are the finite input alphabets,Y1,Y2 andY are
the finite output alphabets whilep(y1, y2, yr|x1, x2, xr) is the
probability transition function from the inputs to the outputs.
xi and yi model the input and output signals, respectively,
of user i, while xr and yr are the input and output signals,
respectively, of the relay terminal.

An (2nR1 , 2nR2 , n) code for the TRC consists of two sets
of integersW1 = {1, 2, . . . , 2nR1},W2 = {1, 2, . . . , 2nR2} as
the message sets, two sets of encoding functions{fi,j}n

j=1 at
the users such that

xi,j = fi,j(Wi, Yi,1, . . . , Yi,j−1), i = 1, 2, 1 ≤ j ≤ n,

a set of encoding functions{fr,j}n
j=1 at the relay such that

xr,j = fr,j(Yr,1, . . . , Yr,j−1), 1 ≤ j ≤ n,

and two decoding functionsg1 : Yn
1 ×W1 → W2, g2 : Yn

2 ×
W2 → W1.

The average probability of error for this system is defined
as

Pn
e = Pr{g1(W1, Y

n
1 ) 6= W2 or g2(W2, Y

n
2 ) 6= W1}.

Note that, Pn
e → 0 implies that individual average error

probabilities also go to zero. We assume that the messages
Wi, i = 1, 2, are chosen independently and uniformly over
the message setsWi.

Definition 1: A rate pair(R1, R2) is said to beachievable
for TRC, if there exists a sequence of(2nR1 , 2nR2 , n) codes
such thatPn

e → 0 asn → ∞. Thecapacity regionof the TRC
is the convex closure of all achievable rate pairs.

We focus on separated TRC in whichYi depends only
on Xr and Xi, i = 1, 2, that is, X1 − (Xr, X2) − Y2 and
X2 − (Xr, X1) − Y1 form Markov chains at each channel
realization. For this class of TRC’s, no positive rate can be
achieved without the help of the relay.

III. A CHIEVABLE RATE REGIONS AND AN OUTER BOUND

In this section, we provide achievable rate regions for
the sTRC. We only consider coding functions at the users
which depend on the message at the corresponding user, that
is, the encoding functions are independent of the previously
received messages. This is similar to the “restricted” two-way
channel model of Shannon [4]. However, while it is possible
to characterize the capacity region of the two-way channel
under the restricted encoder assumption, this does not directly
extend to the restricted sTRC model, and the capacity of the
general sTRC remains to be open.

In the first achievability scheme, each user splits its message
into two. While the first part of each message is decoded by the
relay, the second parts are only decoded by the other user. The
relay terminal broadcasts decoded parts of the messages to the
users by exploiting the fact that each user already knows its
own part. Simultaneously, the relay also compresses its own
received signal and broadcasts the quantized version to the
users by exploiting the fact that each user already knows the
decoded parts as well as their own transmitted signals, which
are correlated with the relay received signal. While the coding
strategy for broadcasting the decoded parts is as in [5], [11],
the strategy for broadcasting the relay’s received signal follows
[6]. The following theorem can be considered as an extension
of the Theorem 7 in [3] where partial DF and CF schemes are
combined.

Theorem 1:In a separated TRC (X1 × X2 ×
Xr, p(y1, y2, yr|x1, x2, xr),Y1 × Y2 × Yr), the convex
hull of all rate pairs(R1, R2) that satisfy the equations at the
bottom of the next page subject to

I(Yr ; Ŷr|Xr, X1, U2, Q) ≤ I(Xr; Y1|V, X1, Q)

I(Yr ; Ŷr|Xr, X2, U1, Q) ≤ I(Xr; Y2|V, X2, Q)



for some joint probability distribution
p(q, v, u1, u2, x1, x2, xr, y1, y2, yr, ŷr) = p(q)p(u1|q)p(u2|q)
p(x1|u1)p(x2|u2)p(v|q)p(xr |v)p(y1, y2, yr|x1, x2, xr)
·p(ŷr|xr, u1, u2, yr) is achievable, whereq ∈ Q, ui ∈ Ui,
v ∈ V and ŷr ∈ Ŷr and Q, U1, U2 , V and Ŷr all have
bounded cardinalities.

Proof: A sketch of the proof can be found in Appendix
A.

Remark 1: If we constrain the relay to pDF, that isV = Xr,
U1 = X1, U2 = X2 and Ŷr = ∅, the transmission scheme is
equivalent to DF since there is no direct link between the users
to help them decode the rest of the messages. Then the convex
hull of the set of all rate pairs(R1, R2) that satisfy

R1 ≤ min{I(X1; Yr|Xr, Q), I(Xr; Y2|X2, Q)}(1)

R2 ≤ min{I(X2; Yr|Xr, Q), I(Xr; Y1|X1, Q)}(2)

R1 + R2 ≤ I(X1, X2; Yr|Xr, Q) (3)

for some joint probability distribution

p(q, x1, x2, xr, y1, y2, yr) =p(q)p(x1|q)p(x2|q)p(xr |q)

· p(y1, y2, yr|x1, x2, xr)

is achievable.
This DF based scheme was studied in [12] for half-duplex

relay channels. While the first terms in the constraints in the
right hand side (RHS) of (1)-(3) are due to the multiple access
channel from the users to the relay, the second terms in the
RHS of (1)-(2) are due to the broadcasting stage from the relay
to the users. These latter rate constraints can also be obtained
as a special case of the joint source-channel coding scheme
in [13], [5]. Next, we consider pure CF relaying at the relay.
The following lemma gives the corresponding achievable rate
region which can be found in [14] and [15] for half-duplex
relays.

Lemma 1: In a separated TRC, by compress-and-forward
relaying, that isU1 = U2 = V = ∅, convex hull of the set of
all rate pairs(R1, R2) that satisfy

R1 ≤ I(X1; Ŷr|Xr, X2, Q), (4)

R2 ≤ I(X2; Ŷr|Xr, X1, Q) (5)

subject to

I(Yr; Ŷr|Xr, X1, Q) ≤ I(Xr; Y1|X1, Q), (6)

I(Yr; Ŷr|Xr, X2, Q) ≤ I(Xr; Y2|X2, Q) (7)

for some joint probability distribution

p(q, x1, x2, xr, y1, y2, yr,ŷr) = p(q)p(x1|q)p(x2|q)p(xr |q)

p(y1, y2, yr|x1, x2, xr)p(ŷr|xr, yr)

is achievable.
In the achievability of Lemma 1, relay terminal quantizes its

received signal and broadcasts this quantized version to both
users exploiting their correlated side information. Each user
decodes other user’s message from this quantized version of
the relay’s received signal. However, since neither the channels
from the relay to the users, nor their side information qualities
are equivalent, this single layer broadcast scheme is limited
by the quantization that can be transmitted to the worst user.
However, as in the case of broadcasting a common source
to two receivers with different channel and side information
qualities, studied in [6], in general it is possible to broadcast
a common layer to both users while transmitting a refinement
layer to the better user. Naturally, this can also be combined
with the partial decoding scheme as in Theorem 1, but here
we will only present the CF with two layer broadcasting for
the sake of brevity. We give some definitions first.

We denote byRCF
1 the set of all rate pairs(R1, R2) that

satisfy

R1 ≤ I(X1; Ŷ
2
r |Xr, X2, Q)

R2 ≤ I(X2; Ŷ
1
r |Xr, X1, Q)

subject to

I(Yr; Ŷ
1
r |Xr, X1, Q) ≤ I(V ; Y1|X1, Q)

I(Yr; Ŷ
1
r |Xr, X2, Q) ≤ I(V ; Y2|X2, Q)

I(Yr; Ŷ
2
r |Xr, X2, Ŷ

1
r , Q) ≤ I(Xr; Y1|V, X1, Q)

for some joint probability distribution

p(q, x1, x2, v, xr, y1, y2, yr, ŷ
1
r , ŷ2

r) = p(q)p(x1|q)p(x2|q)

·p(v|q)p(xr |v)p(y1, y2, yr|x1, x2, xr)p(ŷ2
r |xr , yr)p(ŷ1

r |xr , ŷ
2
r)
(8)

such thatV − Xr − (Y1, Y2) form a Markov chain.
Similarly, we denote byRCF

2 the set of all rate pairs
(R1, R2) that satisfy

R1 ≤ I(X1; Ŷ
1
r |Xr, X2, Q)

R2 ≤ I(X2; Ŷ
2
r |Xr, X1, Q)

subject to

I(Yr; Ŷ
1
r |Xr, X1, Q) ≤ I(V ; Y1|X1, Q)

I(Yr; Ŷ
1
r |Xr, X2, Q) ≤ I(V ; Y2|X2, Q)

I(Yr; Ŷ
2
r |Xr, X1, Ŷ

1
r , Q) ≤ I(Xr; Y2|V, X2, Q)

for some joint probability distribution of the form (8), such
that V − Xr − (Y1, Y2) form a Markov chain.

R1 ≤ min
{

I(U1; Yr|U2, Xr, V, Q) + I(X1; Ŷr|Xr, U1, X2, Q), I(Xr; Y2|X2, Q) − I(Yr; Ŷr|Xr, U1, X1, X2, Q)
}

R2 ≤ min
{

I(U2; Yr|U1, Xr, V, Q) + I(X2; Ŷr|Xr, U2, X1, Q), I(Xr; Y1|X1, Q) − I(Yr; Ŷr|Xr, U2, X2, X1, Q)
}

R1 + R2 ≤ I(U1, U2; Yr|Xr, V, Q) + I(X1; Ŷr|Xr, U1, X2, Q) + I(X2; Ŷr|Xr, U2, X1, Q)



Note that, the regionsRCF
1 andRCF

2 are based on which
user will receive only a single quantization̂Y 1

r of the relay
received signal, and which one will also receive the refinement
Ŷ 2

r .
Theorem 2:In a separated TRC, by compress-and-forward

relaying in two layers, convex hull of the regionRCF
1

⋃

RCF
2

is achievable.
Proof: The proof of the theorem is skipped due to space

limitations.
The achievability scheme is based on quantizing the relay

received signal into two layers: the base layerŶ 1
r , and an

enhancement layer̂Y 2
r . Then the relay broadcasts the base

layer to both users, while transmitting the enhancement layer
to only one of the users. However, this is not the usual
broadcast channel due to the availability of correlated side
information at the receivers. As described in detail in [6],there
can be different transmission schemes by using successive
decoding or dirty paper encoding to mitigate the interference
among the transmission of these two layers. Here, for brevity,
we consider only one of the schemes, in which the base layer
codeword is broadcast while the refinement layer codeword is
treated as noise. In [6], it is shown that this scheme dominates
the other possibilities in terms of the achieved distortion
performance in the case of Gaussian sources and Gaussian
channels. We have not performed such comparison in the
current setting, hence it is possible that the set of achievable
rate pairs can be enlarged by using one of the alternative
transmission schemes in [6].

We provide an outer bound for the capacity region of the
separated TRC in the following proposition.

Proposition 1: Any rate pair achievable in the separated
TRC must satisfy

R1 ≤ min{I(X1; Yr|X, X2), I(X ; Y2|X2)}, (9)

R2 ≤ min{I(X2; Yr|X, X1), I(X ; Y1|X1)}, (10)

for some joint distribution

p(x1, x2, x, y1, y2, yr) = p(x, x1, x2)p(y1, y2, yr|x1, x2, x).

Proof: Proof follows from the usual cut-set bound argu-
ments [16].

A tighter outer bound can be obtained if we constrain the
model to the restricted sTRC setting in which the encoders
at the users only depend on their own messages, and ignore
the channel outputs. Note that, all the achievable schemes
considered in this paper fall into this category.

Proposition 2: Any achievable rate pair(R1, R2) for the
separated TRC with restricted encoders must satisfy

R1 ≤ min{I(X1; Yr|Xr, X2, Q), I(Xr; Y2|X2, U2, Q)}

R2 ≤ min{I(X2; Yr|Xr, X1, Q), I(Xr; Y1|X1, U1, Q)}

for some joint distribution of the form
p(q)p(x1, u1|q)p(x2, u2|q)p(xr|u1, u2, q)p(y1, y2, yr|x1, x2, xr).

Proof: See Appendix C for a proof of the proposition.

IV. GAUSSIAN TWO-WAY RELAY CHANNEL

In this section, we focus on the Gaussian separated TRC.
Since self interference can simply be subtracted at each node,
the additive white Gaussian noise channels can be modeled as
below.

Yr = X1 + X2 + Zr (11)

Yi = Xi + Zi, for i = 1, 2, (12)

whereZr is the zero-mean Gaussian noise at the relay with
varianceNr, while Zi, i = 1, 2, is the zero-mean Gaussian
noise term at useri with varianceNi. These noise terms are
independent of each other and the channel inputs. Average
power constraints on the transmitted signals apply:

1

n
E





n
∑

j=1

x2
r,j



 ≤ Pr and
1

n
E





n
∑

j=1

x2
i,j



 ≤ Pi, i = 1, 2.

We first consider the CF scheme with single layer for the
Gaussian sTRC where the useri transmits at power̄Pi ≤ Pi,
while the relay transmits at its highest possible powerPr. Let
the forward test channel for the relay received signal be given
by Ŷr = Yr + Q with Q⊥Yr, whereQ is the quantization
error. Let Q be zero mean Gaussian with varianceNQ. We
have

I(Yr; Ŷr|X1) =
1

2
log

(

1 +
P̄2 + Nr

NQ

)

. (13)

For successful transmission of the quantized version to both
users, we need

NQ ≥ max
(i,j)=(1,2),(2,1)

(P̄i + Nr)Nj

Pr

. (14)

Then the achievable rate pair(R1, R2) for this scheme can
be found as

Ri = I(Xi; Ŷr|Xj)

= I(Xi; Xi + Xj + Z + Q|Xj)

=
1

2
log

(

1 +
P̄i

N + NQ

)

, (15)

with (i, j) ∈ {(1, 2), (2, 1)}.
Without loss of generality, we assumēP1 ≥ P̄2 andNr =

1. We also fix N1 = N2 = 1, which represents the cases
N1 = N2 in general. Then we achieve the following rate pair
with single layer CF.

R1 =
1

2
log

(

1 + P̄1 + Pr + P̄1Pr

1 + P̄1 + Pr

)

(16)

R2 =
1

2
log

(

1 + P̄1 + Pr + P̄2Pr

1 + P̄1 + Pr

)

The whole set of achievable rates with the CF scheme can be
found by taking the union of achievable pairs over all power
allocations satisfyinḡPi ≤ Pi, i = 1, 2.

The outer bound on rateRi in this setup is found as below
for i = 1, 2.

Ri ≤ min

{

1

2
log(1 + P1),

1

2
log(1 + Pr)

}



The following lemma shows that, for any given triplet of
(P1, P2, Pr), CF scheme achieves rates within1/2 bit of the
capacity outer bound. That is, the rate loss of the CF scheme
with respect to the optimal cannot be larger than1/2 bit.

Proposition 3: The achievable rate rate pair(R1, R2) of CF
scheme given in (16)-(17) is within half bit of the capacity
region of the Gaussian separate two-way relay channel, i.e.,
(R1 + 1

2 , R2 + 1
2 ) is not achievable.

Proof: See Appendix B for a proof of this proposition.

Next, we consider the achievable rate region with the more
advanced schemes for Gaussian sTRC. However, note that, in
the symmetric case ofN1 = N2, since the single layer CF
already achieves rates within half bit of the capacity, noneof
these schemes can improve the rate region beyond half bit.
The following rate region can be achieved by pDF combined
with single layer CF scheme considered in Theorem 1.

Let 0 ≤ αi ≤ 1 andαi ≤ βi ≤ 1, i = 1, 2, and0 ≤ αr ≤ 1.
Then the rate pairs(R1, R2), as defined below, are achievable.

Ri = Rdf,i + Rcf,i

for i = 1, 2, where

Rdf,1 ≤ min

{

1

2
log

(

1 +
α1P1

(β1 − α1)P1 + βP2 + Nr

)

,

1

2
log

(

1 +
αrPr

(1 − αr)Pr + N2

)}

Rdf,2 ≤ min

{

1

2
log

(

1 +
α2P2

(β2 − α2)P2 + βP1 + Nr

)

,

1

2
log

(

1 +
αrPr

(1 − αr)Pr + N1

)}

Rdf,1 + Rdf,2 ≤
1

2
log

(

1 +
α1P1 + α2P2

(β1 − α1)P1 + (β2 − α2)P2 + Nr

)

while, for i = 1, 2,

Rcf,i =
1

2
log

(

1 +
(βi − αi)Pi

Nr + NQ

)

and

NQ = max
(i,j)=(1,2),(2,1)

{

((βi − αi)Pi + Nr)Nj

(1 − αr)Pr

}

.

In Fig. 2, on the left, we plot the portion of the rate regions
achieved by DF, single layer CF and the above partial DF
schemes for the caseP1 = Pr = 50 dB andP2 = 20 dB while
N2 = 4, N1 = Nr = 1. We should note that the rate region of
partial DF scheme is not just the convex combination of the
pure DF and pure CF regions. In a concurrent work [17], it is
shown that the combined scheme of pDF and single-layer CF
achieves within3/2 bits of the capacity region for all Gaussian
TRCs.

Next, we consider the two layered transmission with CF.
We have two level quantization of the relay received signal
Yr as follows. Let Ŷ 1

r = Yr + Q1 with Q1⊥Yr, where
Q1 ∼ N (0, N1

Q) andŶ 2
r = Ŷ 1

r +Q2 with Q2⊥(Yr, Q1), where
Q2 ∼ N (0, N2

Q). The relay broadcasts the coarse quantization

Ŷ 2
r to both users, usingαPr of its power. On the other hand,

it transmits the fine quantization to only one user using the
remaining power. The codeword corresponding to the fine
quantization acts as noise for the coarse quantization. We have

N1
Q + N2

Q = max
(i,j)=(1,2),(2,1)

(αP̄i + Nr)(Nj + (1 − α)Pr)

αPr

,

and

N1
Q =

(P̄2 + Nr)

(1 + (1 − α)Pr)(1 + P̄2+Nr

N1

Q
+N2

Q

) − 1
.

In Fig. 2, on the right, we have the achievable rate regions
for DF, partial DF, CF with single layer and two layer
transmissions. While in general partial DF enlarges the rate
region compared to both DF and CF with single layer, we
see that CF with two layers achieves rate pairs that cannot be
achieved by partial DF.

We note here that, in the Gaussian case, in addition to the
two-layer quantization, further gains might be achieved by
considering hybrid digital-analog techniques as in [7]. This,
in a sense, combines amplify-and-forward relaying with the
other techniques.

V. CONCLUSIONS

We have considered sTRC, in which two users, which can
not overhear each other’s signal, exchange information over a
relay terminal. We have focused on the the restricted coding
model in which the encoder of each user only depends on
its own message, and ignores the previously received channel
outputs. Our main result is an achievable rate region based on
a combination of partial decode-and-forward scheme together
with compress-and-forward in which the relay decodes only
parts of the messages and forwards quantized versions of
its received signal to the users in addition to the decoded
parts. We have shown that the rate region can be enhanced by
considered two levels of quantization at the relay where one
of the users receives a better description of relay’s received
signal, and hence, a higher rate. We have also considered the
Gaussian setting, and shown that the proposed coding scheme
achieves within half bit of the capacity region.

APPENDIX A
PROOF OFTHEOREM 1

In the following proof we will use the notion of strong
typicality. Given a random variableX ∼ p(x), x ∈ X , the
strong typical set for block lengthn is denoted byT n

δ (X).
For the brevity of the presentation, we consider|Q| = 1 in

the proof here. Generalization to arbitrary finite cardinalities
follows from the usual techniques. We use the classical block
Markov encoding scheme [3], in whichB − 1 messages from
each user is transmitted overB blocks ofn symbols.

1) Code generation:

• Generate2nR11 i.i.d. sequencesun
1 with probability

distribution p(un
1 ) =

∏n

i=1 p(u1,i), and label these
sequences asun

1 (w′
1), w′

1 ∈ [1, 2nR11 ]. Similarly,
generate2nR21 i.i.d. sequencesun

2 with probability
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Fig. 2. Achievable rate regions and the outer bound for the Gaussian separated two-way relay channel. On the left we plot the portion of the rate region
illustrating the gain of partial DF compared to DF and singlelayer CF schemes. The figure on the right illustrates a setup in which two layer CF improves
upon partial DF scheme.

distribution p(un
2 ) =

∏n
i=1 p(u2,i), and label these

sequences asun
2 (w′

2), w′
2 ∈ [1, 2nR21 ].

• Generate2n(R11+R21) i.i.d. sequencesvn with prob-
ability p(vn) =

∏n

i=1 p(vi). Label these sequences
as vn(w′

1, w
′
2) where w′

1 ∈ [1, 2nR11 ] and w′
2 ∈

[1, 2nR21 ].
• For everyun

1 (w′
1) generate2nR12 i.i.d. sequencesxn

1

with probability

p(xn
1 |u

n
1 (w′

1)) =

n
∏

i=1

p(x1,i|u1,i(w
′
1)).

Label these sequences asxn
1 (w′′

1 |w
′
1), w′′

1 ∈
[1, 2nR12 ]. Also, for everyun

2 (w′
2) generate2nR22

i.i.d. sequencesxn
2 with probabilityp(xn

2 |u
n
2 (w′

2)) =
∏n

i=1 p(x2,i|u2,i(w
′
2)). Label these sequences as

xn
2 (w′′

2 |w
′
2), w′′

2 ∈ [1, 2nR22].
• For every vn(w′

1, w
′
2) generate

2n(I(Yr;Ŷr|Xr ,U1,U2)+ǫ) i.i.d. sequencesxn
r with

probability

p(xn
r |v

n(w′
1, w

′
2)) =

n
∏

i=1

p(xr,i|vi(w
′
1, w

′
2)).

Label these sequences asxn
r (z|w′

1, w
′
2), z ∈

[1, 2n(I(Yr;Ŷr |Xr,U1,U2)+ǫ)].
• For every(xn

r (s|w′
1, w

′
2), u

n
1 (w′

1), u
n
2 (w′

2)), generate
2n(I(Yr;Ŷr|Xr ,U1,U2)+ǫ) i.i.d. sequenceŝyn

r with prob-
ability

p(ŷn
r |x

n
r (s|w′

1, w
′
2), u

n
1 (w′

1), u
n
2 (w′

2))

=

n
∏

i=1

p(ŷr,i|xr,i(s|w
′
1, w

′
2), u1,i(w

′
1), u2,i(w

′
2))

for every xr ∈ Xr, u1 ∈ U1 and u2 ∈ U2.
Label these sequences asŷn

r (z|w′
1, w

′
2, s) wherez ∈

[1, 2n(I(Y ;Ŷr |X,U1,U2)+ǫ)].

2) Encoding:
Let w1,i = (w′

1,i, w
′′
1,i) and w2,i = (w′

2,i, w
′′
2,i) be the

messages that each user wants to transmit to the other at
block i for i = 1, . . . , B − 1. We havew′

k,i ∈ [1, 2nRk1 ]

andw′′
k,i ∈ [1, 2nRk2 ] for k = 1, 2 and i = 1, . . . , B − 1.

As the number of blocks goes to infinity, we achieve a rate
pair of B−1

B
(R1, R2) → (R1, R2) whereR1 = R11+R12

andR2 = R21 + R22.
Assume that

(

ŷn
r (w′

1,i−1, w
′
2,i−1, si−1), yr(i − 1), un

1 (w′
1,i−1), u

n
2 (w′

2,i−1),

xn
r (zi−2|w

′
1,i−1, w

′
2,i−1)

)

∈ T n
δ (Ŷr, Yr, U1, U2, Xr).

Then the following codeword triplet is transmitted:
(xn

1 (w′′
1,i|w

′
1,i), x

n
2 (w′′

2,i|w
′
2,i), x

n
r (zi−1|w′

1,i−1, w
′
2,i−1)).

3) Decoding:
We explain the decoding strategy at the end of blocki.

• After receivingyr(i), the relay declares that(ŵ′
1, ŵ

′
2)

was transmitted if

(un
1 (ŵ′

1), u
n
2 (ŵ′

2),y
n
r (i), xn

r (zi−1|w
′
1,i−1, w

′
2,i−1))

∈ T n
δ (U1, U2, Xr, Yr).

For sufficiently large n, we have (ŵ′
1, ŵ

′
2) =

(w′
1,i, w

′
2,i) with high probability if

R11 < I(U1; Yr|U2, Xr, V )

R21 < I(U2; Yr|U1, Xr, V )

R11 + R21 < I(U1, U2; Yr|Xr, V )

• The relay also estimateszi such that

(ŷn
r (zi|w

′
1,i, w

′
2,i, zi), y

n
r (i),xn

r (zi|w
′
1,i, w

′
2,i))

∈ T n
δ (Ŷr , Yr, Xr).



Using the properties of typical sets, we can show that
such azi exist with high probability for sufficiently
largen. Hence, the relay knowszi.

• The User 1 declareŝw′
2,i−1 was transmitted in block

i − 1 by User 2 if

(vn(w′
1,i−1, w

′
2,i−1), y

n
2 (i), xn

1 (i)) ∈ T n
δ (V, Y1, X1).

Since User 1 knowsw′
1,i−1, it can correctly find

ŵ′
2,i−1 = w′

2,i−1 with high probability if

R11 < I(V ; Y2|X2),

and n is sufficiently large due to the Markov chain
X2 − (X1, Xr) − Y1.
Similarly, User 2 can find the correct̂w′

1,i−1 =
w′

1,i−1 with high probability if

R21 < I(V ; Y1|X1),

and n is sufficiently large due to the Markov chain
X1 − (X2, Xr) − Y2.

• Then the User 1 declareŝzi−1 for the z index if

(xn
r (zi−1|w

′
1,i−1, ŵ

′
2,i−1),y

n
1 (i), xn

1 (i), vn(i))

∈ T n
δ (Xr, Y1, X1, V ).

and
(

xn
1 (w′′

1,i−1|w
′
1,i−1), ŷ

n
r (zi−1|w

′
1,i−1, ŵ

′
2,i−1, zi−2),

un
1 (w′

1,i), u
n
2 (w′

2,i), x
n
r (zi−2|w

′
1,i−2, w

′
2,i−2)

)

∈ T n
δ (X1, Ŷr, U1, U2, Xr)

are satisfied simultaneously for some indexzi−1. We
can show that̂zi−1 = zi−1 with high probability for
sufficiently largen if

I(Yr ; Ŷr|Xr, U1, U2) + ǫ <I(Xr; Y1|X1, V )

+ I(X1; Ŷr|U1, U2, Xr).

due to the Markov chainX2 − (X1, Xr) − Y1.
Equivalently, if

I(Yr; Ŷr|Xr, X1, U2) + ǫ < I(Xr; Y1|X1, V ).

Similarly, User 2 estimateŝzi−1 = zi−1 correctly
with high probability if,n is large enough and

I(Yr; Ŷr|Xr, X2, U1) + ǫ < I(Xr; Y2|X2, V ).

due to the Markov chainX1 − (X2, Xr) − Y2.
• Using ŷn

r (ẑi−1|w
′
1,i−1, ŵ

′
2,i−1, ẑi−1) andyn

1 (i), User
1 declaresŵ′′

i−1 was sent by User 2 in blocki− 1 if
(

xn
2 (w′′

2,i−1|w
′
2,i−1), ŷ

n
r (zi−1|w

′
1,i−1, ŵ

′
2,i−1, zi−2),

xn
1 (i − 1), xn

r (i − 1), yn
1 (i)

)

∈ T n
δ (X2, Ŷr, X1, Xr, Y1).

We haveŵ′′
2,i−1 = w′′

2,i−1 with high probability for
sufficiently largen if

R22 < I(X2; Ŷr|X1, Xr, U2) − ǫ.

Similarly, User 1 can find the correct̂w′′
1,i−1 =

w′′
1,i−1 with high probability for sufficiently largen

if
R12 < I(X1; Ŷr|X2, Xr, U1) − ǫ.

Combining the bounds forR11, R12, R21 and R22, we can
obtain the bounds given in the theorem.

APPENDIX B
PROOF OFPROPOSITION3

Under the assumption ofP1 ≥ P2, we consider three cases
separately depending on the relay power.

1) Pr ≥ P1 ≥ P2 : For the upper bound we haveRUB
i =

1
2 log(1 + Pi). For the achievable rate, let̄Pi = Pi. We
have

R1 =
1

2
log(1 + P1) +

1

2
log

(

1 + Pr

1 + P1 + Pr

)

≥ RUB
1 −

1

2
,

and

R2 =
1

2
log

(

1 + P2 + Pr + P2Pr

1 + P1 + Pr

)

≥ RUB
2 −

1

2
.

2) P1 ≥ Pr ≥ P2 : We haveRUB
1 = 1

2 log(1 + Pr) and
RUB

2 = 1
2 log(1 + P2). Let P̄1 = P1 and P̄2 = P2. We

have

R1 =
1

2
log(1 + Pr) +

1

2
log(

1 + Pr

1 + 2Pr

)

≥ RUB
1 −

1

2
.

R2 =
1

2
log

(

1 + P2 + Pr + P2Pr

1 + P1 + Pr

)

≥ RUB
2 −

1

2
.

3) P1 ≥ P2 ≥ Pr : We haveRUB
i = 1

2 log(1 + Pr). Let
P̄i = P2. We have

Ri =
1

2
log(1 + Pr) +

1

2
log(

1 + P2

1 + P2 + Pr

)

≥ RUB
i −

1

2
.

APPENDIX C
PROOF OFPROPOSITION2

From Fano’s inequality, we have, fori = 1, 2,

H(Wi|Y
n
i ) ≤ nδn,

whereδn → 0 for n → ∞. We can also write

H(W1|W2, Y
n
r ) = H(W1|W2, X

n
2 , Y n

r , Xn
r ) (17)

≤ H(W1|X
n
2 , Xn

r ) (18)

= H(W1|X
n
2 , Xn

r , Y n
2 ) (19)

≤ H(W1|Y
n
2 ) (20)

≤ nδn, (21)



where (17) follows since, from the restricted coding constraint,
Xn

2 is a function ofW2 and Xn
r is a function ofY n

r ; (19)
follows as Y n

2 − (Xn
2 , Xn

r ) − W1 form a Markov chain
based on the separated channel assumption; (20) follows since
conditioning reduces entropy; and finally (21) follows from
Fano’s inequality. Similarly, we can also show

H(W2|W1, Y
n
r ) ≤ nδn.

It follows that

nR1 = H(W1) = H(W1|W2) (22)

≤ I(W1; Y
n
r |W2) + nδn (23)

=

n
∑

i=1

I(W1; Yr,i|W2, Y
i−1
r ) + nδn

=

n
∑

i=1

H(Yr,i|Y
i−1
r , W2) − H(Yr,i|W1, W2, Y

i−1
r ) + δn

=
n

∑

i=1

H(Yr,i|Y
i−1
r , W2, X2i, Xr,i)

− H(Yr,i|W1, W2, Y
i−1
r , X1i, X2i, Xr,i) + δn (24)

≤
n

∑

i=1

H(Yr,i|X2i, Xr,i) − H(Yr,i|X1i, X2i, Xr,i) + δn

(25)

=

n
∑

i=1

I(X1i; Yr,i|X2i, Xr,i) + δn, (26)

where (23) follows form (21); (24) follows asX1i and X2i

are functions ofW1 and W2, respectively, andXr,i is a
function ofY i−1

r ; (25) follows from the fact that conditioning
reduces entropy and also the fact thatYr,i−(X1i, X2i, Xr,i)−
(W1, W2, Y

i−1
r ). Similarly, we can show that

nR2 ≤
n

∑

i=1

I(X2i; Yr,i|X1i, Xr,i). (27)

Furthermore, we have

nR1 ≤ I(W1; Y
n
2 |W2) + nδnH(W1)

=

n
∑

i=1

H(Y2i|W2, Y
i−1
2 ) − H(Y2i|W1, W2, Y

i−1
2 ) + nδn

=

n
∑

i=1

H(Y2i|W2, Y
i−1
2 , X2i)−

H(Y2i|W1, W2, X1i, X2i, Xr,i, Y
i−1
2 ) + nδn (28)

≤
n

∑

i=1

H(Y1i|W2, X2i) − H(Y2i|X1i, X2i, Xr,i) + nδn

(29)

=

n
∑

i=1

H(Y2i|W2, X2i) − H(Y2i|X2i, Xr,i) + nδn (30)

≤
n

∑

i=1

H(Y2i|U2i, X2i) − H(Y2i|X2i, Xr,i, U2i) + nδn

(31)

=

n
∑

i=1

I(Xr,i; Y2i|U2i, X2i) + nδn. (32)

We can similarly obtain

nR2 ≤
n

∑

i=1

I(Xr,i; Y1i|U1i, X1i) + nδn.

Finally, we introduce the time-sharing random variableQ
uniformly distributed over the set{1, 2, .., n} and defining
Xj , XjQ, Yj = YjQ and Uj = UjQ for j = 1, 2, r, we
complete the proof of the outer bound.
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