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Abstract—A two-way relay channel in which two users com- the classical relay channel. However, different from thealis
municate with each other over a relay terminal is considered relay channel, in the sSTRC model, the relay helps both users
In particular, a "separated” two-way relay channel, in which  gim itaneously, hence both the decoded parts of the message
the users do not receive each other’s signals is studied. \faus . , . .
achievable schemes are proposed and corresponding achiele and the compressed version of the relay’s received sigreal ne.
rate regions are characterized. Specifically, a combinatio of t0 be broadcast to the two users. On the other hand, this is
partial decode-and-forward and compress-and-forward scemes also different from the usual broadcast channel in the sense
is proposed. In addition, compress-and-forward relaying vith  that, both users already know their own messages, and their
two layered quantization, in which one of the users receive a gy channel input, which serves as correlated side infdomat
better descrlptlon of the relay received S|gnal.|s studiedExtension f hat th lav is broadcasti H broadcasti ft
of these achievable schemes to the Gaussian separated twayw 'OF What (n€ refay IS broadcasting. Hence, broadcas ing®
relay channel is presented. It is shown that the compress-an decoded parts and the compressed relay signal can be con-
forward scheme achieves rates within half bit of the capacit sidered under the framework of Slepian-Wolf over broadcast
region in the Gaussian setting. Numerical results are alsore- channel [5] and Wyner-Ziv over broadcast channel [6], [7],
sented for comparison of the proposed achievable schemestine respectively.

Gaussian case. When broadcasting the relay received signal to the users
in a lossy fashion in the CF scenario, due to the differences
between the channel qualities from the relay to the users as

We consider a two-way relay channel (TRC) [1], [2] inwell as the qualities of the available side information at th
which two users exchange independent messages with the hglgrs, a single quantization may not be simultaneouslyrapti
of a dedicated relay terminal. TRC models scenarios sufdr both users. It is shown in [6], [7] that, we can improve
as ad-hoc networks, or two mobile terminals communicatinge performance by transmitting refinement informatiorhie t
with each other over a base station or a satellite. In its mogktter” user. While the performance measure in those works
general form, this multi-user channel model can be coneitielis the average distortion of the reconstruction at the ysers
as a combination of various other well-studied models sschigere we are interested in the achieved rates. However,asimil
the relay, the multiple access, the broadcast and the two-wgguments apply in the CF scenario, since the achieved rates
channels. increase as the users receive higher quality descriptibtigeo

If we let one of the messages to be constant and ignore #e¢ay’s received signal.
channel output at the other user, the system model reduees thwe also provide extension of the achievable rate regions to
classical relay channel studied by Cover and El Gamal [3]. @e Gaussian TRC setting. We present a comparison of the
the other hand, if the relay terminal has no channel inpet) thrate regions achieved by CF with single-layer and two-layer
the model reduces to the two-way channel model studied fyantization schemes as well as the combined scheme of pDF
Shannon [4]. Neither of these two special cases of the TR{nd the CF. In addition, we show that, for Gaussian channels
model has been fully understood, in the sense that, we do mgth symmetric noise variances at the users single-layer CF
have the corresponding finite letter capacity expressions. suffices to achieve within half bit of the capacity region.

In this paper, we consider a special TRC, which we call The TRC model has been popular recently, both because it
the separated two-way relay chann@TRC), in which the models many practical communication scenarios, and becaus
two terminals receive signals only from the relay terminait represents a very simple yet theoretically challengiraglet
This corresponds to a scenario where the two terminals dmewhich we can observe benefits of network coding in the
physically separated, and can only communicate through thieysical domain. The network coding aspects of this model
relay terminal which is located in between the users andhas been illustrated in [8] where the capacity region of the
connected to both of them. binary additive sSTRC is shown to be achievable with binary

We first propose an achievable rate region for the sTR{@ear block codes. The relay only decodes and forward the
based on a combination of partial decode and forward (pDBinary sum of the messages, which suffices for each user as
and compress-and-forward (CF) schemes proposed in [3] they already know their own messages. For this binary ggttin
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Fig. 1. Two-way relay channel model. User 1 and User 2 exahamigprmation over the relay terminal.

all the known random coding schemes fall short of achieving Definition 1: A rate pair(R;, R2) is said to beachievable
the rates on the boundary of the capacity region. Extendionfor TRC, if there exists a sequence @7+, 2"%2 n) codes
this structured coding approach to the Gaussian channg sefuch thatP!* — 0 asn — co. Thecapacity regiorof the TRC
through lattice codes is given in [9], [10]. is the convex closure of all achievable rate pairs.
The rest of the paper is organized as follows. We presentWe focus on separated TRC in whid}j depends only
the system model in Section II. Several achievable rat@nsgi on X,. and X;, ¢ = 1,2, that is, X; — (X, X2) — Y2 and
are provided in Section Il together with an outer bound. 1K, — (X,, X;) — Y7 form Markov chains at each channel
Section 1V, we focus on the Gaussian channel setting arehlization. For this class of TRC’s, no positive rate can be
extend our achievability results and the outer bound to tlehieved without the help of the relay.
Gaussian setting. We also provide numerical results piroyid
a comparison between the achievable rate regions and tae outl. ACHIEVABLE RATE REGIONS AND AN OUTER BOUND
bound. Finally we conclude the paper in Section V followed |, this section, we provide achievable rate regions for
by the Appendices. the sTRC. We only consider coding functions at the users
which depend on the message at the corresponding user, that
is, the encoding functions are independent of the prewousl
The discrete memoryless two-way relay channel is denotgsteived messages. This is similar to the “restricted” way-
by (X1 x Xo x Xr, p(y1, Yo, Yr |21, 2, ), V1 X Y2 x V), where  channel model of Shannon [4]. However, while it is possible
Xy, Xy and X, are the finite input alphabet¥;, )> and) are to characterize the capacity region of the two-way channel
the finite output alphabets whil&(y:, y2, y-|71, 72, 7,) is the under the restricted encoder assumption, this does nattigire
probability transition function from the inputs to the outp. extend to the restricted STRC model, and the capacity of the
x; and y; model the input and output signals, respectivelgeneral STRC remains to be open.
of user:, while =, and y, are the input and output signals, |n the first achievability scheme, each user splits its ngssa
respectively, of the relay terminal. into two. While the first part of each message is decoded by the
An (2 2nB2 n) code for the TRC consists of two setgelay, the second parts are only decoded by the other user. Th
of integersW; = {1,2,...,2"%} W, = {1,2,...,2""2} as relay terminal broadcasts decoded parts of the messages to t
the message sets, two sets of encoding funct{igiis}”_, at users by exploiting the fact that each user already knows its
the users such that own part. Simultaneously, the relay also compresses its own
) ) received signal and broadcasts the quantized version to the
vij = fiiWi Yin,.o o Yijor), =12, 1<5<n, ey efploiting the fact that eachquser already knows the
a set of encoding function§f,.;}7_; at the relay such that decoded parts as well as their own transmitted signals,hwhic
‘ are correlated with the relay received signal. While theirgpd
Trj = [rj(Ye1, . Yogo1), 1<7<mn, strategy for broadcasting the decoded parts is as in [5], [11
) ) . . the strategy for broadcasting the relay’s received sigvilis
and two decoding functiong, : Vi x Wi — Wh, g2 : ' x [6]. The following theorem can be considered as an extension

Wa — Wi . , . . of the Theorem 7 in [3] where partial DF and CF schemes are
The average probability of error for this system is def'negombined.

as

Il. SYSTEM MODEL

Theorem 1:In a separated TRC (X; x X, X
n _ n n X (Y1, Y2, yr|T1, 22, 2), D1 X Yo X ),), the convex
e =Prig(Wh, Y1) # Wa or o(We, ¥57) # W} hull o(f all rate|pairs(R1,)Rg) that satisfy the) equations at the
Note that, P — 0 implies that individual average errorbottom of the next page subject to
probabilities also go to zero. We assume that the messages .
W;, i = 1,2, are chosen independently and uniformly over (Y7 Y2[X0, X1,02,Q) < I(Xos11|V, X1, Q)
the message sely);. 1Y Yol X0, X5, U1, Q) < I(X05 V2|V, X5, Q)



for some joint probability distribution is achievable.

p(q, v, u1, U2, T1, T2, Try Y1, Y2, Yrs Gr) = p(qQ)p(u1]q)p(uzlq) In the achievability of Lemma 1, relay terminal quantizas it
p(x1|ur)p(z2|u)p(v]@)p(zr |0)D(Y1, Y2, Yr|T1, T2, T1) received signal and broadcasts this quantized versiontto bo
-o(Jr|xr, u1, us,y) is achievable, wherg € Q, u;, € U;, users exploiting their correlated side information. Easleru
veVandg € Y. andQ, Uy, Uy , V and ), all have decodes other user's message from this quantized version of

bounded cardinalities. the relay’s received signal. However, since neither theohbs
Proof: A sketch of the proof can be found in AppendiXrom the relay to the users, nor their side information diesli
A B are equivalent, this single layer broadcast scheme isdimit

Remark 1:1f we constrain the relay to pDF, that¥ = X,, by the quantization that can be transmitted to the worst user
U = X1, Uz = X3 and Y, = 0, the transmission scheme isHowever, as in the case of broadcasting a common source
equivalent to DF since there is no direct link between thesuseo two receivers with different channel and side informatio
to help them decode the rest of the messages. Then the cony@alities, studied in [6], in general it is possible to broast
hull of the set of all rate pairéR;, R2) that satisfy a common layer to both users while transmitting a refinement
layer to the better user. Naturally, this can also be contbine

R s mindI(XY0 X, Q) 1K V2] Xs, Q)XD) with the partial decoding scheme as in Theorem 1, but here
Ry < min{I(Xo; V2| X, Q) I(Xr; V1| X1, @))2) e will only present the CF with two layer broadcasting for
Ri+ R < I(X1,X9;Y:X,,Q) (3) the sake of brevity. We give some definitions first.
We denote byR{'F the set of all rate pair§R;, Rs) that

f joint probability distributi i
or some joint probability distribution satisfy

p(q, 71,2, 20, Y1, Y2, Yr) =p(@)P(21]q)p(72|q)p (2] q)

I(Xy; V21X, Xo,
'p(ylay%yrlxlaanxr) ( ! | 2 Q)

I(XQ;}A/T‘I|XT‘7X17Q)

I’y

<
Ry <

is achievable.
This DF based scheme was studied in [12] for half-dupleubject to
relay channels. While the first terms in the constraints & th -
right hand side (RHS) of (1)-(3) are due to the multiple asces I(Yrs S?“llX“ X1,Q) < I(VinlX,,Q)
channel from the users to the relay, the second terms in the (Y VX, X5,Q) < I(V;Ya|X0,Q)
RHS of (1)-(2) are due to the broadcasting stage from thgrela  I(Y,; Y2 X,, X5, V1, Q) < I(X,; V1|V, X1,Q)
to the users. These latter rate constraints can also benebtai o S
as a special case of the joint source-channel coding schef¥eSOme joint probability distribution
in [13], [5]: Next, we cc_)nsider pure CF relgying at_ the relay. (g, 21, T2, 0, T 41, Y2, Yrs 52, 92) = p(@)p(@1]@)p(x2]q)
The following lemma gives the corresponding achievable rat 9 1 2
region which can be found in [14] and [15] for ha|f_dup|ex-p(v|q)p(xrIv)p(y1,yz,yTle,:vz,:vT)p(yrle,yT)p(yTIxr,yT)
relays. (8)
Lemma 1:In a separated TRC, by compress-and-forwaiglch thatl’ — X, — (Y1,Y,) form a Markov chain.
relaying, that iS4, = U, =V = 0, convex hull of the set of  Similarly, we denote byRS” the set of all rate pairs

all rate pairs(R;, R2) that satisfy (Ry, Ry) that satisfy
Rl < I(XI;YF'XTaX?aQ)’ (4) Rl < I(Xl;i/;}'XT’X??Q)
Ry < I(X2:Y:|X,, X1,Q) ®) Ry < I(Xy:Y?| X, X1,Q)
subject to subject to
I3 Y0X,X0,Q) < I(XsYilX1,Q), (6 ;
( Y | 1,Q) ( 11X1, Q) (6) I(Y; VX, X1,Q) < I(V;Y1|X1,Q)
(Y Y] Xp, X,Q) < I(X3Ye|X2,Q)  (7) [V VX0, X0, Q) < I(V;Ya| X, Q)
for some joint probability distribution 1, -Y2|XT X,V Q) ; [(X,: 2|V, Xs, Q)

P 21,22, T, Y1, Y2, Yroir) = p(q)p(xl|q)p($2|qu(xr|q) for some joint probability distribution of the form (8), duc
P, Y2, Yrl@r, 22, 20 )p(Gr|Tre, yr)  thaty — X, — (Y1,Y,) form a Markov chain.

R < min{I(U;Y,|Us, X, V,Q) + I(X1; ;| X, Ur, X2, Q), I(X,; Ya| X2, Q) — I(Yy: Yo | X, Up, X1, X5, Q) }
Ry < min {I(Us;Y,|U1, X, V,Q) + I(Xo; Y, | X, Uz, X1, Q), I(X,; V1| X1, Q) — I(Yr; V| Xy, Us, X2, X1,Q) }
Ri+ Ry < I(U,U Ve |X,,V,Q) + I(X1; Ve X, Uty Xo, Q) + I(X2; Vi | X, Us, X1, Q)



Note that, the region®{' " and RS'F" are based on which IV. GAUSSIAN TWO-WAY RELAY CHANNEL

user will receive only a single quantizatidr) of the relay | this section, we focus on the Gaussian separated TRC.
received signal, and which one will also receive the refimé@mesince self interference can simply be subtracted at each,nod

V2. the additive white Gaussian noise channels can be modeled as
Theorem 2:In a separated TRC, by compress-and-forwaigk|ow.

relaying in two layers, convex hull of the regi®¢ " [ J RS T

is achievable. Y, = Xi+Xo+2, (11)
Proof: The proof of the theorem is skipped due to space Yi = Xi+Z;, fori=1,2, (12)
limitations. B \whereZ, is the zero-mean Gaussian noise at the relay with

The achievability scheme is based on quantizing the relgyriance N,, while Z;, i = 1,2, is the zero-mean Gaussian
received signal |nt92two layers: the base layét, and an pgjse term at user with varianceN;. These noise terms are
enhancement layeY,”. Then the relay broadcasts the basggependent of each other and the channel inputs. Average

to only one of the users. However, this is not the usual

broadcast channel due to the availability of correlatec sidl
information at the receivers. As described in detail in {bgre 7,
can be different transmission schemes by using successive
decoding or dirty paper encoding to mitigate the interfeeen  We first consider the CF scheme with single layer for the
among the transmission of these two layers. Here, for lyreviGaussian sTRC where the useiransmits at poweP; < P;,
we consider only one of the schemes, in which the base layéhile the relay transmits at its highest possible powerLet
codeword is broadcast while the refinement layer codewordtite forward test channel for the relay received signal bergiv
treated as noise. In [6], it is shown that this scheme doramaby Y, = Y, + Q with QLY,, whereQ is the quantization
the other possibilities in terms of the achieved distortiogrror. Let@ be zero mean Gaussian with variandg. We
performance in the case of Gaussian sources and Gaus$iave
channels. We have not performed such comparison in the
current setting, hence it is possible that the set of achieva
rate pairs can be enlgrged by using one of the alternatllx_zgr successful transmission of the quantized version tb bot
transmission schemes in [6].

. . . users, we need

We provide an outer bound for the capacity region of the

n 1 n
E § 22| <P and=E § | <P, i=1,2
j=1

J=1

(13)

. 1 Py + N,
I(Y:; Y| X)) = §1Og(1+L>-

Nq

(P; + N;)N; '

separated TRC in the following proposition. Ng > max (14)
Proposition 1: Any rate pair achievable in the separated T ()=(1,2),(2,1) P,
TRC must satisfy Then the achievable rate pdiR,, R2) for this scheme can
be found as
Ry < min{l(X;Y,[X, X2), I(X;Y2[X2)}, (9) .
. Ri = I(XZ,}/;lXJ)
R2 S mln{I(XQ;YT|X,X1),I(X;Y1|X1)}, (10)
= I(Xiu X+ X5+ 2+ QX))
for some joint distribution 1 P,
= Slog 1+, (15)
2 N+ Ng
p(x17x27xaylay25y7”) = p(xvxlva)p(y17y27yT|IlaIva)'

with (i, 5) € {(1,2),(2,1)}. L
Proof: Proof follows from the usual cut-set bound argu- Without loss of generality, we assuntg¢ > P, and N, =
ments [16]. m 1. We also fix Ny = Ny = 1, which represents the cases
A tighter outer bound can be obtained if we constrain th1 = N2 in general. Then we achieve the following rate pair
model to the restricted sTRC setting in which the encodefdth single layer CF.

at the users only depend on their own messages, and ignore 1 1+ P, +P.+ P, P.
the channel outputs. Note that, all the achievable schemes Ry = ;log p (16)
. . - . . 2 1+P+ P,
con5|dere_q in this paper fall into this cat_egory. 1 1+ P, + P + PP,
Proposition 2: Any achievable rate paifR;, R;) for the Ry = Elog 1+DP +P

separated TRC with restricted encoders must satisfy ] ]
The whole set of achievable rates with the CF scheme can be

min{I(X1; Y| X,, Xo,Q), [(X,;Ys| X2, Uz, Q)} found by taking the union of achievable pairs over all power

. allocations satisfying® < P;, i = 1, 2.
I(X2: Y| X, X1, Q), I(X,; V1| X1, Uy, E= e b .
min{7(X2; Yy | 1, @), I 111,01, Q) The outer bound on rat®; in this setup is found as below

for some joint  distribution of the  form fori=1,2.

p(@)p(z1, ur|g)p(z2, u2|g)p(zr|ur, w2, @)p(y1, y2, yrl21, 22, 7). 1 1
Proof: See Appendix C for a proof of the propositiom. R; < min 2 log(1+ 1), 2 log(1 + Pr)

Ry

<
Ry <



The following lemma shows that, for any given triplet offﬁ? to both users, using P, of its power. On the other hand,
(P, P2, P.), CF scheme achieves rates withifi2 bit of the it transmits the fine quantization to only one user using the
capacity outer bound. That is, the rate loss of the CF scheneenaining power. The codeword corresponding to the fine

with respect to the optimal cannot be larger tha® bit. guantization acts as noise for the coarse quantization.ave h
Proposition 3: The achievable rate rate p&iR,, R2) of CF P
. : o N . 5y + Ne)(N; + (1 — ) Py
scheme given in (16)-(17) is within half bit of the capacityVe, + N§ ~ max (@ J; +( —a) ),
; ; ) ; (6,5)=(1,2),(2,1) aP;,
region of the Gaussian separate two-way relay channel, i.e.
(R1 + %, Ry + ) is not achievable. and
Proof: See Appendix B for a proof of this proposition. N (P, + N,)
| | Q = P+ N, ’
. . . . 1+1-a)P)(1+ 32 -1
Next, we consider the achievable rate region with the more (141 =a)Pr)( NéeJerz)

advanced schemes for Gaussian sTRC. However, note that, im Fig. 2, on the right, we have the achievable rate regions
the symmetric case aV; = N, since the single layer CF for DF, partial DF, CF with single layer and two layer
already achieves rates within half bit of the capacity, nohe transmissions. While in general partial DF enlarges the rat
these schemes can improve the rate region beyond half kégion compared to both DF and CF with single layer, we
The following rate region can be achieved by pDF combinege that CF with two layers achieves rate pairs that cannot be
with single layer CF scheme considered in Theorem 1. achieved by partial DF.

Let0 <o; <landa; < 5; <1,i=1,2,and0 < o, < 1. We note here that, in the Gaussian case, in addition to the
Then the rate pair6R:, R2), as defined below, are achievabletwo-layer quantization, further gains might be achieved by
considering hybrid digital-analog techniques as in [7]isTh

Ri = Rapi Rep in a sense, combines amplify-and-forward relaying with the
for i = 1,2, where other techniques.
Rup1 < min {llog (1 n o Py ) ’ _ V. CONCLU.SION-S _
2 (B1 —a1)PL + 3P + N, We have considered sTRC, in which two users, which can
1 o, P, not overhear each other’s signal, exchange information ave
9 log (1 + (1—a,)P. 4+ Ny } relay terminal. We have focused on the the restricted coding
(1 Py model in which the encoder of each user only depends on
Rgr2 < min {5 log <1 + (B2 —a2)Ps + BPL + N ) » its own message, and ignores the previously received channe
1 o P " outputs. Our main result is an achievable rate region based o
—log (1 + 4) } a combination of partial decode-and-forward scheme tageth
2 (1 —an) P+ Ny with compress-and-forward in which the relay decodes only
Rupr + Raps < llog <1 n Py 4 o P > parts of the messages and forwards quantized versions of
’ T T2 (B1 —a1)P1 + (B2 — a2) P + N, ) its received signal to the users in addition to the decoded
while, fori = 1,2, parts. We have shown that the rate region can be enhanced by
considered two levels of quantization at the relay where one
Refi = llog (1 + B ai)By ai)B) of the users receives a better description of relay’'s receiv
’ 2 N» + Ng signal, and hence, a higher rate. We have also considered the
and Gaussian setting, and shown that the proposed coding scheme

achieves within half bit of the capacity region.

APPENDIXA
PROOF OFTHEOREM 1

i — ;)P + Ny)N;
(1.)=(1,2),(2,1) (1-ar)P;

In Fig. 2, on the left, we plot the portion of the rate regions ) ] )
achieved by DF, single layer CF and the above partial pEIn the following proof we will use the notion of strong
schemes for the cadg = P, = 50 dB and P, = 20 dB while typicality. Given a random variabl& ~ p(z), z € X, the
Ny =4, Ny = N, = 1. We should note that the rate region oftrong typical set for block length is denoted byr;*(X).
partial DF scheme is not just the convex combination of the FOr the brevity of the presentation, we consig@t = 1 in
pure DF and pure CF regions. In a concurrent work [17], it he proof here. Generahzatl(_)n to arbitrary finite cargﬂmﬂ
shown that the combined scheme of pDF and single-layer datlows from the usual technlql_Jes. We use the classicalkbloc
achieves withirg /2 bits of the capacity region for all GaussiarMarkov encoding scheme [3], in which — 1 messages from
TRCs. each user is transmitted ové& blocks ofn symbols.

Next, we consider the two layered transmission with CF.1) Code generation:
We have two level quantization of the relay received signal « Generate2"f11 i.i.d. sequences} with probability
Y, as follows. LetY,! = Y, + Q: with Q,1Y,, where distribution p(u?) = ]\, p(u1,:), and label these
Q1 ~ J\/(O,Né) andY;? = Y,'+Q2 with Q2L (Y;., Q1), where sequences as}(w}), w) € [1,2"F1]. Similarly,
Q2 ~ N(0, N;). The relay broadcasts the coarse quantization generate2™21 ji.d. sequences} with probability
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distribution p(uy) = [[;-, p(u2,), and label these 2) Encoding:

sequences agy (w}), wh € [1,2"8=].
Generate2™(f11+F21) jj d. sequences” with prob-

ability p(v™) = [[;—, p(v;). Label these sequences

as v"(wy,w)) where w) € [1,2"%1] and w) €
[1,2n 5],

For everyu? (w}) generate™f: ii.d. sequences?
with probability

p(ay |ut (wh)) = Hp(xl,ilul,i(w’l)).

Label these sequences as}(w{|w}), w{ €
[1,2nf12], Also, for everyul(w)) generate2"fz
i.i.d. sequencesy with probability p(z5|uf (w})) =
[T p(22,ifuz,i(w))).
of (wluh), wf € [1,27722),
For ~  every o™ (wy, wh) generate
oI (YVeYo | Xr UnUz)4e) i d. sequencesz? with
probability
n
play o (wy, wy)) = [ [ olerilvi(w], wp)).
i=1
Label these sequences ag'(z|w},w)), z
1, on(I(Yei Ve X, U ,U2)+e)]_

S

For every(z; (s|wy, wy), ut (wy), us (wj)), generate
(I Y[ X, Un,U2)4) | jd. sequenceg!” with prob-
ability
p(gr |y (slwy, w), ui (wy), ug (wy))

n

= Hp@r,z‘|$r,z‘(5|w/17w’z)vul,i(wﬂ)vu2,i(w§))

=1

for every x, € X, w1 € U; and us € Us.

Label these sequences @4(z|w;, wy, s) wherez €
1, 2n(I(Y;Yr\X,U1,U2)+€)]'

Label these sequences as

3)

Let wy; = (wy,;,wy,;) andws; = (wy;,wy,) be the
messages that each user wants to transmit to the other at
blocki fori =1,..., B — 1. We havew; ; € [1,2"/]
andwy ; € [1,2"f] for k =1,2andi =1,...,B - 1.

As the number of blocks goes to infinity, we achieve a rate
pair of 251 (Ry, Ry) — (R, R2) whereR; = Ry1+Ri»

and Ry = Ro1 + Rao.

Assume that

(@?(wi,i—lawé,i—la $i—1),yr(i — 1), u?(wll,i—l)a u;(w/&i—l)7

I?(Zi*2|wll,i—lv wé,i—l)) € Tgl(ffh Y, Uy, Us, XT)'

Then the following codeword triplet is transmitted:
(x?(wi’ZIIU’u), Ig(wg,i|w/2,i)vx?(zi*ﬂw/l,iflv wé,ifl))'
Decoding:
We explain the decoding strategy at the end of black
« After receivingy. (i), the relay declares thét), , w5)
was transmitted if

(uf (@), uy (W3) ;' (), 27 (21 Jwy 1, wh ;1))
€ T3 (Uy, Uz, X, Yr).

For sufficiently largen, we have (i}, w})
(w) ;,wh ;) with high probability if

R < I(Uy; Y |Us, X, V)
Ror < I(Uy Y |Uh, X, V)
Ri1+Ra < I(Uh,Us; Y| X, V)

« The relay also estimates such that

(QZ} (Z1|w/1,m w/217 Zl)a y:} (1)717? (Z1|w/lzv w/Z,l))

e T8 (Vy, Yy, X,).



Using the properties of typical sets, we can show that
such az; exist with high probability for sufficiently
largen. Hence, the relay knows;. if

 The User 1 declares; ; , was transmitted in block
i — 1 by User 2 if

(0" (w1, wh 1), 5 (1), 21 (4)) € T3 (V. Y1, X3).

Since User 1 knowsu; ; 4, it can correctly find
Wy, = wy,;_; With high probability if

Ry < I(V;Y2]X2),

andn is sufficiently large due to the Markov chain
Xo — (X1,X,) — 1.

Similarly, User 1 can find the correaty,; , =
wy ;_, with high probability for sufficiently large:

Ris < I(X1; Y, |Xo, X, Up) — €.

Combining the bounds foR11, Ri2, Re; and Ry, We can
obtain the bounds given in the theorem.

APPENDIXB
PROOF OFPROPOSITION3

Under the assumption d?, > P, we consider three cases

separately depending on the relay power.
1) P, > P, > P, : For the upper bound we have?? =
3 log(1 + P;). For the achievable rate, 1t = P;. We

Similarly, User 2 can find the correat|, ; = have
w ;_, with high probability if _ 1 1 1+ P
Ry 210g(1+P1)+210g 1P 1P,
Rzl < I(V;Y1|X1), RUB 1
2 —
andn is sufficiently large due to the Markov chain ! 2
Xl - (XQaXT) - YQ and
« Then the User 1 declares_; for the z index if R 110 1+ P+ P+ PP,
n / ~/ n(: n(; n(; ° B 2 & 1 + Pl + Pr
(z (Zi*1|w1,i—lvw2,i—1)7y1 (4), 27 (i), v"(4)) 1
n 2 RUB .
e T (X, Y1, X1,V). 2 2
and 2) P, > P, > P, : We haveR{” = Jlog(1 + P,) and
o , . , » RgB = %log(l + Pg) Let P, = P, and P, = P,. We
(Il (wl,i—l |wl,i—l)7 9y (zi-1 |w1,i—1 y Wa 515 Zi—2), have
u?(wll,z)a ug(w/lz)v $f(2i_2|wll_’i72, wl2.,i72)) R, = 1 10g(1 + Pr) + l 10g( 1+ P )
€ T3(X1,Y,, Ur, Uz, X,) 2 X 2 T2k
UB
are satisfied simultaneously for some indgx;. We = ByT - 9"
can show thag; ; = z;_; with high probability for
sufficiently largen if Ry, — log L+ P+ P+ BP:
. 2 1+ P+ P,
I(Y;‘;YF|XT1U17U2)+€ <I(—XT7Y1|X17V) > RUB 1
+ I(X1; Y, |UL, Us, X,). = 2y
) UB _ 1
due to the Markov chainX, — (X1, X,) — Yi. 3) P12 Py > P : We haveR; ™ = jlog(l + ). Let
. . P, = P,. We have
Equivalently, if ) ) P
A 1 1 + I
[V, V31X, X1, Un) + € < I(X,5 Y2 X0, V), R = Flog(l+P)+5loe(1 5 ="5)
Similarly, User 2 estimates;_; = z;_; correctly > RUP - 1.
with high probability if, n is large enough and AszNDIXc
1(Y,; YT|XT, Xo,Ur) + e < I(X,; Yo| X2, V). PROOF OFPROPOSITION2
due to the Markov chaitk; — (X, X, ) — Y. From Fano’s inequality, we have, for=1, 2,
o Using g (%1 |wi 1,1, y,%-1) andy} (i), User H(Wi[Y?") < né,,
I ; 1
1 declaresp; ; was sent by User 2 in block—1 if wheres, — 0 for n — oo. We can also write
(wg(w'z',i_1|w'z,i_1)aﬂ?(zi_llw'l,i_pw%,i_pZi—z)a H(Wy|Wa, YY) = H(W;|[Wa, X2, Y™, XY (17)
at (i = 1), 2 (i = 1),97(2) € T3 (X2, Ve, X1, X, Y1), < HWi| X3, X)) (18)
We havew), ; = w4 ,_, with high probability for = H(W1|X3, X', Y7") (19)
sufficiently largen if < HWi|Y3) (20)
Roy < I(Xo: Y| X1, X, Us) — €. < ndy, (21)



where (17) follows since, from the restricted coding caaisty
X7 is a function of W, and X is a function ofY;”; (19)
follows as Y3* — (X7, X") — W, form a Markov chain
based on the separated channel assumption; (20) follows si
conditioning reduces entropy; and finally (21) follows from
Fano’s inequality. Similarly, we can also show

H(W2|W1,Y;n) S n5n
It follows that

an = H(Wl) = H(W1|W2)
< I(W3; Y, [Wa) + ndy,

X;
(23)
[1]

I

N
Il
-

I(W1; Yy 3| Wo, Y, 1) + nd,

(2]

I

N
Il
-

H(Y, Y, Wa) — H(Y, i |Wy, W, YY) + 6,

[3]
H(Y, |V, 7Y W, Xoi, X i)

I

N
Il
-

(4

H(Y, | W1, Wa, Y, X1y, Xoi, X, i) + 6, (24)
[5]

-

< H(Y, | X0, Xri) — H(Y: 3| X14, Xoi, Xr i) + 0n
=1 [6]
(25)
RS 71
= ZI(Xu; Y, il Xai, X)) + On, (26)

N
Il
-

where (23) follows form (21); (24) follows a¥X;; and X,
are functions ofW; and Wy, respectively, andX,.,; is a
function of Y,:~1; (25) follows from the fact that conditioning
reduces entropy and also the fact that — (X1, X2i, Xri) —
(W1, Wa, Yi=1). Similarly, we can show that

(8]
El

[10]
nRy < Z I(Xoi; Yri| X4, Xoi)-

(27)
=1
[11]
Furthermore, we have
TLRl < I(Wl; }/2n|W2) + n5nH(W1) [12]
= H(Yyi|Wa, Y5 ™) — H(Yas Wy, Wa, Y3 71) +ndn 13)

i—1

= ZH(%i|W27}/2i717X2i)_ (14]
i—1

H (Yo [ Wi, Wa, X14, Xoi, Xpi, Yoo 1) 4 ndy,

(28) 18]

< Z H(Y14|Wa, Xoi) — H(Y2i| X1i, X6, Xpi) + 100 14
i=1

(29) nn

I

s
Il
-

H (Y2i|Wa, X2;) — H(Y2i| X2i, Xrri) +ndp, (30)

-

s
Il
-

H (Y2 |Ug;, Xoi) — H(Yai| Xoi, Xr4, Usi) + ndyp,

(31)

= I(Xy5; YailUzi, Xai) + by (32)
=1

XVe can similarly obtain

nRy < Z (X Y1l Uri, X14) + ndp.
i=1

Finally, we introduce the time-sharing random variatje
uniformly distributed over the sefl,2,..,n} and defining

L2 X0, Y; = Yo andU; = Ujq for j = 1,2,r, we

(22) complete the proof of the outer bound.
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