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Wireless Content Caching for Small Cell and D2D
Networks

Maria Gregori, Jesús Gómez-Vilardebó, Javier Matamoros and Deniz Gündüz

Abstract—The fifth generation wireless networks must provide
fast and reliable connectivity while coping with the ongoing
traffic growth. It is of paramount importance that the required
resources, such as energy and bandwidth, do not scale with
traffic. While the aggregate network traffic is growing at an
unprecedented rate, users tend to request the same popular
contents at different time instants. Therefore, caching the most
popular contents at the network edge is a promising solution
to reduce the traffic and the energy consumption over the
backhaul links. In this paper, two scenarios are considered,
where caching is performed either at a small base station, or
directly at the user terminals, which communicate using Device-
to-Device (D2D) communications. In both scenarios, joint design
of the transmission and caching policies is studied when the user
demands are known in advance. This joint design offers two
different caching gains, namely, the pre-downloading and local
caching gains. It is shown that the finite cache capacity limits
the attainable gains, and creates an inherent tradeoff between the
two types of gains. In this context, a continuous time optimization
problem is formulated to determine the optimal transmission and
caching policies that minimize a generic cost function, such as
energy, bandwidth, or throughput. The jointly optimal solution
is obtained by demonstrating that caching files at a constant rate
is optimal, which allows to reformulate the problem as a finite-
dimensional convex program. The numerical results show that
the proposed joint transmission and caching policy dramatically
reduces the total cost, which is particularised to the total energy
consumption at the Macro Base Station (MBS), as well as to the
total economical cost for the service provider, when users demand
economical incentives for delivering content to other users over
the D2D links.

Index Terms—Proactive caching, 5G, wireless backhaul, small
cells, energy-efficiency, device-to-device.

I. INTRODUCTION

Wireless traffic has experienced a tremendous growth in the

last years due to the wide spread use of hand-held devices

connected to the Internet, e.g., mobile phones, tablets, etc. This

traffic increase is expected to continue steadily in the coming

years; for example, more than 127 exabytes of worldwide

mobile traffic is forecasted for the year 2020 [1]. Video traffic

is the major data source due to the growing success of on-

demand video streaming services [1]. Traffic resulting from

video on-demand services exhibits the asynchronous content

reuse property [2], according to which a few popular files,

requested by users at different times (as opposed to television

broadcasting services), account for most of the data traffic.
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To cope with this growing traffic requirements, lots of

efforts have been devoted towards the definition of the fifth

generation of cellular communication systems (5G), which is

expected to be operative by 2020. The 5G system must provide

fast, flexible, reliable, and sustainable wireless connectivity,

while supporting the growing mobile traffic. Device-to-Device

(D2D) communications, small cell densification, millimeter

wave, and massive MIMO are currently investigated as main

enabling technologies for its success.

Small cell densification refers to the deployment of a large

number of Small Base Stations (SBSs) with different cell sizes

(micro, pico, and femtocells) allowing a larger spatial reuse of

the resources. The major drawback of cell densification is that

the traffic that can be served by an SBS is limited by the

capacity of the backhaul link, which provides connection to

the core network. This link is preferably wireless for various

reasons such as, rapid deployment, self-configuration, and

cost. However, wireless backhaul connections entail limited

capacity and significant energy consumption (due to its rela-

tively long range).

Caching the most popular contents at the network edge

has been proposed in [3] to increase connectivity, in [4]

to reduce the delay, and in [5] to alleviate the backhaul

link congestion and to reduce its energy consumption. Video

traffic (e.g., popular Youtube videos) is especially suitable

to be cached since it requires high data rates and exhibits

the aforementioned asynchronous content reuse property. The

contents can be cached either at SBSs equipped with a cache

memory (also coined as “femtocaching”) [5]–[11], or directly

at the users’ devices [2], [12], [13]. The users can exchange

the cached content through D2D communications [14], which

allows direct communication between nearby mobile users. In

practice, due to limited cache and energy resources, users are

unwilling to serve data over the D2D links unless they obtain

incentives (e.g., economical) from the operator [15].

In a popular approach to wireless caching, [7], [11], [16],

the system design is performed in two separated phases. First,

in the content placement phase, each cache is filled with

appropriate data, exploiting periods of time in which the

network is not congested. Then, in the delivery phase, the

non-cached contents are transmitted when requested by users.

In this setup, two types of caching gains have been identified,

namely, the local and global caching gains [11]. On the one

hand, the local caching gain is obtained when a requested file

is locally available in the cache (either at the SBS or at the

users) by serving this file from the cache without connecting

to the Macro Base Station (MBS). This reduces the traffic

in the wireless backhaul link [7] and improves the quality of

experience [11]. On the other hand, the global caching gain

is obtained by multicasting network-coded information in the

delivery phase [11], [16]. However, this underlying separation
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between the caching (content placement) and transmission

(delivery) phases has two limiting assumptions: i) the content

placement phase is cost-free (e.g., in terms of energy or

bandwidth); and ii) cache content is never updated during the

delivery phase. As a result, the benefits of proactive caching

are inherently limited.

In this work, we consider a different approach to wireless

caching. In particular, we consider that the cache is initially

empty, and it is dynamically filled with contents, i.e., we

combine the content placement and delivery phases. This

approach still allows to pre-download data over low-traffic

periods; however, we now account for the cost of downloading

these contents. As a result, an additional caching gain is

obtained, which we call pre-downloading gain. Essentially, the

pre-downloading caching gain is obtained when the cache is

used to pre-download data, which can be beneficial to avoid

non-favourable channel conditions, and to equalize the rate

in the backhaul link, improving its energy efficiency, and

reducing its peak load. In this context, the authors of [17] and

[18] derive caching and transmission policies that minimize the

bandwidth and energy consumption, respectively. These works

assume that the cache is solely used to pre-download content

for a single user; thus, content is removed from the cache

as soon as it is consumed by the user, ignoring any possible

future requests. Consequently, the policies in [17] and [18]

only exploit the pre-downloading caching gain. To the best

of our knowledge, this is the first work that proposes jointly

optimal transmission and caching strategies by accounting for

both the local and pre-downloading caching gains.

To fully exploit the aforementioned gains, efficient cache

management policies must be designed by taking into account,

among others, the stochastic but predictable nature of users’

demands. The cache management policies can be classified

into two groups according to the prior knowledge of the

different system parameters (users’ requests, channel state

information, etc.): (i) offline caching policies that assume non-

causal and complete knowledge of these parameters, e.g., [17]–

[19]; and (ii) online caching policies that consider only causal

or probabilistic knowledge of these parameters, e.g., [6]–[10],

[16], [20]. The characterization of the optimal offline policy

is extremely useful because: i) it serves as a theoretical bound

on the performance achievable by any online policy; and ii) it

can be instrumental in designing low-complexity near-optimal

online policies. Finding the optimal online policy is extremely

challenging since the cache management problem is usually a

hard combinatorial problem. As a result several works have

resorted to heuristic algorithms [6], [7].

In contrast to previous literature, the aim of this paper is

to study the jointly optimal transmission and caching policies

by taking into account both the local and pre-downloading

caching gains under two different scenarios. The first scenario

considers a caching SBS that serves the demands from mul-

tiple users. When the users’ demand is not locally available

at the SBS, the SBS downloads the content from an MBS

through a wireless backhaul link. We addressed this scenario in

[21] assuming that the SBS serves the users in a time division

fashion; in this paper, we allow the SBS to serve multiple users

simultaneously. In the second scenario, we consider that the

MBS directly serves demands from users, which can cache the

received data proactively, and later cooperate with other users

through D2D communications. The key difference between the

two scenarios is that, in the former, the cache is centralized

at the SBS, whereas in the later, it is distributed across users.

The main contributions of the paper are summarized next:

• For the two scenarios mentioned above, we study the joint

design of the optimal transmission and caching policies

by formulating a continuous time optimization problem

aimed at minimizing a generic cost function (e.g., the

energy, throughput, or bandwidth requirement).

• For the first scenario, where caching is performed at the

SBS: (i) we show that, within each time slot, it is optimal

to cache data at a constant rate, which permits reformu-

lating the problem as a convex program; (ii) we solve

this convex problem by means of dual decomposition and

propose a subgradient algorithm to obtain the optimal

dual variables; and (iii) we derive the structure of the

optimal transmission power at the MBS and the caching

policy at the SBS.

• For the second scenario, where information is cached at

the users and shared through D2D communications: (i)

we show that, within each time slot, each user should

cache data at a constant rate; (ii) we show that each user

should transmit the files in the D2D links at a constant

rate; and (iii) we reformulate the problem as a convex

optimization problem.

• Finally, the two scenarios are compared through numer-

ical simulations. Fist, we compare the performance of a

centralized cache with a distributed one and assess the

impacts of pre-downloading and local caching gains in

each scenario. Second, we evaluate how the cost of the

MBS increases with the economical incentives requested

by users for transmitting data over the D2D links.

The remainder of the paper is structured as follows. Section

II focuses on the first scenario, where caching is performed

at an SBS. In particular, the system model is presented in

Section II-A; the optimal transmission strategy is derived for

a fixed caching policy in Section II-B; and the problem is

solved in Section II-C. Section III is devoted to the second

scenario where caching is performed at the user terminals.

The system model for this scenario is introduced in Section

III-A and the resulting problem is solved in Section III-B.

Section IV presents the numerical results. Finally, the paper

is concluded in Section V.

Notation: Vectors and vector valued functions are denoted

by lower case boldface letters, i.e., v and ρ(v), respectively.

(vu)
U
u=1 defines a column vector obtained by stacking the col-

umn vectors v1, . . . ,vU and [v]k returns the k-th element of

the vector v. Symbol � denotes the component-wise “smaller

than or equal to” inequality. Finally, [x]+ , max{0, x}.

II. SBS CACHING FOR 5G NETWORKS

A. System model and problem formulation

As depicted in Fig. 1, we consider U users served by an

SBS. The SBS has a finite cache memory of capacity C units,

and is connected through a wireless backhaul channel to an
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Fig. 1. System model when caching is performed at an SBS that serves U
users.

MBS, which has access to the core network. We assume that

the MBS and the SBS operate in different frequency bands;

thus, no interference is produced between the two. We define

T as the optimization time horizon consisting of N time slots

of duration Ts each. In each time slot, each user, u, u =
1, . . . , U , requests one file from the set of all possible files

F = {f0, . . . , fF }. We define lj as the length (in data units) of

file fj , j = 0, . . . , F . File f0 has length l0 = 0 and represents

slots without requests. Similarly to [19], we fix the duration

of each file in the set F to the duration of one time slot, Ts.
1

File fj is consumed at a constant rate lj/Ts by the users.

As shown in Fig. 1, data is transmitted by the MBS at a

rate r(t). The SBS receives this information and separates the

streams associated to different user requests, obtaining the rate

vector rM (t) = (ru(t))
U
u=1 with ru(t) being the rate associ-

ated to user u. The downloaded data, r(t) =
∑U
u=1 ru(t), is

then stored at the SBS cache until it is served to the users

(which, without loss of generality, can happen immediately).

The SBS has a demand rate denoted by s(t) to satisfy the

users’ demand rates, du(t), ∀u. As it will be explained later,

the SBS demand rate is obtained as the sum of the users’

demand rates, du(t), after removing multiple demands for the

same file within the same slot. When serving a content to

a user, the SBS either deletes or locally caches it. This is

dictated by the local caching rate c(t). Notice that the cache

is represented with two different virtual buffers, namely, the

pre-downloading and local caching buffers. This representation

with virtual buffers allows us to distinguish between the

cached data that is downloaded in advance from the MBS

from the locally cached data that is used to reduce future

requests from the MBS. In this context, we define the vector

ℓ(t) , (ℓu(t))
U
u=1 whose u-th component ℓu(t) denotes the

rate at which data is removed from the local caching buffer

to reduce the demand at time t from the MBS associated to

u-th user request2. In the sequel, we provide formal definitions

for du(t), s(t), and c(t). As in [17], [18], we assume a

known demand profile (i.e, offline approach, see Section I);

accordingly, we assume that the demand variables du(t) and

s(t) are known for the period [0, T ].
We define δu(j, n) as the user request indicator variable

1Note that any generic file can be partitioned into smaller files to meet the
requirement of having the same duration Ts.

2In Fig. 1 we represent the locally cached data as a feedback link from the
output to the input. Note that the data removed from the local caching buffer,
ℓ(t), can be instantaneously cached again if dictated by the local caching rate
c(t) (implying that in practice the content is not removed from the cache).

t
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Ts
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Ts
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Ts
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Fig. 2. (a) and (b) denote the demand rates of users one and two, respectively.
The values above the curves represent the value of dnu . User 1 requests the
files f1, f2, f0, and f3, and user 2 requests f0, f4, f2, and f3 in this
order. The user request indicator variable for user 1 takes values δ1(1, 1) =
δ1(2, 2) = δ1(0, 3) = δ1(3, 4) = 1, and 0, otherwise; similarly, for user
2, δ2(0, 1) = δ2(4, 2) = δ2(2, 3) = δ2(3, 4) = 1, and it is 0, otherwise.
(c) shows the required SBS demand rate for user 2 (for user 1, we have
s1(t) = d1(t) as shown in (a)). The values above the curves represent the
value of sn2. Note that sn2 = dn2 for all the slots except the fourth one,
where we have s42 = 0, because the two users request file f3 in the fourth
slot; thus, we have σ2(3, 4) = 0.

that takes value 1 when user u requests file fj in slot n, n =
1, . . . , N , and 0, otherwise. Since each user requests one file

from F per slot, we have
∑F
j=0 δu(j, n) = 1, ∀u, n.

Definition 1 (User demand rate). The demand rate of user u,

du(t) ≥ 0, t ∈ [0, T ], is the rate at which user u requests

data from the SBS, i.e., du(t) ,
∑N
n=1 dnu rect((t − (n −

1/2)Ts)/Ts), where dnu denotes the demand rate of the u-th

user at the n-th time slot, i.e., dnu =
∑F

j=0 δu(j, n)lj/Ts; and

rect((t−a)/b) stands for the rectangular function centered at

a with duration b.

Figs. 2(a)-(b) depict users’ demand rates when two users are

served from the SBS. Note that if a certain file is requested

by multiple users at the same time slot (as in the fourth time

slot in Fig. 2), these requests can be simultaneously handled

by the SBS without the need of downloading the same file

multiple times from the MBS. Therefore, in order to determine

the minimal demand rate of the SBS, we must account only

once for simultaneous requests of the same file within one

slot. Without loss of generality, we account for the request of

the user with the smallest index u. Accordingly, we define the

SBS request indicator variable σu(j, n) that takes value 1 for

the user with the smallest index u requesting file fj in time

slot n (i.e., σu(j, n) = 1 if δu(j, n) = 1 and u < u′, ∀u′ 6=
u : δu′(j, n) = 1), and 0, otherwise.

Definition 2 (SBS demand rate). The demand rate of the SBS

is denoted by the vector s(t) = (su(t))
U
u=1, t ∈ [0, T ]. The

u-th component of this vector, su(t) ≥ 0, identifies the rate

at which the data corresponding to the u-th user request must

be available at the SBS to fulfill this request. Thus, we have

su(t) ,
∑N

n=1 snu rect((t − (n − 1/2)Ts)/Ts), where snu
denotes the SBS demand rate at the n-th slot for the u-th user
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request, snu =
∑F

j=0 σu(j, n)lj/Ts.

Given the users’ demands in Figs. 2(a)-(b), the associated

SBS demand rates are shown in Figs. 2(a) and 2(c), respec-

tively. Note that if the SBS demand, s(t), is satisfied, then the

SBS can serve all the user requests, du(t), ∀u. In the remainder

of this section, unless it is stated otherwise, by a user request

we refer to the request seen by the SBS, su(t), instead of the

request on the user side, du(t).

Definition 3 (Local caching rate). The local caching rate is

represented by the vector c(t) , (c(t, u))Uu=1 whose u-th

component, c(t, u), denotes the rate at which the SBS caches

the content associated to user u at time t. Thus, we have

0 ≤ c(t, u) ≤ su(t), t ∈ [0, T ].

Remark 1. The variables in the system model must be able to

indicate which portions of each file are cached at time t. Given

a certain user request u and time instant t, we can identify

the file being requested (through the SBS indicator variables).

Then, the cached portions of a file can be identified with the

tuple {rM (t), c(t), s(t)}. Note that we could have defined the

vectors rM (t), c(t), and s(t) in terms of the files instead of

user requests (i.e., with dimensions F × 1 instead of U × 1),

which would simplify the identification of the cached files;

however, this would dramatically increase the computational

complexity of the algorithms proposed in the remainder of the

paper as, in general, the number of available files, F , is several

orders of magnitude larger than the number of users connected

to the SBS, U .

Our aim is to jointly design the transmission policy at the

MBS, r , {r(t)}Tt=0, and the local caching policy at the

SBS, c , {c(t)}Tt=0, to minimize a generic cost function

in the backhaul link,
∫ T

0 g(r(τ))dτ , where g(r(t)) denotes

the instantaneous cost, which depends on the instantaneous

transmission rate at the MBS. As in [22], we assume that

the instantaneous cost function g(·) is time invariant, convex,

increasing, continuously differentiable, and g(0) = 0. In the

following, we give four examples of cost functions that satisfy

these conditions:

1) Energy consumption minimization: If the objective is

to minimize the total network energy consumption, then the

instantaneous cost is given by the instantaneous total power

consumption, p(t). In the case of Gaussian signaling, we

have p(t) = g(r(t)) = (exp(r(t)) − 1)/h + Pc + pS(t),
where h denotes the channel gain, Pc stands for the static

circuitry consumption at the MBS, and pS(t) is the SBS power

consumption, which is known as it can be computed from the

power-rate function at the SBS and the users’ demands.

2) Energy cost minimization: The instantaneous power con-

sumption above has to be multiplied by the energy cost, ξMBS ,

paid by the network operator to the electricity utility. Thus, the

instantaneous cost function is g(r(t)) = ξMBS · ((exp(r(t))−
1)/h+ Pc + pS(t)).
3) Bandwidth minimization: In this case, the cost function

is given by the bandwidth-rate function, w(t) = g(r(t)) =
f−1(r(t)), obtained as the inverse of the rate-bandwidth

function, r(t) = f(w(t)). Again, in the case of Gaussian

signaling, we have r(t) = f(w(t)) = w(t)log(1 + Ph/w(t)),

where P denotes the constant transmission power and h stands

for the channel gain.

4) Traffic minimization: To minimize the data transmitted by

the MBS, we obtain g(r(t)) = r(t).
As argued in the introduction, the cache offers two different

gains to reduce the cost in the backhaul link, namely, pre-

downloading and local caching gains. As shown in Fig. 1,

the cache has two inputs: (i) the pre-downloaded data from

the MBS, which is controlled by the transmission policy at

the MBS, r, and contributes to the pre-downloading caching

gain; and (ii) the locally cached data, which is controlled by

the local caching policy at the SBS, c, and contributes to

the local caching gain. The design of r and c is constrained

by the cache size and the required demand rate at the SBS.

In the following, we define these constraints in terms of the

cumulative transmitted data [22].

Definition 4 (Data departure curve). The data departure curve,

D(t, r), is the amount of total data served by the MBS by time

t ≥ 0, and can be obtained from the transmission policy, r,
as D(t, r) ,

∫ t

0
r(τ)dτ .

Due to the finite cache capacity, an upper bound on D(t, r)
must be imposed to avoid data overflows from the SBS cache.

This upper bound is imposed by the maximum data departure

curve that, as defined next, increases as data is removed from

the SBS cache. The rate at which data is removed from the

cache at time t is obtained as
∑U

u=1 su(t)− c(t, u).

Definition 5 (Maximum data departure curve). The maximum

data departure curve, B(t, c), limits the maximum amount of

total data that can be transmitted by the MBS by time t ≥ 0
such that no data overflow at the cache memory is generated.

Thus, it is given by B(t, c) , C+
∫ t

0

∑U
u=1 su(τ)− c(τ, u)dτ

and depends on the caching policy c.

The lower bound on the data departure curve is given by

the minimum amount of total data that must be downloaded

from the MBS to satisfy the SBS demand rate. The net SBS

demand rate from the MBS (the demand rate at point α in

Fig. 1) is the requested data that is not available in the local

caching buffer. Consider that, at a certain time instant t, user

u requests a file that had been previously requested by user

u′ at time t′, t′ < t. Then, the net SBS demand rate at time

t of the u-th user request is given by su(t) − ℓu(t), where,

as mentioned earlier, ℓu(t) denotes the rate at which data is

removed from the local caching buffer to reduce the demand

at time t from the MBS. Note that the rate ℓu(t) must be equal

to the caching rate adopted during the previous request of the

file requested by user u at time t, i.e., ℓu(t) = c(t′, u′) (as

otherwise data is unnecessarily downloaded from the MBS).

To compute the net SBS demand rate for any user and time

instant, we define the vector function [t′, u′] = ρ(t, u). This

function returns the time instant t′ and the index of the user,

u′, which last requested the file requested by user u at time

t. If the file being requested at time t by user u has not been

requested previously, we set ρ(t, u) = [−1,−1], and define

c(−1,−1) , 0 (since the files that have not been requested are

not yet available at the SBS). The function ρ(t, u) is depicted

in Fig. 3 for the demand profile in Fig. 2. Using the function
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Fig. 3. Representation of the functions ρ(t, u) that maps a certain file request
in the SBS to its previous occurrence in time (t′ = [ρ(t, u)]1) and user index
(u′ = [ρ(t, u)]2). (a) corresponds to the first user and (b) to the second one.

ρ(t, u), the net SBS demand rate at time t associated with the

u-th user request is given by su(t) − c(ρ(t, u)). Since non-

causal knowledge of the user demands is available (offline

approach), the function ρ(t, u) is known, ∀t, u. Next we define

the minimum data departure curve to satisfy the SBS demand.

Definition 6 (Minimum data departure curve). The minimum

data departure curve, A(t, c), is the minimum amount of total

data that must be transmitted by the MBS by time t ≥ 0 to

satisfy the SBS demand, and depends on the caching policy, c,

i.e., A(t, c) ,
∑U
u=1

∫ t

0
su(τ)− ℓu(τ)dτ =

∑U
u=1

∫ t

0
su(τ)−

c(ρ(τ, u))dτ .

Bearing all the above in mind, the problem is mathemati-

cally formulated as follows:

min
{r(t),c(t)}t∈[0,T ]

∫ T

0
g(r(τ))dτ (1a)

s. t. D(t, r) ≤ B(t, c), ∀t ∈ [0, T ], (1b)

D(t, r) ≥ A(t, c), ∀t ∈ [0, T ], (1c)

r(t) ≥ 0, ∀t ∈ [0, T ], (1d)

0 � c(t) � s(t), ∀t ∈ [0, T ], (1e)

where the constraint (1b) prevents cache overflows, and (1c)

imposes the fulfillment of the users’ demands. The constraints

(1d) and (1e) guarantee feasible transmission and local caching

rates. Note that a feasible caching policy, c, must satisfy

B(t, c) ≥ A(t, c) for all t ∈ [0, T ], and any feasible data

departure curve must lie within the tunnel between B(t, c)
and A(t, c).

Remark 2. In the problem formulation, we have assumed that

cached data can only be removed from the cache during the

subsequent requests of the same data. As a result, by caching

data the net SBS demand rate will be reduced. We remark here

that this assumption is without loss of optimality. Contrarily,

consider a policy that caches a certain data content at time t1,

its subsequent request occurs at t2, but the content is deleted

at t3 ∈ (t1, t2). As this content has to be downloaded again at

t

Data

s11 s21
+ s22

s32
s41

l1 +l2 +l4

l2
l3

0 Ts 2Ts 3Ts T
C

B(t, ĉ)

A(t, ĉ)

(a)

t

Data

s11
s22

s32
s41

l1 +l2 +l4

l3

0 Ts 2Ts 3Ts T
C

B(t, c̃)

f2 is cached

A(t, c̃)

(b)

Fig. 4. Representation of the problem for two different caching policies. In
this example, we have set C = l2.

t2, this policy is unnecessarily using cache space in (t1, t3).

Remark 3. In realistic 5G scenarios, several SBSs will be

served by the same MBS. This work considers that the MBS

assigns orthogonal resources to each SBS and that the SBSs

have non overlapping coverage areas. As a result, a problem

of the form of (1) is obtained for each SBS. Further gains can

be achieved by multicasting information to different SBSs, or

by cooperation among SBSs with overlapping coverage areas

[5], [23]. However, this will inherently couple the design of

the SBSs’ caching policies, and is out of the scope of this

work.

B. Optimal transmission strategy for a fixed caching policy

In this section, we derive the optimal transmission strategy

for a fixed caching policy. Interestingly, when the local caching

policy, c, is given, the problem in (1) accepts an intuitive

graphical representation. For example, under the SBS demand

rate in Figs. 2(a) and 2(c), the problem is represented in Fig.

4 for two different caching policies:

Policy 1: The policy ĉ shown in Fig. 4(a) removes the data

from the cache as soon as it is served to a user, ignoring any

possible future requests for the same file, i.e., ĉ(t) = 0, ∀t.
Consequently, it only exploits the pre-downloading caching

gain. This caching policy was proposed in [18]. Observe that

if ĉ(t) = 0, ∀t, then there is a constant gap of C between

the lower and upper bounds, i.e., B(t, ĉ) = C + A(t, ĉ) (c.f.

Definitions 5 and 6). The optimal data departure curve exploits

this gap by pre-downloading data.

Policy 2: The policy c̃ shown in Fig. 4(b) caches the file

f2, when requested by user 1 in the second time slot, thus

anticipating the next request in the third slot by user 2, i.e.,

c̃(t, 1) = s21 if t ∈ [Ts, 2Ts] and c̃(t, u) = 0, otherwise. As

a result, no data needs to be transmitted by the MBS in the

third slot.

Lemma 1 (Constant rate transmission is optimal [22]). Given

a feasible caching policy c, the optimal data departure curve

can be obtained as the tightest string whose ends are tied to the

origin and the point (T,A(T, c)), which is represented in Fig.

4 with the dashed lines. In particular, if the instantaneous cost,
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g(·), is strictly convex, then this is the unique optimal data

departure curve; contrarily, if g(·) is linear multiple optimal

departure curves exist.

The free memory space in the cache can be obtained as

B(t, c)−D(t, r), ∀t. Focusing on Policy 1 (see Fig. 4(a)), the

cache is full at t = Ts, and all the data in the cache belongs

to f2 and/or f4, which have been pre-downloaded to equalize

the rates in the first and second time slots. As for Policy 2

(see Fig. 4(b)), the cache is full at t = 2Ts, and exclusively

contains f2. Note that by caching f2 in the second slot the

upper bound is tightened (the net cache capacity is reduced)

while the lower bound is relaxed (the demand at the third slot

is reduced).
From the previous discussion, two questions arise: i) “which

of the two caching policies achieves the lowest MBS cost?”,

and ii) “is any of these policies the optimal one?”. One might

be tempted to think that the caching policy c̃ has a lower

cost since fewer data has to be transmitted; however, this does

not necessarily hold true since the caching policy ĉ might

achieve a lower cost by equalizing the rate across time slots.

In practice, the jointly optimal transmission and local caching

policies must be obtained by solving (1), which turns out to be

challenging since this problem belongs to the class of infinite-

dimensional optimization problems [24].

C. Jointly optimal caching and transmission policies

To solve the infinite-dimensional problem in (1), we first

derive some structural properties of the optimal strategy. Then,

leveraging on these properties, we will formulate (1) as a

finite-dimensional convex program of affordable complexity.

As shown next, the optimization variables of the resulting

problem are the amount of data to be cached in each slot

for each request, qnu, ∀n, u, and the transmission rate of the

MBS at each slot, rn, ∀n.

As illustrated in Fig. 4, the caching policy changes the shape

of the upper and lower bounds on the data departure curve. For

example, in Fig. 4(b), we have observed that the data locally

cached in the second slot reduces the demand in the third slot.

Since the caching rate can have continuous variations over

time, we can potentially have arbitrary non-decreasing curves

as the upper and lower bounds, B(t, c) and A(t, c). However,

these curves are coupled through the caching policy c. In other

words, the caching rate of a certain request determines the

reduction in the demand rate of the subsequent request. The

following lemma shows that (within a time slot) caching data

at a constant rate turns out to be optimal.

Lemma 2 (Constant rate caching is optimal). The (not nec-

essarily unique) optimal local caching rate is a step-wise

function that can be written as c⋆(t) = (c⋆(t, u))Uu=1, where

c⋆(t, u) =
∑N
n=1(q

⋆
nu/Ts) rect((t−(n−1/2)Ts)/Ts), and q⋆nu

denotes the optimal amount of cached data for the request of

the u-th user at slot n.

Proof: See the Appendix.
Since su(t) and c⋆(t, u) are step-wise functions whose value

can only change at slot transitions, we know that A(t, c⋆)
and B(t, c⋆) are piece-wise linear functions (c.f. Definitions

5 and 6) whose slopes can only change at slot transitions.

Consequently, we can obtain the following properties of the

optimal transmission strategy.

Lemma 3. The (not necessarily unique) optimal data depar-

ture curve, D⋆(t, r⋆), can be written as a piece-wise linear

function, whose rate (or, equivalently, the slope of D⋆(t, r⋆))
may only change at time instants n · Ts, n = 1, . . . , N − 1,

i.e., r⋆(t) =
∑N

n=1 r
⋆
n rect((t − (n − 1/2)Ts)/Ts), where r⋆n

denotes the optimal transmission rate of the MBS at the n-

th slot. Additionally, if the rate increases at the n-th slot

transition (r⋆n < r⋆n+1), then D⋆(nTs, r
⋆) = B(nTs, c

⋆); and

if the rate decreases at the n-th slot transition (r⋆n > r⋆n+1),

then D⋆(nTs, r
⋆) = A(nTs, c

⋆).

Proof: The proof follows similarly to [25, Lemmas 5 and

6] by identifying nTs as ℓm, B(nTs, c
⋆) as D

(m)
max(ℓm), and

A(nTs, c
⋆) as D

(m)
min(ℓm).

From Lemmas 2 and 3, we can equivalently rewrite the

original problem in (1) as a function of the MBS rates at each

slot, r , (rn)
N
n=1, and cached data units at the SBS for each

user request and time slot, q , ((qnu)
U
u=1)

N
n=1:

min
r,q

N
∑

n=1

Tsg(rn) (2a)

s. t.

n
∑

ℓ=1

Tsrℓ ≤ C +

n
∑

ℓ=1

U
∑

u=1

Tssℓu − qℓu, ∀n, (2b)

n
∑

ℓ=1

Tsrℓ ≥

n
∑

ℓ=1

U
∑

u=1

Tssℓu − qρ̄(ℓ,u), ∀n, (2c)

rn ≥ 0, ∀n, (2d)

0 ≤ qnu ≤ Tssnu, ∀n, u, (2e)

where the constraints (2b)-(2e) correspond to the discrete

versions of the constraints in (1b)-(1e), respectively. The

function (n′, u′) = ρ̄(n, u) returns the slot, n′, and user, u′, of

the previous request of the file associated to (n, u), or returns

(−1,−1) if it is the first request of the file. Note that ρ̄ is the

discrete version of the function ρ; and as before, we define

q−1−1 , 0.

Remark 4. In (2), we have considered that the amount of

cached data, qnu, is a nonnegative real number. Note that if we

introduce an integer constraint to enforce data unit granularity

(e.g., bit), then the problem in (2) becomes an integer program

with its inherent complexity. In practice, as the data unit

granularity (bit) is sufficiently small in comparison to the files

sizes (of several Mbits) and cache capacity (of several Gbits),

the integer constraint can be relaxed without jeopardizing the

performance. Consequently, (2) is a convex program (since the

objective function is convex and the constraints are affine),

and, thus, can be solved efficiently.

By studying the Karush Kuhn Tucker conditions of the

primal problem in (2), it is difficult to derive the structure

of the optimal solution {r⋆,q⋆} due to the constraints in (2b)

and (2c) that couple the optimization variables. However, the

structure of the optimal primal variables can be obtained by

resorting to dual decomposition. From convex optimization

theory [26], the solution of the dual problem, maxλ,µ δ(λ,µ),
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Algorithm 1 Projected subgradient

Initialization:
Set k := 0 and initialize λ(0) and µ(0) to any value such that λ(0) � 0,
µ(0) � 0.
Step 1: If a termination condition is met, the algorithm stops.
Step 2: Compute r(k),q(k) as the solution to the problem in (3) given the
current multipliers, λ(k) and µ(k).
Step 3: Update the dual variables following the subgradient, i.e.,

[λ(k+1)]n = λ
(k+1)
n and [µ(k+1)]n = µ

(k+1)
n , ∀n, with

λ
(k+1)
n =

[

λ
(k)
n + ǫ(k)

(

−C +
n
∑

ℓ=1

Tsr
(k)
ℓ

−

U
∑

u=1

Tssℓu − q
(k)
ℓu

)]+

µ
(k+1)
n =

[

µ
(k)
n − ǫ(k)

(

n
∑

ℓ=1

Tsr
(k)
ℓ

−

U
∑

u=1

Tssℓu − q
(k)
ρ̄(ℓ,u)

)]+

.

Step 4: Set k := k + 1 and go to Step 1.

provides a lower bound on the primal problem in (2). We

have defined λ = (λn)
N
n=1 and µ = (µn)

N
n=1, where λn and

µn are the Lagrange multipliers associated to the n-th cache

capacity and demand constraints, respectively. The function

δ(λ,µ) stands for the dual function that is defined as follows

[26]:

δ(λ,µ) = min
r,q

L(r,q,λ,µ) (3)

s. t. rn ≥ 0, ∀n, 0 ≤ qnu ≤ Tssnu, ∀n, u,

where L(r,q,λ,µ) denotes the Lagrangian, i.e.,

L(r,q,λ,µ) =
∑N
n=1 Tsg(rn) + λn

(

− C +
∑n

ℓ=1 Tsrℓ −
∑U

u=1 Tssℓu−qℓu
)

−µn
(
∑n

ℓ=1 Tsrℓ−
∑U

u=1 Tssℓu−qρ̄(ℓ,u)
)

.

Since the primal problem in (2) is convex and the Slater

constraint qualification holds, the duality gap (difference be-

tween the optimal values of the primal and dual problems) is

zero [26]. To solve the dual problem, we have implemented

the projected subgradient method, presented in Algorithm 1,

that guarantees convergence to the optimal dual variables, λ⋆

and µ⋆, if the updating step size ǫ(k) is correctly chosen [27].

Step 2 of Algorithm 1 requires to solve the problem

in (3), where the optimization variables are r,q, and the

Lagrange multipliers (λ and µ) are fixed. To do so, we

first rewrite the Lagrangian by reordering the sums over

n and ℓ, which allows us to separate the terms associated

to each rn and qnu, i.e., L(r,q,λ,µ) =
∑N
n=1 Tsg(rn) −

rnTs
(
∑N
ℓ=n µℓ − λℓ

)

+
∑N
n=1

∑U
u=1 qnu

(
∑N
ℓ=n λℓ −

∑N
ℓ=ψ(n,u) µℓ

)

+
∑N

ℓ=1 µℓ(
∑ℓ

n=1

∑U
u=1 Tssnu) −

∑N
ℓ=1 λℓ(C +

∑ℓ
n=1

∑U
u=1 Tssnu). The function ψ(n, u)

returns the slot index of the subsequent request of the file

being served at slot n to user u. Now, the problem in (3) is

decoupled in the optimization variables (r and q) and can be

easily solved by decomposing it into the following simpler

subproblems:

min
rn≥0

Tsg(rn)− rnTs

(

N
∑

ℓ=n

µℓ − λℓ

)

, ∀n, (4)

min
0≤qnu≤Tssnu

qnu





N
∑

ℓ=n

λℓ −
N
∑

ℓ=ψ(n,u)

µℓ



 , ∀n, u. (5)

Let r̄n be the solution to the equation dg(rn)/drn =
∑N
ℓ=n µℓ − λℓ. If r̄n is real and positive, the optimal solution

to (4) is r⋆n(λ,µ) = r̄n; otherwise, it is r⋆n(λ,µ) = 0.

Corollary 1. When the objective is the minimization of

the energy consumption over the backhaul link (g(rn) =
(exp(rn) − 1)/h), the optimal solution to (4) is found as

r⋆n(λ,µ) = log(h(
∑N

ℓ=n µℓ − λℓ)) if h(
∑N

ℓ=n µℓ − λℓ) > 1
and r⋆n(λ,µ) = 0, otherwise.

The solution to (5) is

q⋆nu(λ,µ) =











0 if Wnu > 0,

Tssnu if Wnu < 0,

q̄nu ∈ [0, Tssnu] if Wnu = 0,

(6)

with Wnu ,
∑N

ℓ=n λℓ −
∑N

ℓ=ψ(n,u) µℓ. Accordingly, the

primal variables at the q-th iteration of the subgradient, which

are necessary in Step 2 of Algorithm 1, are given by r(k) =
(

r⋆n(λ
(k),µ(k))

)N

n=1
and q(k) =

((

q⋆nu(λ
(k),µ(k))

)U

u=1

)N

n=1
,

where λ(k) and µ(k) denote the Lagrange multipliers at the

q-th iteration of the subgradient.

When the subgradient algorithm converges to the optimal

Lagrange multipliers, {λ⋆,µ⋆}, the duality gap is zero, i.e., the

optimal solution of the dual and primal problems are the same.

Note that given the optimal dual variables, {λ⋆,µ⋆}, there

might be multiple minimizers of the problem in (3). Precisely,

q⋆nu(λ
⋆,µ⋆) can take multiple values when Wnu = 0 (see

(6)). Then, the optimal primal variables {r⋆,q⋆} are within the

set of minimizers of δ(λ⋆,µ⋆) in (3); in particular, {r⋆,q⋆}
are the minimizers that are feasible in the primal problem

(2) and satisfy the slackness conditions [27]. In practice, to

avoid waiting until the exact convergence to {λ⋆,µ⋆}, the

average across iterations of the primal iterates can be used as

an approximate solution to the problem in (2) [28].

Interestingly, it turns out that the parameter Wnu, which

only depends on the Lagrange multipliers, characterizes the

caching policy: if Wnu is positive, the associated file is not

cached; while, if Wnu is negative the file is completely cached;

and, finally, if Wnu = 0 the SBS caches a portion of the file

(the exact amount of cached data units must be obtained as

mentioned in the previous paragraph). Additionally, from the

expression of Wnu, we observe that the SBS caching policy

prioritizes the files that are requested again in the near future.3

III. CACHING AT USER DEVICES

A. System model and problem formulation

In this section, as depicted in Fig. 5, we consider a region

in space covered by an MBS that must serve the demand of U
users. The MBS allocates an orthogonal channel to each user,

whose transmission rate is denoted by ru(t), u = 1, . . . , U .

We assume that users cooperate with the network operator

(possibly in exchange of incentives) by acting as an SBS for

the rest of the users through dedicated D2D links. We consider

3From the KKT optimality conditions, we have µn > 0 if the n-th demand
constraint in (2c) is satisfied with equality (and zero otherwise). Consider
that users u and u′ request different files and that the subsequent request of
these files appears first for user u, i.e., ψ(n, u) < ψ(n, u′). Then, from the
expression of Wnu in (6), we have Wnu ≤ Wnu′ and, as a result, the SBS
prioritizes caching the file requested by user u.
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MBS

User (SBS) 1

User (SBS) 2

User (SBS) U

r1(
t)

r2(t)

rU (t)

r̂
1 (t, 2)

r̂1(t, U)

r̂2(t,
U)

r̂U (t, 1)

Fig. 5. System model when caching is performed at the user devices, which
act as an SBS for the other users through D2D communications.

Cache of capacity Cu

Pre-downloading
buffer

+ +
α

ru(t)

User
Module

SBSs

r̂u′(t, u), ∀u′ 6= u

MBS

Local caching
buffer

Aplication
du(t) =
du(t, u)

cu(t, u)

ℓu(t)

du(t, u
′) =

r̂u(t, u
′),∀u′ 6= u

D2D

cu(t, u
′),∀u′ 6= u

SBS Module

Fig. 6. Block diagram of the u-th user terminal. The solid lines correspond
to data streams associated to traffic of the u-th user, and the dashed ones
represent traffic served to other users, u′ 6= u, that is transmitted through the
D2D links.

that users are closely located; thus, a certain user u can act

as an SBS for any other user u′ 6= u. The rate in the D2D

link from SBS (user) u to user u′ at time t is denoted by

r̂u(t, u
′), u′ 6= u = 1, . . . , U . We assume that the D2D links

operate over different frequency resources than those used by

the MBS. A user is allowed to download only its own traffic

from the MBS; that is, users do not download content that is

of no interest to them, solely to serve another user. However,

downloaded files can be locally cached to later serve other

users through the D2D links.

As represented in Fig. 6, the D2D user terminals are

composed of two main modules: the user module and the SBS

module. The user module acts exactly as a user terminal in

the previous scenario, i.e., it receives data from the SBSs (now

from the SBS modules of other users) and feeds it directly to

the application layer. For fair comparison with the previous

scenario, we do not allow data to be cached within the user

module. As a result, if user u caches data at time t to reduce

the demand from the MBS of another user u′ at time t′, t′ > t,
then user u must send this data over the D2D link at time t′,
and not earlier.

The SBS module at the user terminal essentially acts as the

SBS terminal in the previous scenario; the main difference is

that the SBS module in the u-th user terminal is allowed to

download only contents corresponding to its own demand from

the MBS, i.e., du(t, u) , du(t). This module contains a cache

memory of capacity Cu, represented with two different virtual

buffers to ease interpretation. The first virtual buffer is used to

represent pre-downloaded contents from the MBS associated

to the u-th user’s demand. The second virtual buffer represents

locally cached data from previous demands. When the u-th

user serves its demand, at a rate du(t, u), to the application

layer, data can be cached at a rate cu(t, u) ≤ du(t, u). This

cached data can be later requested by other users; in particular,

du(t, u
′) denotes the demand of user u from user u′ at time t,

which is served through the D2D links; accordingly, we have

du(t, u
′) = r̂u(t, u

′). The caching rate associated to demand

du(t, u
′) is denoted by cu(t, u

′). Finally, ℓu(t) denotes the rate

at which data is removed from the local cache of user u to

reduce its own demand, which is used if a file is requested

twice by the user. To simplify the notation, in the remainder

of the paper we refer to variable ℓu(t) as r̂u(t, u). However,

note that this data stream does not require D2D resources.

As before, the aim is to jointly design the transmis-

sion and caching rates, rM (t) , (ru(t))
U
u=1, r̂(t) ,

((r̂u(t, u
′))Uu′=1)

U
u=1, and c(t) , ((cu(t, u

′))Uu′=1)
U
u=1, that

minimize a general cost function on the rates of the MBS,

rM (t), and D2D links, r̂(t). This cost function accounts for:

(i) the cost of transmissions from the MBS to different users,
∑U
u=1 gu(ru(t)), with gu(ru(t)) standing for the instanta-

neous cost of the u-th link; and (ii) the cost of transmis-

sions over the D2D links,
∑U

u=1

∑

u′ 6=u ĝuu′(r̂u(t, u
′)), where

ĝuu′(r̂u(t, u
′)) denotes the cost of the D2D link from user

u to user u′. Again, we assume that the functions gu(·),
ĝuu′(·), ∀u, u′ 6= u, are time invariant, convex, increasing,

continuously differentiable, and gu(0) = 0, ĝuu′(0) = 0,

∀u, u′ 6= u.4 As in Section II, different objective functions

can be modeled by appropriately selecting the cost functions

gu(·) and ĝuu′(·) (e.g., energy consumption, energy cost,

bandwidth, or traffic minimization). As mentioned earlier,

the operator must give incentives to users that transmit over

the D2D links [15]. In this context, ĝuu′(·) can represent

the economical incentive, ξU ≥ 0, paid by the operator to

the users for the data transmitted over the D2D links, i.e.,

ĝuu′(r̂u(t, u
′)) = ξU r̂u(t, u

′). The total incentive of user u

is
∫ T

t=0

∑

u′ 6=u ξU r̂u(t, u
′). The total economical cost of the

operator is the sum of the cost of energy used by the MBS,
∫ T

0
ξMBS

(

∑U
u=1W/U(exp(ru(τ)U/W )− 1)

)

dτ , and the

incentives paid to the users,
∫ T

0
ξU
∑U

u=1

∑

u′ 6=u r̂u(τ, u
′)dτ .

Observe that, if this cost function is adopted, no channel state

information of the D2D links is required at the MBS.

For problem tractability, we forbid users to simultane-

ously cache the same data by including the constraint
∑U
u′=1 cu′(t, u) ≤ du(t), ∀u. The implications of this

assumption are later discussed in Remark 5.

Since we have one dedicated MBS link per user, we need

a data departure curve from the MBS to each user u, i.e.,

Du(t, ru) =
∫ t

0
ru(τ)dτ. The u-th data departure curve is

constrained from above by the u-th user cache capacity, Cu
(through the maximum data departure curve Bu), and from

below by its net demand from the MBS (through the minimum

data departure curve Au).

Next, we derive the expression of the minimum data de-

4Notice that by considering a different cost function for each link, it is
possible to model, among others, different channel gains.
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parture curve for the transmission from the MBS to the u-th

user, to fulfill the user’s demand du(t). Since from the previous

assumption the users’ cache contents are non-overlapping, the

net demand of user u from the MBS (i.e., the demand in point

α in Fig. 6) is obtained by subtracting from du(t) the sum of

the rates in the D2D links to user u and the locally cached

data at user u, ℓu(t) = r̂u(τ, u). Thus, the lower bound on

Du(t, ru) reads as Au(t, r̂) ,
∫ t

0
du(τ) −

∑

∀u′ r̂u′(τ, u)dτ.
The maximum data departure curve at user u, Bu(t, c, r̂), can

be obtained by adding Cu to the minimum data departure

curve, Au(t, r̂), and subtracting the locally cached data, i.e.,

Bu(t, c, r̂) , Cu+Au(t, r̂)−
∫ t

0

∑

∀u′(cu(τ, u
′)−r̂u(τ, u

′))dτ,
where the locally cached data is computed as the integral up

to time t of the difference between the data rates entering and

leaving the local caching buffer.

Bearing all the above in mind, the problem with opti-

mization variables {rM (t), r̂(t), c(t)}t∈[0,T ] is mathematically

formulated as follows:

min

∫ T

0

U
∑

u=1



gu(ru(τ)) +
∑

u′ 6=u

ĝuu′(r̂u(τ, u
′))



 dτ (7a)

s. t. Du(t, ru) ≤ Bu(t, c, r̂), ∀u, t ∈ [0, T ], (7b)

Du(t, ru) ≥ Au(t, r̂), ∀u, t ∈ [0, T ], (7c)

U
∑

u′=1

cu′(t, u) ≤ du(t), ∀u, t ∈ [0, T ], (7d)

cu(t, u
′) ≤ cu(ρ(t, u

′)), ∀u, u′ 6= u, t ∈ [0, T ], (7e)

r̂u(t, u
′) ≤ cu(ρ(t, u

′)), ∀u, u′, t ∈ [0, T ], (7f)

cu(t, u
′) ≥ 0, ru(t) ≥ 0, r̂u(t, u

′) ≥ 0, ∀u, u′, t ∈ [0, T ],
(7g)

where the constraints in (7b) prevent cache overflows at the

users, and those in (7c) impose the fulfillment of the users’

demands. The constraints in (7d) impose that the same data

cannot be simultaneously cached by different users, and those

in (7e) and (7f) restrict the maximum caching rate and D2D

transmission rate at user u when serving the requests of other

users u′ 6= u to the rate locally available in the cache of user

u, cu(ρ(t, u
′)), respectively. The function ρ(t, u) is defined in

the previous section.5 Finally, the constraints in (7g) impose

nonnegative caching and transmission rates, respectively.

Remark 5. For problem tractability, we have included the

constraint (7d) of caching non-overlapping data at the users.

This assumption is without loss of optimality when the D2D

link costs are equal and linear, i.e., ĝuu′(x) = ξUx, ∀u, u
′ 6= u,

which, as mentioned earlier, characterizes the incentives paid

by the operator to users. Then, there exists an optimal solution

where users do not cache overlapping contents. Further gains

can be achieved by caching overlapping contents in the general

case of unequal or non-linear D2D cost functions. However,

5The function ρ(t, u) as defined in the previous section is inherently
enforcing that if two users u and u′ request the same file at a given time
slot, then both users have to download the data that is not cached at other
users from the MBS (i.e, they cannot help each other in the current slot for this
file). However, we could redefine the function ρ(t, u) to allow instantaneous
transmissions over the D2D links, by making the request of one user to point
the other one, i.e., ρ(t, u′) = [t, u]; thus, only user u downloads the data
from the MBS, which is instantaneously sent to user u′ through the D2D link.

due to the corresponding combinatorial structure, the optimal

solution considering overlapping caching at users is elusive,

and is left as an open problem for future work.

B. Jointly optimal strategy

As in Section II, we first derive some structural properties

of the caching policy c, the D2D transmission policy r̂,

and the data departure curves, Du(t, ru), which allow us to

reformulate the problem with a finite number of optimization

variables. In the following lemma we show that, within each

slot, it is optimal that the users cache and transmit data at

constant rate.

Lemma 4. The (not necessarily unique) optimal caching

rate and D2D transmission rates in problem (7) can be

written as a piece-wise constant functions c⋆(t, u′) =
∑N
n=1(q

⋆
u(n, u

′)/Ts) rect((t − (n − 1/2)Ts)/Ts) and

r̂u(t, u
′) =

∑N
n=1(b

⋆
u(n, u

′)/Ts) rect((t− (n − 1/2)Ts)/Ts),
where q⋆u(n, u

′) is the optimal amount of cached data at user

u for the request of user u′ at slot n, and b⋆u(n, u
′) is the

optimal amount of transmitted data from user u to user u′

within slot n.

Proof: The proof follows similarly to the proof of Lemma

2 and is omitted for brevity.

Since the optimal local caching rate and D2D transmission

rates are piece-wise constant, we know that the constraints

in (7b) and (7c) are piece-wise linear, and the slopes of the

constraints can only change at some slot transition. From this,

and similarly to Lemma 3, we can prove that the optimal data

departure curve for each user can be written as a piece-wise

linear function. Thus, the associated transmission rate from

the MBS to each user reads as r⋆u(t) =
∑N
n=1 r

⋆
nu rect(t −

(n− 1/2)Ts/Ts), where r⋆nu is the optimal transmission rate

from the MBS to user u at the n-th slot.

The problem in (7) can be equivalently rewritten in terms

of cached data qu(n, u
′), the transmitted data at the D2D links

bu(n, u
′), and the transmission rates from the MBS to each

user at each slot, rnu, as

min

U
∑

u=1

N
∑

n=1

Ts



gu(rnu) +
∑

u′ 6=u

ĝuu′

(

bu(n, u
′)

Ts

)



 (8a)

s. t.

n
∑

ℓ=1

Tsrℓu ≤ Cu +

n
∑

ℓ=1

(

dℓuTs+

U
∑

u′=1

bu(ℓ, u
′)− bu′(ℓ, u)− qu(ℓ, u

′)
)

, ∀u, n, (8b)

n
∑

ℓ=1

Tsrℓu ≥

n
∑

ℓ=1

dℓuTs −

U
∑

u′=1

bu′(ℓ, u), ∀u, n, (8c)

U
∑

u′=1

qu′(n, u) ≤ Tsdnu, ∀n, u, (8d)

qu(n, u
′) ≤ qu(ρ̄(n, u

′)), ∀n, u, u′ 6= u, (8e)

bu(n, u
′) ≤ qu(ρ̄(n, u

′)), ∀n, u, u′, (8f)

qu(n, u
′) ≥ 0, bu(n, u

′) ≥ 0, rn ≥ 0, ∀n, u, u′, (8g)
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where the constraints in (8b)-(8g) stand for the discrete ver-

sions of the constraints in (7b)-(7g), respectively. The function

ρ̄ is defined as in Section II-C.

The problem in (8) is a convex program because the

objective function is convex and the constraints are linear.

Accordingly, it can be efficiently solved by, e.g., interior point

methods.

IV. NUMERICAL RESULTS

In this section, we assess the performance of the proposed

caching and transmission policies in both scenarios, namely,

the SBS scenario in Section II and the D2D scenario in

Section III. We consider N = 20 time slots of duration 10
seconds each, and F = 2000 video files. The file lengths

are uniformly distributed in the interval [0.3, 150] Mnats
with mean file length E[ℓj ] = 75.15 Mnats. We assume

that the probability of requesting file fj , θj , is independent

and identically distributed across time slots and users, and

follows the Zipf distribution, i.e., θj = j−γ/(
∑|F|
q=1 q

−γ).
Parameter γ models the skewness of the file popularity; when

γ = 0, popularity is uniform and it becomes more skewed

as γ grows [9]. We consider the Shannon power-rate function

g(r(t)) = W (exp(r(t)/W ) − 1), where W is the channel

bandwidth. In the SBS scenario, the MBS allocates the whole

bandwidth W = 10 MHz to communicate with the SBS;

while in the D2D scenario, the MBS splits evenly the total

bandwidth across the U users; as a result the bandwidth in

each subchannel is W = 10/U MHz. The cache capacity C
is alternatively expressed by means of the percentage over the

average requested data per user, i.e., Ĉ = (100C)/(NE{ℓj}).
For the D2D scenario, the total cache capacity is evenly

distributed across users, Cu = C/U . Unless otherwise stated,

we set the number of users to U = 3, the Zipf distribution

parameter to γ = 1, and the total cache capacity to Ĉ = 10
(C = 15.03Mnats).

We compare the proposed jointly optimal transmission and

caching strategies, obtained by solving (2) and (8), with four

sub-optimal strategies: the No caching strategy that serves as

a benchmark for comparison with traditional systems with-

out cache memory; the Least Recently Used (LRU) caching

algorithm that always keeps in the cache the most recently

requested files [29]; the Pre-Downloading Caching Algorithm

(PDCA) that uses the cache only to pre-download data (see

Policy 1 in Section II-A and Fig. 4(a)) [18]; and the Local

Caching Algorithm (LCA) that exploits only the local caching

gain (i.e, the MBS transmits at the net demand rate without

allowing pre-downloading). The optimal policy, the PDCA,

and the LCA are offline policies as non-causal knowledge of

the file demand is required; while the No caching and LRU

strategies are online policies that may depend only on the

previous file requests.

First, in Figs. 7-8, we focus on the energy consumption

at the MBS considering that the users cooperate altruistically

with the MBS (i.e., ĝuu′ = 0, ∀u, u 6= u). This allows

us to fairly compare the SBS and D2D scenarios, and to

evaluate the effect of having a centralized or distributed

cache. Afterwards, in Fig. 9, we consider the cost of the
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Fig. 7. Energy consumption of the MBS with respect to cache capacity
(γ = 1, U = 3). In (a), the files are cached at the SBS as explained in
Section II. In (b), the files are cached at the users as explained in Section III.

MBS when users cooperate in exchange of an economical

incentive. Figs. 7(a) and 7(b) evaluate the energy consumption

of the MBS for different sizes of the cache capacity in the

SBS and D2D scenarios, respectively. It is observed that in

both scenarios the MBS energy consumption decreases with

the cache capacity for all the caching strategies. When the

jointly optimal transmission and caching strategy is compared

with traditional non-caching solutions, it is observed that

the optimal policy reduces the MBS energy consumption by

53.59% in the SBS scenario, and by 61.78% in the D2D

scenario. This reduction is obtained when the cache capacity is

25% of the average user traffic, i.e., Ĉ = 25; however, further

energy savings can be achieved by increasing the total cache

capacity. The performance of the online LRU caching policy

is far from the optimal; however, this was expected as it does

not exploit any information about the future requests. Next,

we assess the performance of policies that exploit only one of

the caching gains, namely, pre-downloading (PDCA) or local

caching gains (LCA). Interestingly, it is observed in the SBS

scenario that LCA achieves more energy savings than PDCA

(see Fig. 7(a)); while in the D2D scenario, PDCA requires

a lower energy consumption than LCA (see Fig. 7(b)). This

different behavior is later argued in the following paragraph as

it depends on the value of γ. Finally, if we globally compare

the two scenarios, we observe that the deployment of SBSs

leads to more reduction in the MBS energy consumption

compared to the D2D scenario. The rationale behind this is

two-fold. First, the expressions for energy consumption in
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Fig. 8. Energy consumption of the MBS for different values of the Zipf
distribution parameter γ (Ĉ = 10, U = 3). In (a) the files are cached at
the SBS as explained in Section II. In (b) the files are cached at the users as
explained in Section III.

the objective functions of problems (2) and (8) are different;

specifically, the energy consumption in the SBS scenario is

always smaller (or equal) than the consumption in the D2D

scenario, which can be proved by using Jensen’s inequality.

Second, in the D2D scenario the total storage capacity is

distributed across users instead of being centralized and, as

a result, the energy consumption increases.

Figs. 8(a) and 8(b) evaluate the impact of the file popularity

distribution, which is controlled by γ, on the energy consump-

tion of the MBS for the scenarios and algorithms mentioned

above. We observe that the energy consumption is dramatically

reduced when γ increases (and thus, the popularity distribution

becomes skewed) as more file repetitions are encountered. By

focusing on the policies No caching and PDCA, we observe

that both follow a similar trend when γ increases; the energy

consumption of these policies decreases with γ because it is

more likely that two users request the same file within the

same time slot. Indeed, for the case of a single user connected

to the SBS, U = 1, it can be observed that the energy

consumption of these policies is not affected by γ. Under a

uniform popularity distribution of the files (γ = 0), PDCA

outperforms LRU and LCA as file repetitions are unlikely;

however, there is a crossing point between the performances

of these policies. Interestingly, this crossing point occurs later

in the D2D scenario, and it moves to larger values of γ as

the number of users increases. We believe that this is because

the more distributed the cache is, the more the local caching

gain is penalized. In contrast, the pre-downloading gain is not
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Fig. 9. Economical cost at the MBS for different economical incentives per
transmitted data in the D2D links (U = 3, γ = 1, Ĉ = 10, and ξMBS =
0.3$/KWh).

affected much by distributing the cache across users. Note

that the optimal policy outperforms all the other policies by

adapting to the best available gain for any value of γ.

In the previous simulations we have considered that users

altruistically cooperate with the MBS. Next, we consider

that users transmit over the D2D links in exchange of an

economical incentive of ξU dollars per transmitted data.

In this context, we minimize the economical cost at the

MBS defined as the sum of the electricity bill, E , and

the incentives paid to users I, i.e., C = E + I, where

E =
∫ T

0
ξMBS

(

∑U
u=1W/U(exp(ru(τ)U/W )− 1)

)

dτ and

I =
∫ T

0
ξU
∑U

u=1

∑

u′ 6=u r̂u(τ, u
′)dτ . We have set ξMBS =

0.3 $/KWh, which is a typical electricity price. Fig. 9 depicts

the costs obtained under the optimal transmission and caching

policy as ξU varies in the x-axis. The plot I refers to the left

y-axis, whereas the plots C and E refer to the right y-axis.

The D2D links are used at its greatest possible extent when

ξU = 0 as D2D transmissions do not incur any cost to the

MBS. Then, the users incentives first increases with ξU until

it starts decreasing as the usage of the D2D links is reduced.

Finally, for very large values of ξU , the MBS serves all the

traffic and no data is transmitted over the D2D links.

V. CONCLUSIONS

This paper has investigated the opportunities that caching

offers to reduce a generic cost function of the transmission

rates, e.g., the required energy, bandwidth, or traffic to serve

the users. Two different scenarios have been considered where

the information is either cached at an SBS, or directly at

the user terminals, which then use D2D communications to

share the cached contents. It has been shown that, when the

transmission and caching policies are jointly designed, the

cache offers two possible gains, namely, the pre-downloading

and local caching gains. In both scenarios, the jointly optimal

transmission and caching policy has been obtained by demon-

strating that constant rate caching within a time slot is optimal,

which allows to reformulate the infinite-dimensional optimiza-

tion problem as a solvable convex program. The numerical

results have focused on minimizing the energy consumption

at the MBS. It has been shown that the proposed solutions

achieve substantial energy savings. Specifically, when the

cache capacity is only 25% of the average traffic of a single
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user, energy savings of more than 53% have been obtained.

It has been observed that the pre-downloading gain is greater

than the local caching gain when the file popularity distribution

is uniform, and vice versa when the file popularity is skewed.

The proposed optimal offline transmission and caching policies

can be used as a lower bound to evaluate the cost of any

online policy. In particular, it has been observed that, in the

considered wireless setting, the popular LRU online algorithm

performs far from the optimal strategy as it does not exploit

the pre-downloading caching gain. To conclude, our results

motivate the design of novel online algorithms that can better

approach the performance of the optimal offline solution,

which is left for future work. These algorithms can be designed

by exploiting the partial knowledge of some of the subsequent

file requests (e.g., when some users are watching long video

content that span several time slots), or by learning users’ daily

behaviors.

APPENDIX

In the statement of Lemma 2, we assume that we know the

optimal number of data units to be cached for each request,

q⋆nu. Thus, we also know the optimal value of the maximum

and minimum data departure curves at slot transitions, i.e.,

bn , B(nTs, c
⋆) = C +

∑n
ℓ=1

∑U
u=1 Tssnu − q⋆nu and an ,

A(nTs, c
⋆) =

∑n
ℓ=1

∑U
u=1 Tssnu− q⋆ρ̄(n,u) (c.f. Definitions 5

and 6). ρ̄(n, u) is defined after the problem in (2). However,

we do not know the actual values of B(t, c⋆) and A(t, c⋆) for

t 6= nTs since it depends on the shape of the optimal caching

policy.

We first relax the problem in (1) by considering the con-

straints in (1b) and (1c) only at slot transitions (t = nTs, ∀n).

Thus, we consider the following relaxed problem:

min
{r(t),c(t)}t∈[0,T ]

∫ T

0

g(r(τ))dτ (9a)

s. t. an ≤ D(nTs, r) ≤ bn, ∀n, (9b)

r(t) ≥ 0, ∀t ∈ [0, T ], (9c)

0 � c(t) � s(t), ∀t ∈ [0, T ], (9d)

B(nTs, c) = bn, A(nTs, c) = an, ∀n, (9e)

where the values of an and bn are known ∀n as argued above.

Note that any caching policy, c, satisfying (9d)-(9e) is

optimal to the relaxed problem.

This problem is represented in Fig. 10. Define r̄⋆(t) as the

optimal transmission rate to the relaxed problem in (9). The

optimal data departure curve, D(t, r̄⋆), is a piece-wise linear

function that can be obtained as the tightest string whose ends

are tied to (0, 0) and (0, aN). This statement is proved in [22]

by using the integral version of the Jensen’s inequality and

the convexity of the cost function g(·). Accordingly, for any

feasible caching policy c, we know that the transmission rate

of this relaxed problem might only change at slot transitions.

Due to this, the optimal data departure curve to the problem

in (9), D(t, r̄⋆), satisfies Ā(t) ≤ D(t, r̄⋆) ≤ B̄(t), ∀t ∈ [0, T ],
where Ā(t) is the piece-wise linear curve obtained by joining

the points (nTs, an) for n = 0, . . . , N ; and B̄(t) is the piece-

wise linear curve obtained by joining the points (nTs, bn) for

n = 0, . . . , N (see Fig. 10).

t
0 Ts 2Ts 3Ts T

a0
a1

a2

a3

a4

b0

b1
b2

b3
b4

B̄(t)

Ā(t)
D(t, r̄⋆)

Fig. 10. Representation of the relaxed problem in (9).

Next consider the caching policy that caches each file at a

constant rate, c⋆, as defined in Lemma 2. First note that c⋆

satisfies (9d)-(9e); and thus, it is an optimal caching policy

of the relaxed problem in (9). Additionally, the maximum

and minimum data departure curves associated to the caching

policy c⋆ are piece-wise linear and satisfy

A(t, c⋆) = Ā(t) ≤ D(t, r̄⋆) ≤ B̄(t) = B(t, c⋆), ∀t ∈ [0, T ].
(10)

Thus, {r̄⋆, c⋆} is the optimal solution to the relaxed problem

in (9).
Note that, from (10), the pair {r̄⋆, c⋆} satisfies the con-

straints that had been relaxed in the original problem in

(1). Accordingly, since {r̄⋆, c⋆} is a feasible solution to the

original problem, and the objective function is the same in

both problems, it is also an optimal solution.
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