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Abstract

Source and channel coding over multiuser channels in wreckivers have access to correlated
source side information is considered. For several mdtichannel models necessary and sufficient
conditions for optimal separation of the source and chaowoaés are obtained. In particular, the multiple
access channel, the compound multiple access channetténterence channel and the two-way channel
with correlated sources and correlated receiver side nmdition are considered, and the optimality of
separation is shown to hold for certain source and sidenmdtion structures. Interestingly, the optimal
separate source and channel codes identified for these sna@ehot necessarily the optimal codes for
the underlying source coding or the channel coding problémsther words, while separation of the
source and channel codes is optimal, the nature of thesmalptodes is impacted by the joint design

criterion.
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I. INTRODUCTION

Shannon’s source-channel separation theorem statesinthpgint-to-point communication
systems, a source can be reliably transmitted over a ch@raed only if the minimum source
coding rate is below the channel capacity [1]. This meansdrample comparison of the rates
of the optimal source and channel codes for the underlyingceoand channel distributions,
respectively, suffices to conclude whether reliable trassion is possible or not. Furthermore,
the separation theorem dictates that the source and chewohet can be designed independently
without loss of optimality. This theoretical optimality efiodularity has reinforced the notion
of network layers, leading to the separate development ofceoand channel coding aspects
of a communication system. The separation theorem holdstégronary and ergodic sources
and channels under the usual information theoretic assangpof infinite delay and complexity
(see[[2] for more general conditions under which separdtmds). However, Shannon’s source-
channel separation theorem does not generalize to multnefe/orks.

Suboptimality of separation for multiuser systems was §tgiwn by Shannon i [3], where
an example of correlated source transmission over the tayp-ehannel was provided. Later, a
similar observation was made for transmitting correlatedrses over multiple access channels
(MACSs) in [4]. The example provided in [4] reveals that compan of the Slepian-Wolf source
coding region[[5] with the capacity region of the underlyiRtAC is not sufficient to decide
whether reliable transmission can be realized.

In general communication networks have multiple sourceslable at the network nodes,
where the source data must be transmitted to its destinatiariossless or lossy fashion. Some
(potentially all) of the nodes can transmit while some (ptidly all) of the nodes can receive
noisy observations of the transmitted signals. The comoatioin channel is characterized by
a probability transition matrix from the inputs of the tramtting terminals to the outputs of
the receiving terminals. We assume that all the transmisssbare a common communications
medium; special cases such as orthogonal transmission eapdxified through the channel
transition matrix. The sources come from an arbitrary jaistribution, that is, they might be
correlated. For this general model, the problem we addeess determine whether the sources
can be transmitted losslessly or within the required figeid their destinations for a given

number of channel uses per source sample (cupss), whicHimseddo be thesource-channel
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rate of the joint source channel code. Equivalently, we might warfind the minimum source-
channel rate that can be achieved either reliably (for ésssteconstruction) or with the required
reconstruction fidelity (for lossy reconstruction).

The problem of jointly optimizing source coding along withet multiuser channel coding
in this very general setting is extremely complicated. & thannels are assumed to be noise-
free finite capacity links, the problem reduces to a muliieal source coding probleni|[1];
alternatively, if the sources are independent, then we fimtthe capacity region of a general
communication network. Furthermore, considering that wendt have a separation result for
source and channel coding even in the case of very simpleoneiwthe hope for solving this
problem in the general setting is slight.

Given the difficulty of obtaining a general solution for drbry networks, our goal here
is to analyze in detail simple, yet fundamental, buildingdils of a larger network, such as
the multiple access channel, the broadcast channel, tegfdrénce channel and the two-way
channel. Our focus in this work is on lossless transmissiwh @ur goal is to characterize the
set of achievable source-channel rates for these canaretabrks. Four fundamental questions
that need to be addressed for each model can be stated assfollo

1) Is it possible to characterize the optimal source-chirate of the network (i.e., the mini-
mum number of channel uses per source sample (cupss) redoiir®ssless transmission)
in a computable way?

2) Is it possible to achieve the optimum source-channelbatatistically independent source
and channel codes? By statistical independent source amhehcodes, we mean that the
source and the channel codes are designed solely based distifilgutions of the source
and the channel distributions, respectively. In genehasé¢ codes need not be the optimal
codes for the underlying sources or the channel.

3) Can we determine the optimal source-channel rate by giogyhparing the source coding
rate region with the capacity region?

4) If the comparison of these canonical regions is not seffiicto obtain the optimal source-
channel rate, can we identify alternative finite dimensisoarce and channel rate regions
pertaining to the source and channel distributions, rasgdg, whose comparison provides
us the necessary and sufficient conditions for the achibtyabf a source-channel rate?

If the answer to question (3) is affirmative for a given sethfs would maintain the optimality
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of the layered approach described earlier, and would qooresto the multiuser version of Shan-
non’s source-channel separation theorem. However, evam \his classical layered approach
is suboptimal, we can still obtain modularity in the systeasign, if the answer to question
(2) is affirmative, in which case the optimal source-chamatd can be achieved by statistically
independent source and channel codes, without taking thedastribution into account.

In the point-to-point setting, the answer to question (3affrmative, that is, the minimum
source-channel rate is simply the ratio of the source ewttopthe channel capacity; hence
these two numbers are all we need to identify the necessatysafficient conditions for the
achievability of a source-channel rate. Therefore, a eare that meets the entropy bound
when used with a capacity achieving channel code resulthanbest source-channel rate. In
multiuser scenarios, we need to compare more than two n@rbeslassical Shannon separation,
it is required that the intersection of the source coding ragion for the given sources and the
capacity region of the underlying multiuser channel is mapgy. This would definitely lead to
modular source and channel code design without sacrificptgnality. However, we show in
this work that, in various multiuser scenarios, even if thisot the case for the canonical source
coding rate region and the capacity region, it might stilldessible to identify alternative finite
dimensional rate regions for the sources and the chanrgecévely, such that comparison
of these rate regions provide the necessary and sufficienditoans for the achievability of a
source-channel rate. Hence, the answer to question (4) eaffibomative even if the answer to
guestion (3) is negative. Furthermore, we show that in tliases we also have an affirmative
answer to question (2), that is, statistically independentrce and channel codes are optimal.

Following [6], we will use the following definitions to diffentiate between the two types of
source-channel separatidnformational separatiomefers to classical separation in the Shannon
sense, in which concatenating optimal source and chanradscéor the underlying source
and channel distributions result in the optimal sourcencleh coding rate. Equivalently, in
informational separation, comparison of the underlyingrse coding rate region and the channel
capacity region is sufficient to find the optimal source-cteirate and the answer to question
(3) is affirmative.Operational separationon the other hand, refers to statistically independent
source and channel codes that are not necessarily the émtimie@s for the underlying source
or the channel. Optimality of operational separation aficlve comparison of more general

source and channel rate regions to provide necessary aficiesufconditions for achievability

DRAFT



of a source-channel rate, which suggests an affirmative entgwquestion (4). These source
and channel rate regions are required to be dependent smiethe source and the channel
distributions, respectively; however, these regions neet be the canonical source coding
rate region or the channel capacity region. Hence, the soancl channel codes that achieve
different points of these two regions will be statisticalhdependent, providing an affirmative
answer to question (2), while individually they may not be thptimal source or channel codes
for the underlying source compression and channel codiopl@ms. Note that the class of
codes satisfying operational separation is larger thansi#sfying informational separation. We
should remark here that we are not providing precise mattieahalefinitions for operational
and information separation. Our goal is to point out the tatons of the classical separation
approach based on the direct comparison of source codinglzarthel capacity regions.

This paper provides answers to the four fundamental questbout source-channel coding
posed above for some special multiuser networks and sotrcegges. In particular, we consider
correlated sources available at multiple transmitters mamicating with receivers that have
correlated side information. Our contributions can be sanmad as follows.

« In a multiple access channel we show that informational rsgjpa holds if the sources
are independent given the receiver side information. Taiglifferent from the previous
separation results [7]4.[9] in that we show the optimality sefparation for an arbitrary
multiple access channel under a special source structueaal¥d prove that the optimality
of informational separation continue to hold for indepemtdsources in the presence of
correlated side information at the receiver, given whioh sources are correlated.

« We characterize an achievable source-channel rate for @angpomultiple access channels
with side information, which is shown to be optimal for sorpeaal scenarios. In particular,
optimality holds either when each user’s source is indepenttom the other source and
one of the side information sequences, or when there is ntipleubccess interference at
the receivers. For these cases we argue that operatioralatep is optimal. We further
show the optimality of informational separation when the sources are independent given
the side information common to both receivers. Note thatabmpound multiple access
channel model combines both the multiple access chann#iscairelated sources and the
broadcast channels with correlated side information atrdiceivers.

. For an interference channel with correlated side inforomtiwe first define thestrong
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source-channel interferenanditions, which provide a generalization of the usuadrsgr
interference conditions [10]. Our results show the optityalf operational separation under
strong source-channel interference conditions for aertaurce structures.

« We consider a two-way channel with correlated sources. Thesgable scheme for com-
pound MAC can also be used as an achievable coding schemeich wie users do not
exploit their channel outputs for channel encoding (‘ietgd encoders’). We generalize

Shannon’s outer bound for two-way channels to correlatences.

Overall, our results characterize the necessary and sufficonditions for reliable transmis-
sion of correlated sources over various multiuser netwonkesce answering question (1) for
those scenarios. In these cases, the optimal performarahisved by statistically independent
source and channel codes (by either informational or ojpera@t separation), thus promising
a level of modularity even when simply concatenating optis@urce and channel codes is
suboptimal. Hence, for the cases where we provide the opmace-channel rate, we answer
guestions (2), (3) and (4) as well.

The remainder of the paper is organized as follows. We rettenprior work on joint source-
channel coding for multiuser systems in Secfidn Il, and thiations and the technical tools that
will be used throughout the paper in Section Ill. In Secfi®df) we introduce the system model
and the definitions. The next four sections are dedicatetig¢analysis of special cases of the
general system model. In particular, we consider multigieeas channel model in Sectibn V,
compound multiple access channel model in Sedfidn VI, fetence channel model in Section
Villand finally the two-way channel model in Sectidn VYlIlI. Ooonclusions can be found in
Section IX followed by the Appendix.

[I. PRIOR WORK

The existing literature provides limited answers to therfquestions stated in Sectigh | in
specific settings. For the MAC with correlated sources, digtter sufficient conditions for
achievability of a source-channel rate are giveriin [4] inattlempt to resolve the first problem;
however, these conditions are later shown not to be negebgabDueck [11]. Thecorrelation
preserving mappindechnique of[[4] used for achievability is later extendedstmrce coding
with side information via multiple access channels_in [X8]broadcast channels with correlated

sources in[13], and to interference channels in [14]. 11,[[Z%5] a graph theoretic framework was
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used to achieve improved source-channel rates for tramsgitorrelated sources over multiple
access and broadcast channels, respectively. A new dategsing inequality was proved in [17]
that is used to derive new necessary conditions for relidalesmission of correlated sources
over MACs.

Various special classes of source-channel pairs have hedied in the literature in an effort
to resolve the third question above, looking for the mostegainclass of sources for which the
comparison of the underlying source coding rate region &edcapacity region is sufficient to
determine the achievability of a source-channel rate. rigdtty of separation in this classical
sense is proved for a network of independent, non-interdechannels in |7]. A special class of
the MAC, called the asymmetric MAC, in which one of the sosriseavailable at both encoders,
is considered in [8] and the classical source-channel agparoptimality is shown to hold with
or without causal perfect feedback at either or both of taegmitters. In[9], it is shown that for
the class of MACs for which the capacity region cannot be rgeld by considering correlated
channel inputs, classical separation is optimal. Note allabf these results hold for a special
class of MACs and arbitrary source correlations.

There have also been results for joint source-channel dadesadcast channels. Specifically,
in [6], Tuncel finds the optimal source-channel rate for bdiazesting a common source to multiple
receivers having access to different correlated sidenmétion sequences, thus answering the first
guestion. This work also shows that the comparison of thadwast channel capacity region and
the minimum source coding rate region is not sufficient todkegvhether reliable transmission
is possible. Therefore, the classical informational setaitannel separation, as stated in the
third question, does not hold in this setup. Tuncel also answthe second and fourth questions,
and suggests that we can achieve the optimal source-cheatedby source and channel codes
that are statistically independent, and that, for the aelfidity of a source-channel rate the
intersection of two regions, one solely depending on thecgodistributions, and a second one
solely depending on the channel distributions, is necgssad sufficient. The codes proposed

in [6] consist of a source encoder that does not use the ateekide information, and a joint
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source-channel decoder; hence they are not stand-alomeesand channel coc&sThus the
techniques in[[6] require the design of new codes apprapfiat joint decoding with the side
information; however, it is shown in_[18] that the same perfance can be achieved by using
separate source and channel codes with a specific messagjagpaschanism between the
source/channel encoders/decoders. Therefore we can iss@gxear-optimal codes to achieve
the theoretical bound.

Broadcast channel in the presence of receiver message rémenation, i.e., messages at
the transmitter known partially or totally at one of the rigees, is also studied from the
perspective of achievable rate regions|in/ [20] -/ [23]. Thebpem of broadcasting with receiver

side information is also encountered in the two-way relagnctel problem studied in [24], [25].

I1l. PRELIMINARIES
A. Notation

In the rest of the paper we adopt the following notationaivemtions. Random variables will
be denoted by capital letters while their realizations W@l denoted by the respective lower
case letters. The alphabet of a scalar random varidbleill be denoted by the corresponding
calligraphic letterX’, and the alphabet of the-length vectors over the-fold Cartesian product
by X™. The cardinality of se&’ will be denoted byX’|. The random vectofXy, ..., X,,) will be
denoted byX" while the vector(X;, X;.1,...,X,) by X, and their realizations, respectively,

by (z1,...,z,) or 2™ and (z;, x;11,...,z,) Or zI.

B. Types and Typical Sequences

Here, we briefly review the notions of types and strong tylgicahat will be used in the
paper. Given a distributiopy, the typeP,. of ann-tuple z™ is the empirical distribution

1
Pyn = —N(a|z"
~N(alz")

'Here we note that the joint source-channel decoder propogetlincel in [6] can also be implemented by separate source
and channel decoders in which the channel decoder is a tisdée[19] that outputs a list of possible channel inputsweier,
by stand-alone source and channel codes, we mean uniqudetdedbat produce a single codeword output, as it is undmfsto
in the classical source-channel separation theorem ofrfaiman
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where N (a|z™) is the number of occurances of the lettein z". The set of alln-tuplesz”
with type @ is called the type clas§ and denoted by7}. The set ofé-strongly typicaln-tuples
according toPy is denoted byT[}b and is defined by

1
T, = {g; € X" ’EN(ap:") — Py(a)| < 6¥a € X and N(a|z") = 0 wheneverPy (z) 0} .

The definitions of type and strong typicality can be extentte¢bint and conditional distri-
butions in a similar mannerf [1]. The following results comgrg typical sets will be used in

the sequel. We have

)
< 3 1)

for sufficiently largen. Given a joint distributionPyy, if (z;,y;) is drawn independent and

1 n
-~ log [Ty, | - H(X))

identically distributed (i.i.d.) withPx Py for i = 1,...,n, where Py and P are the marginals,
then

Pr{(,_')j'n’ yn) e ﬂ}Y]g} S 2_"(I(X;Y)_35)‘ (2)

Finally, for a joint distribution Pxy 2, if (x;,v;, 2;) is drawn i.i.d. with Px Py P, for i =

1,...,n, where Py, Py and P, are the marginals, then

Pr{(l,n yn Zn) c T[g(YZ} } < 2—n(I(X;Y,Z)—i—I(Y;X,Z)-l—I(Z;Y,X)—46) (3)
PR sJ > .

IV. SYSTEM MODEL

We introduce the most general system model here. Througheytaper we consider various
special cases, where the restrictions are stated explfoitleach case.

We consider a network of two transmitt€ix; and Tx,, and two receiver®x; and Rx.,.
Fori = 1,2, the transmittefl'x; observes the output of a discrete memoryless (DM) sofyce
while the receiveRRx; observes DM side informatiofl’;. We assume that the source and the
side information sequence$S: ., Sox, Wik, Waytio, are ii.d. and are drawn according to a
joint probability mass function (p.m.fy(s, s2, w1, wy) over a finite alphabe$; x Sy x Wy x Wh.
The transmitters and the receivers all know this joint p.ninfit have no direct access to each
other’s information source or the side information.

The transmittefT'x; encodes its source vectsf” = (S; 1,...,S;.,) into a channel codeword

X" = (X;1,...,Xin) using the encoding function

2

fomm . gmo_, xn, (4)

K3 7
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Receiver 1 > (574, ST%
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1'—> Transmitter 1
Channel

P(yl’ y2|x1, xz)

Y

Receiver 2 |— (S, Sm)

|

wy"

5'— Transmitter 2 >

Fig. 1. The general system model for transmitting correlamurces over multiuser channels with correlated siderimdtion.
In the MAC scenario, we have only one receilex;; in the compound MAC scenario, we have two receivers whichtwa
receive both sources, while in the interference channelaso® we have two receivers, each of which wants to receilg its

own source. The compound MAC model reduces to the “restfidi®o-way channel model wheiW;” = S;"* for i = 1, 2.

for i = 1,2. These codewords are transmitted over a DM channel to tledvers, each of which
observes the output vectd)* = (Y;,...,Y;,). The input and output alphabets and)); are all
finite. The DM channel is characterized by the conditionatribution Py, v, x, x, (y1, y2|21, 2).
Each receiver is interested in one or both of the sourcesdiépgon the scenario. Let receiver
Rx; form the estimates of the source vectof8 and S}*, denoted b Ai,"; and S{”Q based on its
received signal;” and the side information vectd?;” = (W, ,,..., W, ,) using the decoding

function
g™ LY X W — S x Sy (5)

Due to the reliable transmission requirement, the recoostm alphabets are the same as the
source alphabets. In the MAC scenario, there is only oneévwecBx,, which wants to receive
both of the sources; and.S,. In the compound MAC scenario, both receivers want to receiv
both sources, while in the interference channel scenaaich eeceiver wants to receive only its
own transmitter’s source. The two-way channel scenarim@ibe obtained as a special case of
the above general model, as the received channel outpuchtusgr can be used to generate
channel inputs. On the other hand, a “restricted” two-wagnetel model, in which the past
channel outputs are only used for decoding, is a special @aee above compound channel

model withW» = S™ for < = 1, 2. Based on the decoding requirements, the error probability
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the systemP™™ will be defined separately for each model. Next, we define thuece-channel
rate of the system.

Definition 4.1: We say that source-channel rates achievablef, for every e > 0, there exist
positive integersn andn with n/m = b for which we have encoderg™" and f{™", and
decodersy"™"™ andg{™" with decoder outputgSy, S73) = g,(Y;", W;™), such thatP™" < e.

V. MULTIPLE ACCESSCHANNEL

We first consider the multiple access channel, in which wdrdegested in the reconstruction
at receiverRx; only. For encoderg™™ and a decodey\™™, the probability of error for the
MAC is defined as follows:

P& Pr{(S{",55") # (7, 51%)}

= o ot sy )P{(sTh, 81) # (sT7, 83)|(ST", S57) = (sT", s5") ).

(87,85 )EST X ST
Note that this model is more general than that of [4] as it mhers the availability of correlated
side information at the receiver [29]. We first generalize #thievability scheme of [4] to our
model by using the correlation preserving mapping techmiqgti[4], and limiting the source-
channel raté to 1. Extension to other rates is possible as in Theorem 4 lof [4].
Theorem 5.1:Consider arbitrarily correlated sourcés and S, over the DM MAC with
receiver side informatioM’;. Source-channel ratie= 1 is achievable if

H(51]S2,Wh) < I(X1;Yi[ X2, 55, Wi, Q),
H(S:|S1,Wh) < (X Yi[Xy, 51, Wi, Q),
H(Sy, So|U, W) < I(Xy, Xo; Y1|U, WA, Q),
and
H(Sy, So|Wy) < I(Xy, Xo; Y1|Wh),
for some joint distribution
P(; 51, 52, w1, 21, w2, y1) = p(@)p(s1, 52, w1)p(w1]q, 51)p(%2|q, $2)p(Y1|21, 22)
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and
U= f(51) = 9(52)

is the common part of; and S, in the sense of Gacs and Kornér [26]. We can bound the
cardinality of @ by min{|X;]| - |Xa|, |[V|}.

We do not give a proof here as it closely resembles the on€l.ilNpte that correlation among
the sources and the side information both condenses thiedett side of the above inequalities,
and enlarges their right hand side, compared to transmiftidependent sources. While the
reduction in entropies on the left hand side is due to SlefVaif source coding, the increase in
the right hand side is mainly due to the possibility of getingacorrelated channel codewords
at the transmitters. Applying distributed source codingpieed by MAC channel coding, while
reducing the redundancy, would also lead to the loss of plessbrrelation among the channel
codewords. However, whef; — W; — S5 form a Markov chain, that is, the two sources are
independent given the side information at the receiver,rédoeiver already has access to the
correlated part of the sources and it is not clear whetheitiaddl channel correlation would
help. The following theorem suggests that channel coroglgtreservation is not necessary in
this case and source-channel separation in the infornats®nse is optimal.

Theorem 5.2:Consider transmission of arbitrarily correlated souresand S, over the DM
MAC with receiver side informatioiV;, for which the Markov relationS; — W; — S, holds.

Informational separation is optimal for this setup, andgbarce-channel rateis achievable if

H(Si[Wh) < b-1(X1;Y1] X5, Q), (6a)
H(S:[Wh) < b-I(X; 1| X1, Q), (6b)
and
H(S1|Wy) + H(S2|Wq) < b 1(Xq, X2; Y1]Q), (6¢)
for some joint distribution
p(q; 21,22, 51) = p(Q)p(21]q)p(z2]q)p(yr| 21, 22), (7)

with |Q] < 4.
Conversely, if the source-channel rdtés achievable, then the inequalities [d (6) hold with

< replaced by< for some joint distribution of the form given inl(7).
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Proof: We start with the proof of the direct part. We use SlepianfV¢alurce coding
followed by multiple access channel coding as the achiétyalsicheme; however, the error
probability analysis needs to be outlined carefully sinoe the rates within the rate region
characterized by the right-hand side (6) we can achieb#trarily small average error
probability rather than thenaximum error probabilit [1]. We briefly outline the code generation
and encoding/decoding steps.

Consider a rate paifR;, R,) satisfying

H(S;|[Wy) < Ry <b-I(X;Y1]X5,Q), (8a)
H(S,|Wy) < Ry <b-I(Xs;:Y1|X1,Q), (8b)

and
H(Si|Wh) 4+ H(S2|W1) < Ri+ Ry <b-I(X1,X2;Y1|Q). (8c)

Code generationAt transmitterk, k£ = 1,2, independently assign evegy’ € S to one of
the 2™ bins with uniform distribution. Denote the bin index gf by i, (s7*) € {1,...,2m%}.
This constitutes the Slepian-Wolf source code.

Fix p(q), p(z1|q) and p(z2]q) such that the conditions i](6) are satisfied. Genegatdy
choosingy; independently fronp(q) fori = 1, ..., n. For each source bin indéx = 1,. .., 2m%
of transmitterk, k = 1,2, generate a channel codewarfii;) by choosingzy; (i) independently
from p(zx|q;). This constitutes the MAC code.

Encoders:We use the above separate source and the channel codes ddirencrhe source
encoderk finds the bin index ok} using the Slepian-Wolf source code, and forwards it to the
channel encoder. The channel encoder transmits the codesjocorresponding to the source
bin index using the MAC code.

Decoder: We use separate source and channel decoders. Upon recegiyirte channel
decoder tries to find the indicég), ;) such that the corresponding channel codewords satisfy
(¢",27(1h), 23 (i) € Tihx, x,vy,- If ONE such pair is found, call iti}, 7). If no or more than
one such pair is found, declare an error.

Then these indices are provided to the source decoder. &decoder tries to findy", such
thati(s}') = v, and (8", Wi") € T(§ y,),- If one such pair is found, it is declared as the output.
Otherwise, an error is declared.
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Probability of error analysis:For brevity of the expressions, we defie= (s7",s3"), S =
(87", Sy) and s = (87", 5T,). The indices corresponding to the sources are denoteil by
(11(s7"),2(s5")), and the indices estimated at the channel decoder are debgté = (i}, i}).

The average probability of error can be written as follows:
P £ N P{s # 8|S = s}p(s)

= > [P{s#sli=1,S=s}pi=1|S=s)+P{s#s|i#1,S=s}p(i#{|S=s)ps)

S

< D [P{s#sli=1,S=s}+p(i#1[S=5)p(s)
= Y P{s#sli=1,S=s}p(s) + > _p(i#1S=s)ps) 9)
Now, in (9) the first summation is the average error probgbgiven the fact that the receiver
knows the indices correctly. This can be made arbitrarilglémith increasingn, which follows
from the Slepian-Wolf theorem. The second term[ih (9) is therage error probability for the
indices averaged over all source pairs. This can also béewrés

> p(#A T[S =s)p(s) =3 p(i#1T=i)

S

= Y (i £ VT = )p(T = i)

1 .. .
~ om(Ri+R) Y pi#iI=1) (10)

where [10) follows from the uniform assignment of the biniged in the creation of the source
code. Note thaf (10) is the average error probability exgioesfor the MAC code, and we know
that it can also be made arbitrarily small with increasingand n under the conditions of the
theorem [[1].

We note here that fob = 1 the direct part can also be obtained from Theotem 5.1. Fer thi
we ignore the common part of the sources and choose the dhiaipogs independent of the

source distributions, that is, we choose a joint distrimutdf the form

p(q, 51, 82, w1, T1, T, Y1) = p(q)p(s1, 52, w1)p(w1]q)p(22|@)P(Y1 |71, T2).

From the conditional independence of the sources givendbeiver side information, both the
left and the right hand sides of the conditions in Thedremcari be simplified to the sufficiency
conditions of Theorer 5.2.
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We next prove the converse. We assui@"™ — 0 for a sequence of encode_lfém’")
(i = 1,2) and decoderg™™ asn,m — oo with a fixed rateb = n/m. We will use Fano’s

inequality, which states
H(ST, Sy |57, 87) < 1+ mP™™log|S; x Sal,
£ mé(P™m), (11)
whered(z) is a non-negative function that approaches zera as 0. We also obtain
H(ST", 851574, 51%) > H(S{'[STY, ST%), (12)
> H(ST'|Y", W), (13)

where the first inequality follows from the chain rule of ey and the nonnegativity of the
entropy function for discrete sources, and the second adeégdollows from the data processing

inequality. Then we have, far= 1, 2,

HSPY7, W) < mo(Pm), (14)
We have
CIOXYRIXG W) 2 I(ST Y XY), 1)
= HSPITLXD) - HSTIYT WXL (16)
= THSPIT) — HOSPIYL W X)) (17)
> (ST — H(SYIYE, W) (18)
> %[H(SﬂWl)—é(Pe(m’”))}, (19)

where ([15) follows from the Markov relationS]” — X7 — Y;* given (X5, Wi™); ([I4) from the
Markov relationXy — W™ — S7*; (18) from the fact that conditioning reduces entropy; &é)

from the memoryless source assumption and friom (11) whiels #ano’s inequality.
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On the other hand, we also have

XS YPIX W) = H(YPIXE, W) — H(YPIXP, X3, W), (20)
—H(IXE, W) —éﬂm,imi—l,X?,Xg,Wm, (21)
= H(Y{"| X3, W) —jZIH<Y1,Z-\Xu,X2Z-,WF), (22)
< ﬁ;wa%wa —§H<m7i|xu,xzi,wm, (23)
= i](Xli;YlﬂX%an)a (24)

Il
A

7

where [21) follows from the chain ruld;_(22) from the memesd channel assumption; and](23)
from the chain rule and the fact that conditioning reducesogsy.

For the joint mutual information we can write the followingt<f inequalities:

LIOGLXB YR > (S S5V, (25)
= L[H(ST, SYIWE) — H(SY, Sy 1Yy W) (26)
= LLH(STWY) + H(SPIWE) — HS S5V WL (@)
> (ST + HSPIW) — HST,SPISE.87). (28)
> % H(S\[Wh) + H(Ss[Wh) — 6(Pm)| (29)

where (25) follows from the Markov relation ST, S3*) — (X7, X3') — Y given W"; (24) from

the Markov relationsy” — W™ — S7*; ([28) from the fact thaiS;", S7) — (Y, W) — (S, S1)

form a Markov chain; and29) from the memoryless source assumption and from (11) which
uses Fano’s inequality.

By following similar arguments as i (R0)-(24) above, we edso show that

I(X{laX;;Y{L‘me) < ZHXMX%;YM‘W{?I)- (30)

i=1

Now, we introduce a time-sharing random varialeéndependent of all other random vari-
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ables. We have) = i with probability 1/n, i € {1,2,...,n}. Then we can write

1 12

g](X{LSYng»Wlm) < EZ](XM;YMX%Wf%)a (31)
i=1

12 _

= EZ](XIQ;)/ﬂXZ@WF?Q:Z)v (32)
i=1

= I(X,0; Y| Xog, W™, Q), (33)

= I(XI;Y‘X%Q)? (34)

where X; £ X 5, Xo £ X5, Y £ Y, andQ = (W™, Q). SinceS;" and Si*, and therefore

X;; and Xy;, are independent givei ", for ¢ = (w}",7) we have

PriX, =2, Xo = 25|Q = q} = Pr{Xy =, Xo; = 2o|W" =", Q = i}
= Pri{Xy=x|W" =w]",Q =i} Pr{Xy = m|W" = w",Q =i}
= Pr{Xi|Q = ¢} - Pr{Xo|Q = q}.

Hence, the probability distribution is of the form given ilm&orenT5.R.

On combining the inequalities above we can obtain

H(Sy|Wy) — 8(P™™) < bI(X1; Y| X, Q), (35)
H(So|[Wh) = 6(P™™) < bI(X2; Y[ X1, Q), (36)

and
H(Si|Wh) + H(Se|Wy) — §(PI™™) < bI(X1, X2, Y|Q). (37)

Finally, taking the limit asn,n — oo and lettingP™™ — 0 leads to the conditions of the
theorem. [ |

To the best of our knowledge, this result constitutes thé déixample in which the underlying
source structure leads to the optimality of (informatiQrs@lurce-channel separation independent
of the channel. We can also interpret this result as folloWe side information provided to the
receiver satisfies a special Markov chain condition, whithbtes the optimality of informational
source-channel separation. We can also observe from Tihebrg that the optimal source-
channel rate in this setup is determined by identifying timaltest scaling factob of the MAC
capacity region such that the poit (S;|1;), H(S2, W1)) falls into the scaled region. This

answers question (3) affirmatively in this setup.
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A natural question to ask at this point is whether providitogne side information to the
receiver can break the optimality of source-channel séparéan the case of independent mes-
sages. In the next theorem, we show that this is not the caddaha optimality of informational
separation continues to hold.

Theorem 5.3:Consider independent sourcés and S; to be transmitted over the DM MAC
with correlated receiver side informatidir;. If the joint distribution satisfie®(s1, so, wy) =

p(s1)p(s2)p(wis1, s2), then the source-channel rdtés achievable if

H(51]82, Wh) < b-I(X1;Y1[ X5, Q), (38)

H(S|S0, Wh) < b-I(Xs: Yi| X1, Q) (39)
and

H(Sy, So|Wh) < b-1(X1, X5: Y1|Q), (40)

for some input distribution

p(q, x1, 2, 11) = p(@)p(@1|q)p(22]@)p(y1 |21, 22), (41)

with |Q| < 4.

Conversely, if the source-channel rates achievable, ther (88)-(40) hold with replaced by
< for some joint distribution of the form given ih_(41). Infoational separation is optimal for
this setup.

Proof: The proof is given in AppendixJA. [ |

Next, we illustrate the results of this section with somenegkes. Consider binary sources

and side information, i.e§; = So = W, = {1, 2}, with the following joint distribution:
Pg, 5,w, {51 =10,5, =0,W; =0} = Ps,5,u, {S1=1,8%=1,W, =1} =1/3
and
Ps, 5w, {S1 =0,8 =1,W, =0} = Ps,5,w, {S1 = 0,8, = 1,W; =1} = 1/6.

As the underlying multiple access channel, we consider arpimput adder channel, in which
X =X,={0,1}, Y ={0,1,2} and

Y =X+ Xo.
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H(S2|51)

0.5
H(So|[Wi)| - »
(0.46,0.46)

H(S1|W1) 0.5 H(S1]S2) 1 1.5 1.58

Fig. 2. Capacity region of the binary adder MAC and the sowading rate regions in the example.

Note that, when the side informatidfi; is not available at the receiver, this model is the same
as the example considered in [4], which was used to show thepsunality of separate source
and channel codes over the MAC.

When the receiver does not have access to side inform#tigrwe can identify the separate
source and channel coding rate regions using the conditeaieopies. These regions are shown
in Fig. [@. The minimum source-channel rate is foundbas 1.58/1.5 = 1.05 cupss in the
case of separate source and channel codes. On the otherihendasy to see that uncoded
transmission is optimal in this setup which requires a sewitannel rate of = 1 cupss. Now,
if we consider the availability of the side informatid; at the receiver, we havH (S;|W;) =
H(S;|W;) = 0.46. In this case, using Theorelm 5.2, the minimum required saohannel rate
is found to beb = 0.92 cupss, which is lower than the one achieved by uncoded tigsgm.

Theorem[5.B states that, if the two sources are independdatmational source-channel
separation is optimal even if the receiver has side infolenagiven which independence of the
sources no longer holds. Consider, for example, the sansybadder channel in our example.
We now consider two independent binary sources with unifdistribution, i.e.,P(S; = 0) =
P(Sy = 0) = 1/2. Assume that the side information at the receiver is now rgibg W, =

X, & X,, where® denotes the binary xor operation. For these sources andhidnenel, the
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minimum source-channel rate without the side informatibthe receiver is found as= 1.33
cupss. WhenV; is available at the receiver, the minimum required soufwoel rate reduces
to b = 0.67 cupss, which can still be achieved by separate source amtheheoding.

Next, we consider the case when the receiver side informasi@lso provided to the trans-
mitters. From the source coding perspective, i.e., whenutigerlying MAC is composed of
orthogonal finite capacity links, it is known that having thide information at the transmitters
would not help. However, it is not clear in general, from tleirge-channel rate perspective,
whether providing the receiver side information to the s$raiiters would improve the perfor-
mance.

If S;—W;—.S, form a Markov chain, it is easy to see that the results in Téx@d5.2 continue
to hold even wher¥; is provided to the transmitters. Leét = (S;, W;) be the new sources
for which S; — W; — S, holds. Then, we have the same necessary and sufficient worsdits
before, hence providing the receiver side information ® tlansmitters would not help in this
setup.

Now, let.S; and .S, be two independent binary random variables, &id= S; & S,. In this
setup, providing the receiver side informatidn to the transmitters means that the transmitters
can learn each other’s source, and hence can fully cooperdtansmit both sources. In this

case, source-channel rdtas achievable if
H(Sy, So|Wh) < bI(X1, Xo; Y1) (42)

for some input distribution(z, x2), and if source-channel rateis achievable theri (42) holds
with < for somep(z1,z2). On the other hand, ifV; is not available at the transmitters, we
can find from Theorerh 5.3 that the input distribution [inl(42h @nly bep(z1)p(x2). Thus, in
this setup, providing receiver side information to the sraitters potentially leads to a smaller
source-channel rate as this additional information maylkeneooperation over the MAC, which
is not possible without the side information. In our exampiendependent binary sources, the
total transmission rate that can be achieved by total cadiper of the transmitters i$.58 bits
per channel use. Hence, the minimum source-channel ratedhabe achieved when the side
information 1/, is available at both the transmitters and the receiver isddiw be0.63 cupss.
This is lower than).67 cupps that can be achieved when the side information is ordiladle

at the receiver.
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We conclude that, as opposed to the pure lossless souragggcsxiinario, having side informa-

tion at the transmitters might improve the achievable ssgitannel rate in multiuser systems.

VI. CoMPOUND MAC WITH CORRELATED SOURCES

Next, we consider a compound multiple access channel, irctwhivo transmitters wish
to transmit their correlated sources reliably to two reeesvsimultaneously [29]. The error

probability of this system is given as follows:

lI>

pim PT{ U (s1,55") # (@Zﬁﬁ%)}

k=12
= S plst s?)P{ U (5 87) # (57, s5[(S, 850) = (7, s;”>} .
(7 s ST X SF? k=12

The capacity region of the compound MAC is shown to be thersetion of the two MAC
capacity regions in [27] in the case of independent sourcelsn® receiver side information.
However, necessary and sufficient conditions for losslesssimission in the case of correlated
sources are not known in general. Note that, when there & igifdrmation at the receivers,
finding the achievable source-channel rate for the compd®AE is not a simple extension
of the capacity region in the case of independent sources.tBuifferent side information at
the receivers, each transmitter should send a differenitgdats source to different receivers.
Hence, in this case we can consider the compound MAC both asndination of two MACs,
and as a combination of two broadcast channels. We remaekthat even in the case of single
source broadcasting with receiver side information, imfational separation is not optimal, but
the optimal source-channel rate can be achieved by opeshtse@paration as is shown in [6].

We first state an achievability result for raie= 1, which extends the achievability scheme
proposed in[[4] to the compound MAC with correlated side iinfation. The extension to other
rates is possible by considering blocks of sources and &isas superletters similar to Theorem
4 in [4].

Theorem 6.1:Consider lossless transmission of arbitrarily correlatedrces(S;, S;) over a

DM compound MAC with side informatiofi¥;, 175) at the receivers as in Figl. 1. Source-channel
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rate 1 is achievable if, fork = 1, 2,
H(S1|S9, W) < I(Xy; Yi| Xy, So, Wi, Q),
H(S|S1, Wi) < I(Xg; Yi| X1, S1, Wi, Q),
H(Sy, S|U W) < I(Xy, Xo; Yi|U, Wi, Q),
and
H(Sy, So|Wy) < I(Xy, Xo; Yi|[Wh),

for some joint distribution of the form

P(Cb S1, 32>w17w2>x17x27y17y2) = p(Q)p(Sl, 82>w17w2)P($1|q7 Sl)p($2|% 52)p(y1,y2|x1,x2)

and
U= f(S1) =g(52)

is the common part of; and S, in the sense of Gacs and Korner.
Proof: The proof follows by using the correlation preserving magpscheme ofi [4], and

is thus omitted for the sake of brevity. [ |

In the next theorem, we provide sufficient conditions for dlchievability of a source-channel
rate b. The achievability scheme is based on operational separathere the source and the
channel codebooks are generated independently of each bthearticular, the typical source
outputs are matched to the channel inputs without any ekjblicning at the encoders. At the
receiver, a joint source-channel decoder is used, whichbeanonsidered as a concatenation
of a list decoder as the channel decoder, and a source deitadesearches among the list for
the source codeword that is also jointly typical with theesidformation. However, there are
no explicit source and channel codes that can be indepdpdesgd either for compressing the
sources or for independent data transmission over the iyimtecompound MAC. An alternative
coding scheme composed of explicit source and channel €dldat interact with each other is
proposed in([18]. However, the channel code in this lattéieste is not the channel code for
the underlying multiuser channel either.

Theorem 6.2:Consider lossless transmission of arbitrarily correlatedrcesS; and S, over

a DM compound MAC with side informatioll/; and 1/, at the receivers. Source-channel rate
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b is achievable if, fork = 1, 2,

H(51]Ss, W) < bI(X7; Yi| Xo, Q), (43)

H (85|81, Wy) < bI(Xa; Y| X1, Q), (44)
and

H(S1, So|Wy) < bI(Xy, Xo; Yi|@), (45)

for some|Q| < 4 and input distribution of the form(q, z1, z2) = p(q) p(x1|q)p(x2|q).

Remark 6.1:The achievability part of Theorem 6.2 can be obtained from ahhievability
of Theorem[6.Il. Here, we constrain the channel input didiobs to be independent of the
source distributions as opposed to the conditional digtiob used in Theorem 6.1. We provide
the proof of the achievability of Theorem 6.2 below to ilkagé the nature of the operational
separation scheme that is used.

Proof: Fix d;, > 0 and~, > 0 for k = 1,2, and Px, and Py,. Forb = n/m andk = 1,2,
at transmitterk, we generatelf, = 2mHSH+¢/2 jjd. lengthm source codewords and i.i.d.
length+» channel codewords using probability distributiofts, and Px,, respectively. These
codewords are indexed and revealed to the receivers asandllare denoted by} (i) andz}(7)
for 1 <i < M,.

Encoder:Each source outcome is directly mapped to a channel codeagfdllows: Given
a source outcomé;" at transmitterm, we find the smallest, such thatS;* = s}*(ix), and
transmit the codeword} (ix). An error occurs if no such, is found at either of the transmitters
k=1,2.

Decoder:At receiverk, we find the unique paii], i3) that simultaneously satisfies
(2707, 25(53), Y1) € T,
and

(s7(57), 58'(33), W) € T,

WhereT[()?])é is the set of weakly-typical sequences. An error is declared if thig %) pair is

not uniquely determined.
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Probability of error: We define the following events:
By = {Sy" # s (1), Vi}
Ef = {(s7"(i1), 55" (i2), Wi") & Ty, )
Ef = {(@} (1), 75(02), Yi') & Ty, )

and

E{ (1, 2) = {(s7° (). 55 (72). Wi") € Ty, @0 (27 (). 25 (32). Y1) € T(¢ . )

Here, E; denotes the error event in which either of the encoders fail§ind a unique
source codeword in its codebook that corresponds to itegtigource outcome. When such
a codeword can be found;} denotes the error event in which the souré&sand S3* and the
side informationi¥,, at receiverk are not jointly typical. On the other hand; denotes the
error event in which channel codewords that match the cus@urce realizations are not jointly
typical with the channel output at receivér Finally E%(j;, j.) is the event that the source
codewords corresponding to the indicgsand j, are jointly typical with the side information
W, and simultaneously that the channel codewords correspgrtdi the indicesj; and j, are
jointly typical with the channel outpui’,.

Define 2™ £ Pr{(Sp, S5) # (Sp, Si5)}. Then P < s, 1, PI™™. Again, from the
union bound, we have
P{™ <Pr{Ef} + Pr{E;} + Pr{E{} + 30 EfGioa) + X EfG i)+ > EiGj),

yay s Ao
(46)

wherei; andi, are the correct indices. We have

Ef(j1, j2) = Pr{(sT'(j1), 55" (j2), Wi") € T, g, Pr {1 () 5 (i2) Vi) € T vy |-

(47)
In [6] it is shown that, for any\ > 0 and sulfficiently largen,
Pr{Ef} = (1 - Pr{S{" = s"(1)})™"
< exp_Tn[H(skHM]Mk
= exp_zn[%w (48)
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We choose\ < 5,

Similarly, we can also prove thdtr(E;(k)) — 0 fori = 2,3 andk = 1,2 asm,n — o

and obtainPr{F,} — 0 asm — oo.

using standard techniques. We can also obtain

Z Pr {(STUl)? S;n(.j2>7 WIT) < T[(ST,)SQ,WIC}% } Pr {('T?(]l)>xg(.72)> Ykn) S T[()27X27Yk}5k}
i,
Jo=i2

< 9m[H(S1)+35]=m[I(51;52,Wi) =N —=n[l(X1;Y}[X2)=A] (49)

_ o—mIH(S1]S2,Wi)—=bI (X13Yi| X2) — (b+1)A— 5]

— 2—m[%—(b+1))\} (50)

where in [49) we used(1) andl (2); aid](50) holds if the coadgiin the theorem hold.
A similar bound can be found for the second summatior_in (B6}.the third one, we have
the following bound.
_; Pr{(s7'(j1), 55 (j2)s W) € {6, wig, § Pr @R () 25(32), Y3 € T xavy, |
J1F,
Ja#in
< 2m[H(S1)+E/2}+m[H(Sg)+E/2}2—m[[(31;Sg,Wk)+I(Sg;Sl,Wk)—I(Sl;5‘2\Wk)]—)\]2—n[I(X1,X2;Yk)—)\] (51)

< 9—m[H (S1]S2,Wy)+H (S2]51,Wg)—bl (X1,X2;Yk)— (b+1)A—¢]

— gmle—(+1] (52)

where [(51) follows from[(I1) and(3); and (52) holds if the citimahs in the theorem hold.

Choosing\ < min {ﬁ, 2(6—11)} we can make sure that all terms of the summatiof_ih (46) also
vanish asnm,n — oo. Any rate pair in the convex hull can be achieved by time stgarhence
the time-sharing random variabtg. The cardinality bound or) follows from the classical
arguments. n

We next prove that the conditions in Theoréml 6.2 are alsossecg to achieve a source-
channel rate ob for some special settings, hence, answering question fignafively for these
cases. We first consider the case in whithis independent ofS,, 17;) and .S, is independent
of (51, W) . This might model a scenario in whidkix; (Rxs) andTx, (Tx;) are located close
to each other, thus having correlated observations, whéewo transmitters are far away from
each other (see Fi@l 3).

Theorem 6.3:Consider lossless transmission of arbitrarily correlatedrcesS; and S, over

a DM compound MAC with side informatio/; andW,, whereS; is independent ofS,, 1)
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—éﬁ—b iFXl )(? iééi/ TFXl <£2L-
W R,X2 A/YZTL }/lek RXl W
L 1
(Sghasgé) QSZE>STE>

Fig. 3. Compound multiple access channel in which the tréttesnd (2) and receiver 2 (1) are located close to each o¢met,
hence have correlated observations, independent of tkee p#ir, i.e.,S; is independent ofS2, W1) and S, is independent of
(S1, Wa) .

and S, is independent of S}, W,) . Separation (in the operational sense) is optimal for this

setup, and the source-channel ratis achievable if, for(k,m) € {(1,2),(2,1)},

H(Sk) < bI( Xy Ye| Xom, Q), (53)
H(Sp|Wie) < bI(Xom:; Yie| X1, Q), (54)

and
H(Sg) + H(Sm|Wi) < bI(Xp, Xon: Y| Q), (55)

for some|Q| < 4 and input distribution of the form

p(q, x1, 22) = p(@)p(x1]q)p(w2|q). (56)

Conversely, if source-channel ratigs achievable, ther (53)-(65) hold with replaced by<
for an input probability distribution of the form given in@h
Proof: Achievability follows from Theorerh 612, and the conversegdiis given in Appendix
Bl |
Next, we consider the case in which there is no multiple ecasterference at the receivers

(see Fig[#). We let, = (Y1, Yax) k = 1,2, where the memoryless channel is characterized

by
p(yl,la Y2,1, Y1,2, y2,2|$1, 932) = P(yl,b y172|9:1)p(y2,1, y2,2|$2)- (57)

On the other hand, we allow arbitrary correlation among th&rces and the side information.

However, since there is no multiple access interferencaguke source correlation to create
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N - i o
11— Txy Ly p(y1,173/1,2|371) > Rxy —>(5T175{nz)
} o vy o

Sy— Txy 2 p(Y2,1, Yo,2|T2) > Rx — (551, 555)

Y3

!

wy"

Fig. 4. Compound multiple access channel with correlatadces and correlated side information with no multiple asce

interference.

correlated channel codewords does not enlarge the ratenredithe channel. We also remark

that this model is not equivalent to two independent brosidchannels with side information.

The two encoders interact with each other through the adrogl among their sources.
Theorem 6.4:Consider lossless transmission of arbitrarily correlatedrcesS; and S, over

a DM compound MAC with no multiple access interference ctirized by [(57) and receiver

side informationi¥; and W, (see Fig[4). Separation (in the operational sense) is aptian

this setup, and the source-channel riais achievable if, for(k, m) = {(1,2),(2,1)}

H(Sk|Sm, Wi) < bI(Xi; Vi), (58)
H(Sm| S, Wi) < BI(Xoms Yink), (59)

and
H(Sk, Sm|Wi) < bI(Xk; Yer) + 1(Xom; Yo, (60)

for an input distribution of the form

p(q, z1, 22) = p(q)p(x1]q)p(w2|q). (61)

Conversely, if the source-channel rates achievable, ther (53)-(65) hold with replaced by
< for an input probability distribution of the form given ih@h
Proof: The achievability follows from Theorem 6.2 by letting be constant and taking

into consideration the characteristics of the channel,revti&’;, Y7 ;,Y; ) is independent of
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(X2,Y21,Y52). The converse can be proven similarly to Theofem 6.3, anbeilomitted for
the sake of brevity. [ |

Note that the model considered in Theorleni 6.4 is a genetializaf the model in[[30] (which
is a special case of the more general network studied in ¢7fpdre than one receiver. Theorem
6.4 considers correlated receiver side information whiah be incorporated into the model
of [30] by considering an additional transmitter sending thide information over an infinite
capacity link. In this case, using [30], we observe that rimfational source-channel separation
is optimal. However, Theorein 6.4 argues that this is no longee when the number of sink
nodes is greater than one even when there is no receiverrdmienation.

The model in Theoremn 6.4 is also considered.id [31] in theigpease of no side information
at the receivers. In the achievability scheme of [31], tnaitters first randomly bin their correlated
sources, and then match the bins to channel codewords. &thE@d shows that we can achieve
the same optimal performance without explicit binning eugrthe case of correlated receiver
side information.

In both Theoreni 6]3 and Theorem 6.4, we provide the optimalcgschannel matching
conditions for lossless transmission. While general matcltonditions are not known for
compound MACs, the reason we are able to resolve the prohtethese two cases is the
lack of multiple access interference from users with catesl sources. In the first setup the
two sources are independent, hence it is not possible torgieneorrelated channel inputs,
while in the second setup, there is no multiple access erente, and thus there is no need
to generate correlated channel inputs. We note here thabplimal source-channel rate in
both cases is achieved by operational separation answedtigquestion (2) and question (4)
affirmatively. The supoptimality of informational sepaoat in these models follows from [6],
since the broadcast channel model studied lin [6] is a speasd of the compound MAC model
we consider. We refer to the example providedlin [31] for thboptimality of informational
separation for the setup of Theoréml6.4 even without sidernmdition at the receives.

Finally, we consider the special case in which the two ressivshare common side infor-
mation, i.e.,W; = Wy = W, in which caseS; — W — S, form a Markov chain. For example
this models the scenario in which the two receivers are dlosach other, hence they have the
same side information. The following theorem proves thenaglity of informational separation

under these conditions.
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Theorem 6.5:Consider lossless transmission of correlated soufsieand S, over a DM
compound MAC with common receiver side informatidn = W, = W satisfyingS; — W —.S;.
Separation (in the informational sense) is optimal in tleip, and the source-channel réates

achievable if, fork = 1 and2,
H(S|W) < b 1(Xy; Y| Xe,Q), (62)
H(S[W) < b I(X2; Vi X3, Q),
and
H(S1|W)+ H(S:|W) < b-I(Xy, Xo; Yi|Q),

for some joint distributiorp(q, z1, z2,y) = p(q)p(z1lq) p(z2l@)p(ylz:, z2), with [Q] < 4.
Conversely, if the source-channel rates achievable, ther (62)-(63) hold with replaced by
< for an input probability distribution of the form given abav
Proof: The achievability follows from informational source-cimah separation, i.e, Slepian-
Wolf compression conditioned on the receiver side inforamefollowed by an optimal compound
MAC coding. The proof of the converse follows similarly tcetiproof of Theorenmh 512, and is

omitted for brevity. [ |

VIl. | NTERFERENCE CHANNEL WITH CORRELATED SOURCES

In this section, we consider the interference channel (I@h worrelated sources and side
information. In the IC each transmitter wishes to commuieicanly with its corresponding
receiver, while the two simultaneous transmissions ieterfwith each other. Even when the
sources and the side information are all independent, thacty region of the IC is in general
not known. The best achievable scheme is given in [32]. Thadaty region can be characterized
in the strong interference case [36], [10], where it coiesidvith the capacity region of the
compound multiple access channel, i.e., it is optimal fer tbceivers to decode both messages.
The interference channel has gained recent interest duts foractical value in cellular and
cognitive radio systems. Sele [33][- [35] and referencesethdor recent results relating to the

capacity region of various interference channel scenarios
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For encodersf " and decodergl ), the probability of error for the interference channel

is given as
Pe(mm) £ Pr{ U S,T 7'é Sl??k}
k=1,2
= Z p(s’ln,s;”)P{ Skzk#skz‘ = 51752)}
(Sin 'nL) S'm Sé” k 12

In the case of correlated sources and receiver side infavmasufficient conditions for the
compound MAC model given in Theordm 6.1 and Theorem 6.2 ses\vaufficient conditions for
the IC as well, since we can constrain both receivers to oltasless reconstruction of both
sources. Our goal here is to characterize the conditionsruntlich we can provide a converse
and achieve either informational or operational sepanaimilar to the results of Sectién MI. In
order to extend the necessary conditions of Thedrein 6.3 Ardréni 6.5 to ICs, we will define
the ‘strong source-channel interference’ conditions.eNibiat the interference channel version
of Theoren{ 6.4 is trivial since the two transmissions do nt¢rfere with each other.

The regular strong interference conditions giveriin [36fespond to the case in which, for all
input distributions at transmittérx;, the rate of information flow to receivétx, is higher than
the information flow to the intended receivRk;. A similar condition holds for transmittérx,
as well. Hence there is no rate loss if both receivers dedoglentessages of both transmitters.
Consequently, under strong interference conditions, dpadcity region of the IC is equivalent to
the capacity region of the compound MAC. However, in thetjsmurce-channel coding scenario,
the receivers have access to correlated side informatibas Tvhile calculating the total rate
of information flow to a particular receiver, we should notyooonsider the information flow
through the channel, but also the mutual information thegaaly exists between the source and
the receiver side information.

We first focus on the scenario of Theoréml6.3 in which the sohcis independent of
(Sa, W) and S, is independent of Sy, W7).

Definition 7.1: For the interference channel in whic is independent of Sy, ;) and S,
is independent of Sy, W;), we say that thestrong source-channel interference conditicare

satisfied for a source-channel rdiéf,

b-I(X1;Y1|Xs) < b-I(Xy; Y| Xo) 4+ 1(S1; Wa), (63)
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and
b-I(Xo; Yo |Xy) < b-I(Xo; V1| Xy) 4 1(So; W), (64)

for all distributions of the formp(wy, ws, s1, s2, 1, x2) = p(wy, wa, s1, S2)p(x1|s1)p(T2|52).

For an IC satisfying these conditions, we next prove theotailhg theorem.

Theorem 7.1:Consider lossless transmission$fand.S, over a DM IC with side information
W, andW,, whereS; is independent of Sy, W;) and .S, is independent of Sy, W;). Assuming
that the strong source-channel interference condition®efinition [7.1 are satisfied fob,
separation (in the informational sense) is optimal. The@mghannel raté is achievable if, the
conditions [(4B){(45) in Theorem 6.2 hold. Conversely, teriais achievable, then the conditions
in Theorenm_6.2 hold with< replaced by<.

Before we proceed with the proof of the theorem, we first prilnefollowing lemma.

Lemma 7.2:1f (5, Ws) is independent ofS,, 1V;) and the strong source-channel interference
conditions [(6B){(64) hold, then we have

I(X3; Y XT) < I(Xgs Y| X)) + 1055 W), (65)
and
I(XT Y XY) < (XTS5 Y5 |X9) + 1(ST Wa), (66)

for all m andn satisfyingn/m = b.

Proof: To prove the lemma, we follow the techniques|in/[10]. Comxiit{64) implies
1
I(X2;Y2|X1>U) _I(Xz;YﬂXlaU) < EI(Sz;Wﬂ (67)

for all U satisfyingU — (X1, X5) — (Y1, Ys).
Then as in[[10], we can obtain

I(X3; Y3 | XT) = (X3 Y IXT) =1(Xon; Yan| X7, Yo' ™) = 1(Xap; Yin XT, Y57
+ I(X3 LY XY Vi) — (X35 Y XY, Vi)

IO YY) — TG Y X

-

[I(Xzi; Y2z"X12‘) - I(X2z'; Y1i|X1z')]-

=1
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Using the hypothesi$ (64) of the theorem, we obtain

n
b
= 1(S5"; Wi").

T(XF Y| XT) — T(Xg5 Y| XT) < 1(S5; Wh)

Eqn. [66) follows similarly. [ |
Proof: (of Theoreni_7]1Achievability follows by having each receiver decode bsthand
S,, and then using Theorem 6.1. We next prove the converse. B8ya98), we have

LI Y IXG) > 7 [H(S) — 6P (69)
We can also obtain
IO YEIXG) > IO YEIXE) (75 ) (69)
= ZIH(S:) - 5(PIm)) = Z1(SP W), (70
= STH(S:[1W2) - 6(P")], (71)
in which (69) follows from [(66), and_(70) froni_(68).
Finally for the joint mutual information, we have
(XY, XY = IOXS YD) + 1005 YPIXD)
> L{E(STV7) + 1K YEIXT) — 15 W), (12)
> LSS YE) + (S35 VI XT) — 1053 ) (73
=L H(S) — H(SPIYY) + H(SPIXY) — H(SE Y X])
+H(STIW) — H(SP))
> (H(S]) — H(STIY?) ~ H(SYIY3) + H(SIW), (74)
= L[H(ST) ~ HSTIY?, W) — H(SFIY WE) + H(SF W), (75)
> L [H(S1) + H(S3|1W3) — 26(P0")] (76)

for any ¢ > 0 and large enoughn and n, where (72) follows from the data processing
inequality and [(65);([73) follows from the data processing inequality sing — X' — Y3*

form a Markov chain giverX7; (74) follows from the independence of] and.S;* and the fact
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X Two-way Xy

m > >
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Fig. 5. The two-way channel model with correlated sources.

that conditioning reduces entropfZ5) follows from the fact thats; is independent ofS,, W)
and S, is independent of S,, W;); and (76) follows from Fano’s inequality. The rest of the
proof closely resembles that of Theoréml|6.3. [ |

Next, we consider the IC version of the case in Theotem 6.5yhich the two receivers
have access to the same side informatibhand with this side information the sources are
independent. While we still have correlation between theces and the common receiver side
information, the amount of mutual information arising frahis correlation is equivalent at both
receivers sincél; = W,. This suggests that the usual strong interference chammalittons
suffice to obtain the converse result. We have the followlhreptem for this case.

Theorem 7.3:Consider lossless transmission of correlated sousgesnd S, over the strong
IC with common receiver side informatidi; = Wy = W satisfyingS; — W — S,. Separation
(in the informational sense) is optimal in this setup, arel shurce-channel rateis achievable
if and only if the conditions in Theorem 6.5 hold.

Proof: The proof follows from arguments similar to those in the frobTheorem 6.6 and

results in [28], where we incorporate the strong interfeeeoonditions. [ ]

VIII. T wOo-WAY CHANNEL WITH CORRELATED SOURCES

In this section, we consider the two-way channel scenarib worrelated source sequences
(see FigLb). The two-way channel model was introduced byn&bra [3] who gave inner and
outer bounds on the capacity region. Shannon showed thatrigs bound is indeed the capacity
region of the “restricted” two-way channel, in which the ohal inputs of the users depend only
on the messages (not on the previous channel outputs).gb@waroved outer bounds are given
in [37]-[39] using the “dependence-balance bounds” preddsy Hekstra and Willems.
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In [3] Shannon also considered the case of correlated ssuesoe showed by an example that
by exploiting the correlation structure of the sources wghhiachieve rate pairs given by the
outer bound. Here we consider arbitrarily correlated sesiiand provide an achievability result
using the coding scheme for the compound MAC model in Se@ibrit is possible to extend
the results to the scenario where each user also has sideatfon correlated with the sources.

In the general two-way channel model, the encoders obséegast channel outputs and
hence they can use these observations for encoding futaremehinput symbols. The encoding

function at user at time instantj is given by
fig: S VTN = A (77)

for ¢« = 1,2. The probability of error for the two-way channel is given as

peer 2 el U s ]

k=12
= S psy s?)P{ U 7 # sy |(S7,S5) = (s7 s?>} :
(s s) €S < S k=12
Note that, if we only consider restricted encoders at thesilgan the system model is equivalent
to the compound MAC model of Figl 1 with/[" = S7* and W3 = S7*. From Theoreni 6]1 we
obtain the following corollary.
Corollary 8.1: In lossless transmission of arbitrarily correlated sosircg, S;) over a DM

two-way channel, the source-channel rate 1 is achievable if
H(Sl‘SQ) < I(Xl;}/z‘XQ,SQ,Q) and
H(S:[S1) < I(Xy;Y1]X1,5,Q),

for some joint distribution of the form

p(q, S1, 82,x1,x2,y1,y2) = p(Q)Z)(Sb Sz)p($1|qa 31>p(x2|Q7 82)p(y1,y2|x1,x2).

Note that here we use the source correlation rather thandirelation that can be created
through the inherent feedback available in the two-way nkanThis correlation among the
channel codewords potentially helps us achieve sourcenehaates that cannot be achieved
by independent inputs. Shannon’s outer bound can also lemaed to the case of correlated

sources to obtain a lower bound on the achievable souramehaate as follows.
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Proposition 8.2:In lossless transmission of arbitrarily correlated sosifcg, S;) over a DM
two-way channel, if the source-channel rates achievable, then
H(S51]52) < bI(Xy;Ys|Xs) and
H(S51) < bI(Xa;Yi|X),
for some joint distribution of the form
p(s1, 82,1, T2, Y1, Y2) = P(s1, 52)p(@1, T2)p(Y1, Yalz1, 72).

Proof: We have

H(ST"[S3") = I(ST"; Y5'|S5") + H(ST"55",Yy) (78)
1(STY3'|Sy) + mo(Pmm) (79)
= H(YP|ST) — H(Y|ST, S7) 4+ mdo(Pm™) (80)

H(Yyil 3%, Y3 ™1) — H(Yail ST, S5, Yy ™) + mo(P™™) (81)

I

@
Il
—

H (Yo S5, Yy ™1, X)) — H(Yos| ST, S5, Yy~ YT X)) + m5(Pe(m’n)) (82)

IN

=1

<Y H(Yyi|Xoi) — H(Yas| ST, S5, Yy 1 YT Xy, Xog) + md (P (83)
i=1

<> H(Yoi| Xoi) — H(Yai| X1iy Xoi) + md (P (84)
i=1
Z I(X1;; Y| Xo:) + mo (P (85)

-
I
—

where [79) follows from Fano’s inequality; (82) follows s& X} is a deterministic function

of (S5, Ys~1) and the fact that conditioning reduces entrofly; (83) foflasimilarly asX* is

a deterministic function ofS7", Y/~!) and the fact that conditioning reduces entropy; (84)
follows sinceYy; — (X1, Xoi) — (S, S, Y51, Yi~1) form a Markov chain.

Similarly, we can show that
H(Sp|s) < i 1(Xa: Yial Xo1) + mo (P, (86)
From convexity arguments and Iettlmg, n — oo, we obtain
H(51|52) < bI(Xy; Yo Xa), (87)

H(5:]81) < bI(X2; V1| Xy), (88)
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for some joint distributiorp(z,, ). n
Remark 8.1:Note that the lower bound of Proposition8.2 allows all pokesjoint distributions
for the channel inputs. This lets us express the lower boardseparable form, since the source
correlation becomes useless to introduce any additiomattste to the transmitted channel
codewords. In general, not all joint channel input disttidais can be achieved at the two users,
and tighter bounds can be obtained by limiting the set of iptesgoint distributions as in [37]-

[39].

However, if the existing source correlation allows the sse&r generate the optimal joint
channel input distribution, then the achievable regioregivn Corollary[8.l might meet the
upper bound without the need to exploit the feedback to geadurther correlation. This has
been illustrated by an example in [3]. Shannon considerectleded binary sourceS; and .S,
such that

P s,(S1=0,8 =1) = Pg,5,(S1 =1,5, = 0) = 0.275

and
Ps,5,(S1 = 1,8, =1) = 0.45,

and a binary multiplier two-way channel, in which
X=X, =) =),=1{0,1}

and
Yi=Y, =X Xs.

Using Propositio 812, we can set a lower bound ef 1 on the achievable source-channel rate.
On the other hand, the source-channel raté cdn be achieved simply by uncoded transmission.
Hence, in this example, the correlated source structurblemahe transmitter to achieve the
optimal joint distribution for the channel inputs withoutpoiting the inherent feedback in the
two-way channel. Note that the Shannon outer bound is na¢eable in the case of independent
sources in a binary multiplier two-way channel|[37], and #ohievable rates can be improved

by using channel inputs dependent on the previous chanmelisu
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IX. CONCLUSIONS

We have considered source and channel coding over multhaanels with correlated receiver
side information. Due to the lack of a general source-chiasegaration theorem for multiuser
channels, optimal performance in general requires joint@channel coding. Given the dif-
ficulty of finding the optimal source-channel rate in a gehseedting, we have analyzed some
fundamental building-blocks of the general setting in whseparation optimality. Specifically,
we have characterized the necessary and sufficient conslifior lossless transmission over
various fundamental multiuser channels, such as multipteess, compound multiple access,
interference and two-way channels for certain source+fodladistributions and structures. In
particular, we have considered transmitting correlatagdas over the MAC with receiver side
information given which the sources are independent, antsinitting independent sources over
the MAC with receiver side information given which the sasgare correlated. For the compound
MAC, we have provided an achievability result, which hasrbskeown to be tight i) when each
source is independent of the other source and one of the rsidiemiation sequences, ii) when
the sources and the side information are arbitrarily cateel but there is no multiple access
interference at the receivers, iii) when the sources anelated and the receivers have access to
the same side information given which the two sources arepeddent. We have then showed
that for cases (i) and (iii), the conditions provided for tt@mpound MAC are also necessary
for interference channels under some strong source-chaonditions. We have also provided
a lower bound on the achievable source-channel rate fovthemMay channel.

For the cases analyzed in this paper, we have proven the ajtirof designing source and
channel codes that are statistically independent of edwdr,dience resulting in a modular system
design without losing the end-to-end optimality. We havevam that, in some scenarios, this
modularity can be different from the classical Shannon sgearation, called the ‘informational
separation’, in which comparison of the source coding ratgion and the channel capacity
region provides the necessary and sufficient conditionshierachievability of a source-channel
rate. In other words, informational separation requires separate codes used at the source
and the channel coders to be the optimal source and the dheodes, respectively, for the
underlying model. However, following [6], we have shown éndor a number of multiuser

systems that a more general notion of ‘operational separatan hold even in cases for which
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informational separation fails to achieve the optimal setchannel rate. Operational separation
requires statistically independent source and channescadhich are not necessarily the optimal
codes for the underlying sources or the channel. In the daggenational separation, comparison
of two rate regions (not necessarily the compression ratetla® capacity regions) that depend
only on the source and channel distributions, respectiyelyvides the necessary and sufficient
conditions for lossless transmission of the sources. Thesdts help us to obtain insights into

source and channel coding for larger multiuser networkd,@tentially would lead to improved

design principles for practical implementations.

APPENDIX A

PROOF OFTHEOREM[G.3

Proof: The achievability again follows from separate source armhobkl coding. We first
use Slepian-Wolf compression of the sources conditionethemeceiver side information, then
transmit the compressed messages using an optimal mudiipkesss channel code.

An alternative approach for the achievability is possibfecbnsideringii; as the output of a
parallel channel fronf,, S, to the receiver. Note that this parallel channel is usetimes for
n uses of the main channel. The achievable rates are themebtttollowing the arguments for
the standard MAC:

mH(S1) < I(S{", X{hY", Wi"|X3,S5",Q) (89)
= I(S7; WSy + (X7 V' [ X5, Q) (90)
= mlI(Sy; W1|Ss) +nl(Xy; Y1]|X, Q), (91)

and using the fact thai(sy, s2, w1) = p(s1)p(s2)p(ws]|s1, s2) we obtain [(38) (similarly for[(39)
and [40)). Note that, this approach provides achievablecsechannel rates for general joint
distributions ofS;, S, and W;.
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For the converse, we use Fano’s inequality giveriin (11) Ad). We have

LIOGYTIXG) 2 (SN, (92)
— SI(SP W YTIXD) ©3)
> ISP YTIXG W,
> [H(STISE, W) — md (P (94)
> S [H(S11, W) — 6],

where ([92) follows from the Markov relatior5]* — X7 — Y;* given X7; (93) from the Markov
relation W™ — (X7, S1") — Y;"; and (©@4) from Fano’s inequality[(14).

We also have

1Z& 1
EZI(XM;Yi,i‘Xzi) > EI(X{Lan;YfL)
=1
1
> [H(S:]S2, W) — 6(P™™)].
Similarly, we have
1Z 1
gZI(X2i§}/i,i‘Xli) > E[H(S2|51,W1)—5(Pe(m’”))],

=1
and

n

S I Xy, Xop Vi) >

i=1

[H (S1, So|Wr) — (P,

S =

S|

As usual, we letP™™ — 0, and introduce the time sharing random variatleuniformly
distributed over1,2,...,n} and independent of all the other random variables. Then \iieale
X; £ X1, Xo & Xog andY; 2 Yig. Note thatPr{X, = 21, Xy = 25|Q = q} = Pr{X;|Q =
q} - Pr{X;|Q = ¢} since the two sources, and hence the channel codewordsydependent

of each other conditioned of. Thus, we obtain[(38)-(40) for a joint distribution of therifo
47). u
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APPENDIX B

PROOF OFTHEOREM[6.3

We have
"X YPIXG) 2 (ST YD), (©5)
= [H(S1XF) — H(SP Y, X3)) (96)
> H(SY) ~ H(SPIYT) ©7)
%[ ($1) = S(Pm)] (98)

for any e > 0 and sufficiently largen and n, where (95) follows from the conditional data
processing inequality sinc8* — X7 — Y{* forms a Markov chain giverXy; (97) from the
independence of}* and X' and the fact that conditioning reduces entropy; &@ from the
memoryless source assumption, and from Fano’s inequality.

For the joint mutual information, we can write the followisgt of inequalities:

1I(X1,X2,Y1)> Lr(sy sy, (99)
= SI(SP S WIS YY), (100)
% (ST, ST YR WM, (101)
= LH(Sy, SIW) — HST, SEIYEL W)
= C[H(ST) + H(SFIW) — H(ST, 7V, W), (102)
> % H(Sy) + H(Sy|Wy) — 6(P™m)] (103)

for any e > 0 and sufficiently largen and n, where (Q9) follows from the data processing
inequality since(S7", S5") — (X7, X%) — Y{* form a Markov chain;([100) from the Markov
relation W™ — (S7*, S5*) — Y{"; (LQJ) from the chain rule and the non-negativity of the mutual
information; ([102) from the independence &f" and (S5, W;™); and (103) from the memoryless
source assumption and Fano’s inequality.

It is also possible to show that

n

D I( X Yi| Xoi) > (X Y[XT), (104)

i=1
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and similarly for other mutual information terms. Then,ngsthe above set of inequalities and

letting P(™™ — 0, we obtain

1 12
EH(Sl) < gZI(XliQ}/li‘X%)a

i=1

1 12
EH(SZ|W1) < EZI(X%YMX”)’

.
I
—

and

1 1 &
E(H(Sl) + H(S5:|W1)) < EZI(XM,X%YM),
=1

for any product distribution o/} x X,. We can write similar expressions for the second receiver
as well. Then the necessity of the conditions of Thedreh &r2lie argued simply by inserting

the time-sharing random variab{g.
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