
1

All You Need is Feedback: Communication with
Block Attention Feedback Codes

Emre Ozfatura, Yulin Shao, Alberto Perotti, Branislav Popovic, Deniz Gündüz

Abstract—Deep neural network (DNN)-based channel code
designs have recently gained interest as an alternative to conven-
tional coding schemes, particularly for channels in which existing
codes do not provide satisfactory performance. Coding in the
presence of feedback is one such problem, for which promising
results have recently been obtained by various DNN-based coding
architectures. In this paper, we introduce a novel learning-aided
feedback code design, dubbed generalized block attention feedback
(GBAF) codes, that achieves order-of-magnitude improvements
in block error rate (BLER) compared to existing solutions.
Sequence-to-sequence encoding and block-by-block processing of
the message bits are the two important design principles of the
GBAF codes, which not only reduce the communication overhead,
due to fewer interactions between the transmitter and receiver,
but also enable flexible coding rates. GBAF codes also have a
modular structure that can be implemented using different neural
network architectures. In this work, we employ the popular
transformer architecture, which outperforms all the prior DNN-
based code designs in terms the BLER in the low signal-to-noise
ratio regime when the feedback channel is noiseless.

Index Terms—Feedback code, deep learning, deep neural net-
works, channel coding, the attention mechanism, self-attention,
ultra-reliable short-packet communications, transformer.

I. INTRODUCTION

Reliable communication in the presence of noise has been
a long-standing challenge. Numerous coding and modulation
techniques have been invented over many decades to push
the boundaries of communication; that is, to achieve higher
data rates with less error probability under given resource
constraints (bandwidth, power). Information storage and com-
munication are two core technologies that underpin the infor-
mation age, and the success of both hinges on error correction
codes, such as BCH, Reed-Muller, convolution, turbo, low-
density parity-check (LDPC), and polar codes. While these
codes can approach the fundamental Shannon capacity limit
over an additive white Gaussian noise (AWGN) channel in
the large block length regime, there are many scenarios where
we do not have practical codes that approach the fundamental
theoretical boundaries.

Coding in the presence of feedback is one such challenging,
yet practical scenario. The classical feedback channel model

E. Ozfatura, Y. Shao and D. Gündüz are with Information Processing and
Communications Lab, Department of Electrical and Electronic Engineering,
Imperial College London. Emails: {m.ozfatura, y.shao, d.gunduz} @impe-
rial.ac.uk.

A. Perotti and B. Popovic are with the Radio Transmission Technology
Lab, Huawei Technologies Sweden AB, Kista 164-94, Sweden. Emails:
{alberto.perotti, branislav.popovic}@huawei.com

This work was supported by the European Research Council (ERC) through
project BEACON (No. 677854) and the UK EPSRC (grant no. EP/T023600/1
and EP/W035960/1) under the CHIST-ERA program.

was introduced and studied by Shannon [1]. In general,
the formulation of communication with feedback involves
a transmitter-receiver pair connected via a forward and a
feedback channel, and the goal is to reliably deliver a block
of bits from the transmitter to the receiver with the help of
feedback. Shannon investigated the impact of feedback on the
forward channel capacity by assuming perfect channel output
feedback with unit delay. He proved an important result that
the classical capacity of a memoryless forward channel does
not increase in the presence of feedback [1].

While feedback does not increase the capacity, it is known
to simplify the communication scheme and improve the re-
liability in the finite block length regime. Most practical
communication systems employ feedback, either in the form
of channel state information feedback, or automatic repeat re-
quests (ARQs). While the former allows adaptation to channel
variations, the latter increases reliability by adjusting the block
length according to the noise realization. Another method
to exploit feedback to increase reliability was introduced
by Schalkwijk and Kailath in [2] and [3]. In the classical
Schalkwijk-Kailath (SK) scheme, the transmitter encodes the
message using pulse amplitude modulation (PAM) initially,
and subsequently refines its estimate at the receiver in an
iterative manner by sending a scaled version of the residual
error at each iteration. Provided that the transmission rate
is below the capacity, the SK scheme achieves a double
exponential decay of the decoding error probability with the
increase in code length. Designing coding and modulation
schemes that can best exploit the feedback has been an
ongoing challenge over decades [1]–[13], yielding a significant
impact on a variety of applications that require ultra-reliable
short-packet communications [14], [15], such as autonomous
vehicles, industrial automation and control, tactile Internet, and
augmented/virtual reality, to count a few.

Existing feedback codes can be classified as ‘human-
crafted’ codes [2], [3], [5], [7]–[9], and deep learning (DL)-
aided codes [10]–[13]. Among human-crafted codes, two no-
table works are the SK scheme [2], [3], [6] and its extension to
the active feedback scenario, the modulo-SK scheme [9]. Here,
active feedback refers to the scenario in which the feedback
symbols can also be encoded by the receiving terminal prior
to transmission to the transmitter.

A main disadvantage of the aforementioned human-crafted
codes is that they are sensitive to numerical precision and
quantization errors [6], [8], [10], [13]. Since the message is
mapped to a 2K-ary PAM constellation, the number of bits
required to represent all the statistics in this process grows
linearly with K. When K is large, these schemes suffer

2

from severe quantization errors caused by the finite-precision
arithmetic and finite quantization levels of the electronic parts
and components, e.g., power amplifier and FPGA chip. On
the other hand, DL-aided feedback codes model the commu-
nication system as an autoencoder [10]–[13], in which the
encoder and decoder are modeled as a pair of deep neural
networks (DNNs), while the wireless channel is treated as an
untrainable stochastic layer. The code is obtained by end-to-
end unsupervised learning to minimize the reconstruction error
of the block of bits at the receiver.

Compared with human-crafted codes, DL-based feedback
codes do not suffer from the constraint of finite precision and
quantization levels, as they can be trained with such constraints
embedded into the training process. Moreover, they are very
flexible and can be easily trained for different scenarios.
Specifically, both the SK and modulo-SK schemes are de-
signed for the setup of unit-time delayed feedback and AWGN
channels with a specific pair of feedforward and feedback
signal-to-noise ratios (SNRs). In contrast, DL-based codes can
be easily generalized to more practical scenarios [10], [13],
such as feedback with greater delays, block feedback, as well
as non-Gaussian noise or fading channels. On the other hand,
existing DL-aided feedback codes suffer from the following
limitations that we address in this paper:

• Communication overhead: In practice, each round of
feedback subsequent to the use of the forward channel
introduces an overhead and additional delay independent
of the number of transmitted bits. We quantify the cor-
responding communication overhead as the number of
“switches” at the source node between transmitting parity
symbols and receiving feedback symbols, or equivalently
the number of communication rounds T . In the previous
designs, T scales linearly with the number of message
bits K. One of our key objectives is to reduce this
communication overhead without sacrificing performance
significantly.

• Limited set of feasible rates: Existing schemes are limited
to code rates of 1/k, k ∈ Z+. Hence, another important
goal of this work is to present a design that can transmit
at a wider range of rates. The flexibility in the com-
munication rate is important to achieve higher spectral
efficiencies, particularly in the higher SNR regimes.

• Lack of structure: Existing codes are defined through the
employed DNN architecture. Instead, we would like to
provide a holistic view of the problem and introduce
a generalized modular design, where modules can be
added/removed, and implemented through arbitrary ar-
chitectures addressing different requirements in terms of
performance and complexity.

In this paper, we introduce the generalized block attention
feedback (GBAF) code, which addresses all of the afore-
mentioned limitations of existing designs. In particular, in
the GBAF architecture, we introduce a novel sequence-to-
sequence encoding framework. We then group the message
bits into blocks, and treat each block as the information unit
to be communicated. We employ the popular transformer-
based encoder architecture [16]–[18] as the core sequence-to-

Node A Node B𝒃

𝒄 𝒚feedforward

feedback

⨁

⨁

𝒏

෤𝒄

෥𝒏

෥𝒚

෡𝒃

Fig. 1: Communication with block feedback: the system
model.

sequence encoder module. We show that GBAF codes achieve
orders of magnitude improvements in terms of the block error
rate (BLER) performance over the whole range of channel
SNRs compared to existing DL-based codes in the literature.
Apart from [9], feedback codes in the literature are designed
for a passive feedback scenario; that is, the feedback signal is
simply a noisy version of the signal received at the receiver.
While we also consider passive feedback in this paper, our
design can be easily extended to active feedback.

The rest of the paper is organized as follows. We present
the problem formulation in Section II, and provide a detailed
overview of the existing feedback code structures and their
limitations. The structure and modules of the GBAF code
are introduced in Section III. Numerical results illustrating its
superiority are presented in Section IV. We conclude the paper
in Section V.

Notations – We use bold, capital bold, and capital cal-
ligraphic fonts to denote vectors, matrices, and sets, re-
spectively, i.e., v, V , and V . We use the notation v[],
V[,] to denote index slicing. We use the superscript for
a vector/matrix/list to refer to its realization at a particular
time/iteration. Finally, we use subscripts to emphasize a par-
ticular element of a sequence; for example, given a sequence
of vectors Q = {q1, . . . , qK}, qi is used to represent the
ith vector in the sequence. A list of all the notations used
throughout the paper is provided in Table I.

II. PROBLEM STATEMENT

A. System model

We consider a point-to-point communication scenario with
one transmitter and one receiver, as shown in Fig. 1. The
objective of the transmitter is to send K bits of information,
b = [b1, . . . , bK] ∈ {0, 1}K , to the receiver in N channel
uses. We impose a rate constraint of R, that is, K/N ≥ R.
Here, we use c = [c1, . . . , cN] ∈ RN to denote the sequence
of transmitted symbols over the forward channel. We model
both the forward and feedback channels as AWGN channels
with independent noise terms.

We consider a feedback channel model consisting of multi-
ple communication rounds, where in each round the transmitter
transmits a vector of symbols, after which it receives a
vector of feedback symbols corresponding to the transmitted
symbols over the forward channel. In the literature, the channel
output feedback, noiseless or noisy, is assumed to be available

3

TABLE I: Notations

Notation Description
b Input bit-stream
K Length of the bit-stream
N Codeword length
R Transmission rate
m Length of message blocks
l Number of message blocks: l = K/m
T Number of interactions (communication rounds)
τ Index of communication rounds
c(τ) Coded symbols in forward direction in communication round τ

y(τ) Received channel output at receiver in communication round τ

ỹ(τ) Received channel feedback at transmitter in communication round τ

n(τ) Noise vector at forward direction in communication round τ

ñ(τ) Noise vector at feedback direction in communication round τ

q(τ) Knowledge vector at transmitter in communication round τ

q̃(τ) Knowledge vector at receiver in communication round τ

b̂ Predicted bit-stream at decoder
q
(τ)
i Knowledge vector at the parity network for the ith message block in communication round τ

f
(τ)
i Extracted feature vector at the parity network for the ith message block in communication round τ

v
(τ)
i Final latent representation at the parity network for the ith message block in communication round τ

c
(τ)
i Vector of coded symbols generated by the parity network for the ith message block in communication round τ

q̃
(τ)
i Knowledge vector at the belief network for the ith message block in communication round τ

f̃
(τ)
i Extracted feature vector at the belief network for the ith message block in communication round τ

ṽ
(τ)
i Final latent representation at the belief network for the ith message block in communication round τ

b̃
(τ)
i Prediction of the belief network for ith message block in communication round τ

q̂i Knowledge vector at the decoder network for the ith message block.
f̂i Extracted feature vector at the decoder network for the ith message block
v̂i Final latent representation at the decoder network for the ith message block
wi Logit vector generated at the decoder network for the ith message block

instantly at the encoder (i.e., with unit delay). However, in
practice, these feedback symbols need to be encoded and/or
modulated, and in general, encoding/ decoding operations,
as well as the additional exchange of control information
between the transmitter and receiver for every forward and
feedback packet will introduce additional overheads. Hence,
it is desirable to utilize feedback while introducing minimum
overhead. Therefore, our goal will be to achieve the desired
level of reliability with minimal number of interactions, i.e.,
communication rounds, between the transmitter and the re-
ceiver.

Our model would be particularly relevant in the active
feedback scenario, where the feedback symbols are encoded by
the receiver. In the case of passive feedback, considered in this
paper, we use this model to quantify the potential overheads
due to processing of the feedback symbols and generating the
transmitted symbols over the forward channel based on the
received feedback.

Let τ denote the index of the communication round. In
communication round τ , the transmitter sends Nτ symbols,
denoted by c(τ), in the forward direction,1 and receives
Nτ symbols2, denoted by ỹ(τ), over the feedback link, for
τ = 1, . . . , T − 1. We have

∑T
τ=1 Nτ ≤ N . We remark that,

existing schemes as well as the proposed design utilize equal-

1We consider discrete-time analog transmission [19].
2In general, in the active feedback scenario, we can have a different

number of symbols transmitted over each communication round of the forward
and feedback channels. Here, we set them to be equal as we assume that
the symbols transmitted over the feedback channel are simply the symbols
received by the receiver, i.e., passive feedback.

length vectors over τ , where a slight modification appears in
the systematic code design used in the previous works [10]–
[12], which we will explain later.

Communication is terminated when the receiver receives
c(T). The received vector of symbols at the forward and
feedback links, denoted by y(τ) and ỹ(τ), respectively, are
given by

y(τ) = c(τ) + n(τ), for τ = 1, . . . , T, (1)

and

ỹ(τ) = y(τ) + ñ(τ), for τ = 1, . . . , T − 1, (2)

where n(τ), ñ(τ) ∈ RNτ are the noise vectors consisting
of independent and identically distributed (i.i.d.) zero-mean
Gaussian random variables with variances σ2

ff and σ2
fb, re-

spectively.
If we consider T communication rounds in the forward

direction, this implies that the direction of communication is
switched 2T −2 times, which we use to quantify the overhead
of the feedback mechanism. As mentioned above, larger T
corresponds to more overhead.

The focus of our paper is to design a mechanism for
generating symbols in forward and feedback directions for
each communication round τ . Before describing the partic-
ular encoding mechanism we propose, we introduce the so-
called knowledge vectors, q(τ) and q̃(τ), which refer to all
the available information at the transmitter and the receiver,
respectively, when generating the symbols transmitted in com-
munication round τ . The knowledge vector at the transmitter,

4

q(τ), consists of the original bit stream, previously transmitted
symbols, and the received feedback symbols up to round τ ,
i.e.,

q(τ) = [b, c(1), . . . , c(τ−1), ỹ(1), . . . , ỹ(τ−1)]. (3)

The knowledge vector at the receiver consists of the received
channel outputs up to round τ

q̃(τ) = [y(1), . . . ,y(τ)]. (4)

Let M (τ) denote the encoding function at the transmitter,
where M (τ)(q(τ)) = c(τ) ∈ RNτ . Once the transmission of all
the symbols is completed, a decoding function D is employed
at the receiver to recover the original bit stream, i.e., b̂ ∈
{0, 1}K = D(q̃(T)).

The code must satisfy an average power constraint on the
transmitted symbols:

E

[
1

N

T∑
τ=1

⟨c(τ), c(τ)⟩

]
≤ 1. (5)

Hence, the SNR in the forward direction is given by
SNRff = 1/σ2

ff , while the SNR in the feedback channel
is SNRfb = 1/σ2

fb. We refer to the case σ2
fb = 0 as noiseless

feedback.

Remark (Systematic codes). We refer to a feedback code as a
systematic feedback code, if there is an initial stage at τ = 0,
at which the encoder maps the original bit stream to its BPSK
modulated version, i.e., N0 = K, and M (0)(b) = c(0) =
α(2 ·b−1), where α is chosen to satisfy the power constraint.

M (0) : q(0) = b
BPSK−−−−→ c(0) = b̄ = α(2 · b− 1). (6)

We note that, an additional iteration index τ = 0 is allocated
for the systematic code part to be able to align different DL-
based feedback code designs. Independent from the employ-
ment of the systematic part, DL-based symbol encoding starts
from τ ≥ 1.

Although we have restricted the above definition to BPSK
modulation for the sake of simplicity, the same notion can
be extended to other modulation schemes with larger con-
stellations. In general, there is no particular reason to restrict
ourselves to a systematic feedback scheme, but we defined
this set of codes explicitly as the DL-based codes considered
in the literature [10]–[12] are all systematic codes.

B. Existing DL-Based Feedback Codes

The ultimate challenge in feedback codes is designing
an iterative encoding process for the parity symbols at the
transmitter, and a decoding process for the received symbols
at the receiver. DNN-based feedback codes aim to tackle this
issue by considering the encoding and decoding mappings,
M and D, respectively, as DNN architectures, and by training
them for a sufficient number of randomly generated bit
streams to achieve the final network model/weights. It has
been shown that such an end-to-end training approach is
highly effective for designing feedback codes [10], [12], [13].
Now we revisit some of the existing feedback code designs

in the literature and illustrate how they operate according to
our generic framework.

1) General overview: Existing DL-based feedback codes
in the literature, DeepCode [10], DEF [11], and DRF codes
[12] consider systematic and passive feedback schemes. Com-
munication process is divided into two phases, τ = 0 and
τ > 0. M (0) corresponds to the systematic modulation scheme
described in (6). In the second phase, τ > 0, a DNN
architecture, Hencoder, is used to generate the vector of parity
symbols:

Hencoder : Sencoder(q
(τ))

Neural−encoder−−−−−−−−−−−→ c(τ), (7)

where Sencoder(·) denotes the pre-processing function that
defines how the knowledge vector q(τ) is fed to the DNN
architecture Hencoder.

2) Sequence-to-one encoding: Although the existing DL-
based encoder designs employ different NN architectures, see
Table II, they often follow the same structure for processing
the knowledge vector q(τ) in order to generate channel sym-
bols. Function Sencoder(·) is used to transform the knowledge
vector into a sequence of vectors that can be fed to the
DL-based encoder. Hence, for the encoding process, q(τ) is
first transformed into a sequence of vectors

{
q
(τ)
1 , . . . , q

(τ)
K

}
,

whose length is equal to the length of the original bit-stream,
which is then fed to the network to generate a vector of channel
symbols.

The encoding strategy, followed in the previous code de-
signs, simply assumes that q

(τ)
i is the knowledge vector at

round τ corresponding to the ith bit of the original bit-stream.
The employed sequence-to-one encoding approach has two
distinguishing features. First, at any communication round
τ = nK + i, during the n + 1th pass over the bit-stream,
they generate one vector of symbols c(τ) that corresponds to
a particular knowledge vector q

(τ)
i ; hence, when the corre-

sponding feedback is received at the transmitter, only q
(τ)
i is

updated to obtain q
(τ+1)
i before the next vector of symbols,

c(τ+1), is generated. Second, the encoding process is causal;
that is, for generating c(τ), τ = nK + i, only the knowledge
vectors

{
q
(τ)
1 , . . . , q

(τ)
i

}
are utilized, simply the ones whose

index is larger then i are ignored. We illustrate the overall
sequence-to-one encoding process for a particular τ ≥ 1 in
Fig. 2.

While we provided above the general structure of the
existing DL-based feedback code designs, they all use a special
case of this general form with a single pass over the bit-
stream, i.e., n = 1, and exactly two symbols are generated
at each iteration, i.e., Nτ = 2 for all τ ≥ 1 while systematic
encoding with BPSK modulation is used for τ = 0. For this
particular setup, one achieves the rate R = 1/3 by using K+1
communication rounds in the forward direction. In general, for
given K, R, and Nτ , T = K

Nτ
∗
(
1
R − 1

)
+ 1 communication

rounds are required in the forward direction3.

3To prevent any confusion, we ignore the extra zero padding strategy
introduced in [10].

5

Encoder

Sequence of K vectors

Original bits

Encoded symbols

Feedback symbols

Fig. 2: Visualisation of the sequence-to-one encoding approach at iteration τ = nK + i. The knowledge vector q(τ) is divided
into K, where q

(τ)
i corresponds to the knowledge vector for the i-th message bit. Each channel input vector c(τ) corresponds

to a particular message bit i, and is generated using only the knowledge vectors corresponding to message bits 1, . . . , i. The
transmitted symbol and the corresponding channel output feedback are then added to the knowledge vector of bit i, q(τ)

i , to
be used in the generation of future channel symbols.

Design Hdecoder Hencoder

DeepCode [10] Bi-GRU GRU [20]
DRF Code [12] Bi-LSTM LSTM [21]

AttentionCode [13] Transformer Encoder Transformer Encoder [16]

TABLE II: DNN-based designs for feedback codes.

Similarly, at the receiver, a combination of DNN architec-
ture Hdecoder and pre-processing function Sdecoder(·) is used
as the decoding function D, i.e.,

Hdecoder

(
Sdecoder

(
q̃(T)

))
(8)

= Hdecoder

(
Sdecoder

(
[y(1), . . . ,y(T)]

))
(9)

Neural−decoder−−−−−−−−−−−→ b̂ ∈ {0, 1}K . (10)

The particular DNN architectures employed, both at the en-
coder and the decoder, in the existing feedback codes proposed
in the literature are listed in Table II.

III. GENERALIZED BLOCK ATTENTION FEEDBACK
(GBAF) CODES

Following the general design principles summarized above,
the common aspect of the existing DNN-based feedback codes
is to consider the given bit-stream as a sequence and utilize
DNN architectures that are particularly designed for process-
ing sequences, such as the long short-term memory (LSTM)
and gate recurrent unit (GRU) architectures, to generate parity
symbols as well as to decode them to recover the original bit
stream. The proposed GBAF code design differentiates itself

from the existing codes in several aspects. Below we present
the architecture of the GBAF codes, and emphasize its main
novelties with respect to the state-of-the art.

A. Overview of Innovations

1) Sequence-to-sequence encoding: The key novelty of the
GBAF code design, different from the existing strategies, is
the way the sequence is processed at the encoder to generate
channel symbols. While the existing strategies follow the
sequence-to-one coding principle mentioned above, the GBAF
code uses sequence-to-sequence encoding to generate a vector
of symbols corresponding to the whole message bits. The
knowledge vector at the encoder, q(τ), is first transformed into
a sequence of K vectors

{
q
(τ)
1 , . . . , q

(τ)
K

}
. However, unlike

sequence-to-one coding, at each communication round τ ,
parallel processing of these knowledge vectors is used instead
of causal processing; that is, for each knowledge vector q(τ)

i ,
i = 1, . . . ,K, a vector of coded symbols c

(τ)
i is generated

simultaneously and the transmitted codeword c(τ) is obtained
by concatenating these vectors, i.e., c(τ) =

[
c
(τ)
1 , . . . , c

(τ)
K

]
.

Accordingly, when the corresponding feedback becomes avail-
able at the transmitter, all the elements of the sequence of
knowledge vectors are updated simultaneously. Hence, the
number of interactions between the receiver and the transmitter
does not scale with the length of the sequence, but with the
coding overhead, which is the inverse of the rate.

2) Sequence of bits to sequence of blocks: Although
the parallel execution with sequence-to-sequence encoding

6

Encoder

Sequence of l vectors

Original bits

Encoded symbols

Feedback symbols

Fig. 3: Visualisation of the sequence-to-sequence encoding approach with block formation for a block size of m, where
l = K/m, at iteration τ . Bits are grouped into l blocks, each consisting of m bits. The knowledge vector q(τ) is also divided
into l, where q

(τ)
i corresponds to the knowledge vector about the l-th block of message bits. Each generated channel symbol

vector c(τ)i corresponds to a particular block of message bits bim−(m−1), . . . , bim, but all the available knowledge vectors are
used simultaneously to generate all the channel input vectors in iteration τ . The transmitted symbol and the corresponding
channel output feedback are then added to the knowledge vectors of all the message blocks.

reduces the communication overhead compared to existing
frameworks, the limitation of the number of feedback itera-
tions by the rate leads to under-utilization of the feedback
mechanism. Apart from that, we identify three other limita-
tions:

1) performing sequence-to-sequence encoding for large se-
quences is computationally expensive and has large
memory requirements;

2) when the number of feedback iterations is limited,
information gathered for each element of the sequence
is also limited;

3) sequence-to-sequence encoding alone does not offer a
wider range of rate options compared to former designs.

We highlight that, in the existing DL-based feedback codes,
the length of the processed sequence is equal to the length
of the bit-stream; that is, each element of the sequence
corresponds to a single message bit and the corresponding
channel input and feedback symbols. Hence, to address all
the aforementioned limitations, we divide the bit-stream into
group of bits, which we refer to as a message block. As a
result, each element of the sequence corresponds to a block of
bits and the corresponding transmitted channel input and the
feedback symbols, which leads to a reduction in the sequence
length by the message block size. Then, sequence-to-sequence
encoding is performed on the sequence of message blocks
and the corresponding knowledge vectors. Fig. 3 illustrates the
sequence-to-sequence encoding scheme with message blocks.
For sequence-to-sequence encoding, use of blocks of bits

instead of single bits reduces the number of feedback iterations
for a fixed code rate by the block size, which reduces the
feedback overhead. Additionally, the achieved reduction on
the length of the sequence also reduces the computational
complexity and the memory requirements.

Moreover, for the specific transformer-based DNN architec-
ture we employ for our code design, when the elements of each
sequence corresponds to a block of bits rather than a single bit,
one can obtain a more informative embedding for each element
of the sequence, which improves the information processing
capability of the transformers. This will become more clear
when we introduce the details of the architecture below.

More formally, GBAF code design divides the K original
information bits into l blocks of m bits each. Here, we assume
m divides K, such that K = l · m. These form our initial
l knowledge vectors (see Fig. 3). We utilize sequence-to-
sequence encoding at each round of communication treating
the l knowledge vectors as the input sequence, and generate
the channel symbols corresponding to each message block,
equivalently, to each knowledge vector. Then, we update the
sequence of knowledge vectors with the transmitted symbols
and the received feedback symbols, by appending them to the
corresponding knowledge vectors. A total of Nτ = l = K/m
symbols, one parity symbol for each knowledge vector, are
transmitted at each round τ . One can observe that, given rate
R and block size m, the number of required communication
rounds is T = m/R, which does not scale with K. Further-
more, by choosing different T ∈ Z+ and m ∈ Z+ values it

7

Parity Network

Belief Network

Decoder Network

Belief feedbackIn
n

e
r

Fe
e

d
b

ac
k

Outer feedback

Encoder Unit

Pre-processing unit

Knowledge vector

Original bit-stream

Fig. 4: Illustration of the overall GBAF code architecture. The green, blue and red blocks denote the knowledge vector, pre-
processing unit, and encoder unit, respectively. The dashed lines and shapes indicate the units and connections that are optional.

is possible to obtain a wide range of code rates, R = m/T .
Hence, the rate of the code can be adjusted by changing the
block size m and the number of communication rounds T ,
which is also equivalent to the total number of parity symbols
transmitted per block. From the encoding processes illustrated
in Fig. 2 and Fig. 3, one can also observe that, under the same
rate constraint, the sequence-to-sequence encoding approach
requires l times fewer interactions between the receiver and the
transmitter compared to the sequence-to-one approach, which
results in a reduced feedback overhead in practice, as argued
above.

So far, we have identified two novel aspects of the GBAF
code design; namely, i) utilizing sequence-to-sequence encod-
ing instead of sequence-to-one encoding, and ii) reorganizing
the sequence into blocks of bits before encoding. These
general design principles are independent from the particular
DNN architecture, and can be combined with any architecture
that can be adapted for sequence-to-sequence encoding. The
third novel aspect of the GBAF code is its architecture and
the newly introduced modules. Different from the existing
designs, we employ a novel transformer encoder architecture
for encoding and decoding. Furthermore, we introduce custom
modules, such as a feature extractor to deal with large noise
realizations. In order to provide a more holistic view from
the design perspective, below we present the GBAF code
design in three parts: general architecture, specific modules,
and implementation.

B. GBAF Architecture

From an operational point of view, we employ two types of
components in the overall design, namely an encoder unit and
a pre-processing unit. Motivated by the SK scheme [2], the
transmitter consists of two cascaded networks, each of which
consists of a pre-processing unit followed by an encoder unit.
We refer to the initial network as the belief network and the
latter as the parity network. The objective of the belief network
is to generate a belief on the predicted bits at the receiver,

while the objective of the parity network is to generate parity
symbols to improve the prediction accuracy at the receiver.
The receiver also employs a network with the same structure
to predict the original bit stream, which we refer to as the
decoder network. In the overall architecture, we identify three
types of information flows, which we call as different feedback
mechanisms:

• Inner Feedback: We use the term inner feedback to refer
to a feedback mechanism within each network. It is used
for the encoder network to recall the previously generated
parity symbols.

• Belief Feedback: The belief feedback refers to the in-
formation flow from the belief network to the encoder
network.

• Outer Feedback: The outer feedback is the physical
feedback signals from the receiver to the transmitter.

The overall architecture is illustrated in Fig. 4. In the
introduced architecture, the belief network and the belief
feedback are optional, and they can be added or removed
as desired, presenting a trade-off between complexity and
performance, and the objective of using two networks is to
disentangle the task of generating parity bits and predicting
the belief at the receiver. However, by bypassing the belief
network and disabling the belief feedback, both tasks can be
fulfilled by the parity network.

C. Modules

In the GBAF code, for all the encoder units we utilize the
same DNN architecture denoted by Hencoder, which simply
maps sequences of l vectors of size din to sequences of vectors
of size dout with the same length, i.e., Hencoder(q1, . . . , ql) =
U = {u1, . . . ,ul}, such that qi ∈ Rdin , ui ∈ Rdout . Hencoder

unit consists of three modules: feature extractor Hextract,
sequence-to-sequence encoder Hs2s, and output mapping
Hmap. Accordingly, Hencoder = Hmap ◦ Hs2s ◦ Hextract,
where ◦ denotes composition. The end-to-end architecture of

8

Fig. 5: Illustration of an encoder unit, Hencoder.

the encoder unit is illustrated in Fig. 5. Below we explain each
of these components in detail.

1) Feature extractor: The role of the feature extractor
is to map the collected raw data for each message block
to a certain vector representation, similarly to the vector
embedding approach in NLP tasks [22]–[24], where the ob-
jective is to represent the words in the form of a vector and
the corresponding representation inherits certain contextual
information regarding the word. However, our problem has
two unique challenges: i) time-evolving nature of data; and ii)
the randomness in the input. By the randomness, we refer to
the random noise realization at each communication round. In
principle, encoder module utilizes the noise realizations in the
past to generate the parity symbols; nevertheless, the outlier
noise realizations, particularly in the low SNR regime, might
be overemphasized when a simple linear mapping is used
for feature extraction. Hence, our ultimate aim is to design a
feature extractor module in a way that the impact of each raw
data on the corresponding representation is limited. To this
end, we utilize a multi-layer perceptron (MLP) architecture.
As detailed in Appendix A, the feature extractor consists of
three linear layers with two activation functions in between.
The activation function can be Gaussian error linear unit
(GeLU) [25] or rectified linear unit (ReLU). We use Hparity

extract,
Hbelief

extract, and Hdecoder
extract to denote the feature extractors for

parity network (line 14 of Algorithm 1), belief network (line
7 of Algorithm 1), and decoder network (line 6 of Algorithm
2), respectively.

2) Sequence-to-sequence encoder: Sequence-to-sequence
encoder Hs2s is a DNN architecture, where the sequence of
early feature representations are mapped to a sequence of final
latent representations by seeking certain correlations among
the elements of the input sequence. The input to the Hs2s is
a sequence of dmodel dimensional vectors of length l and the
output is again a sequence of dmodel dimensional vectors of

length l. Hence, a wide range of existing DNN architectures,
particularly those employed for natural language processing
(NLP) tasks, such as LSTM, GRU, transformer, can be utilized
as Hs2s. We use Hparity

s2s , Hbelief
s2s , and Hdecoder

s2s to denote
the sequence-to-sequence encoder for parity network (line 15
of Algorithm 1), belief network (line 8 of Algorithm 1), and
decoder network (line 7 of Algorithm 2), respectively.

We have observed that the transformer architecture performs
particularly well for sequence-to-sequence encoding. Hence,
for Hs2s, we consider sequence of N encoder layers of the
transformer architecture4, which consists of three main compo-
nents: the feed-forward module, the multi-head self-attention
module, and the layer normalization module as illustrated in
Fig. 6. Next, we briefly explain the structure of the attention
and feed-forward modules.

Self-Attention Module: Self-attention mechanism is the
key enabler for extracting relative information from a se-
quence. The core idea of the attention mechanism is to utilize a
set of key-value pairs, for a given query, to generate an output.
Consider dk, dq , dv dimensional vectors of key, query, and
value, respectively, and N queries, K keys and K values, rep-
resented in a stacked form as Q ∈ RN×dk ,K ∈ RK×dk ,V ∈
RK×du , respectively. The objective of the attention mechanism
is to obtain the weights required for combining the set of
values to provide an output. The underlying mechanism used
is scaled dot-product attention, i.e.,

Attn(Q,K,V) = Softmax

(
QKT

√
dk

)
︸ ︷︷ ︸

W∈RN×K

V , (11)

where
√
dk is used to normalize the output of the dot-product

before the softmax layer. The multi-head attention follows
the same principle, but query, key and value vectors are first
processed through a linear layer and fed to multiple attention
mechanisms/heads, which are executed simultaneously. Then
the final output is obtained by concatenating the outputs of all
the attention mechanisms/heads.

Feed-Forward Module: The feed-forward module consists
of two fully connected layers with a non-linearity (activation)
between them, which can be formally described as

FFN(x) = ϕ(xW + d)W̃ + d̃, (12)

where ϕ(·) denotes a non-linear activation function, such as
ReLU or GELU, W and W̃ denotes matricies for linear pro-
jection, and, d and d̃ denotes the vector for bias terms.Given
an input vector of size dmodel, first linear layer increases the
model size to δ × dmodel, which is later reduced to dmodel

again by the second linear layer. Here, δ is often called
the scaling factor. It has been argued that the feed-forward
module functions as a memory [26]. In our implementation,
we set dmodel = 32, consider a single attention head, and
set δ = 4 at the feed-forward module following the common
implementation [17], and finally for the layer normalization
we follow the pre-layer normalization option [27]. For the

4We follow the standard implementation used in the Pytorch
library: https://pytorch.org/docs/stable/ modules/torch/nn/modules/
transformer.html#TransformerEncoderLayer

9

Fig. 6: Visualization of the encoder layer.

number of encoder layers N , we consider Nparity = 2,
Nbelief = 2 and Ndecoder = 3. For further details about the
transformer architecture we refer the reader to [16], [17], [28]
and references therein.

3) Output mapping: The output mapping Hmap is used to
map the final latent representation, obtained by the sequence-
to-sequence encoder Hs2s, to a particular form depending
on the purpose. For example, in the parity network, Hmap

maps the final representation to a parity symbol, whereas in
the belief network and decoder, it is used for classification
purposes. Common to all three networks, Hmap consists of
a single fully-connected layer with an input size dmodel and
output size dout; however, when it is used for classification, as
in the belief and decoder networks, the fully-connected layer
is followed by an additional softmax layer.

Since only one parity symbol is generated per block, we
consider dout = 1 for Hparity

map . On the other hand, decoder
network aims to map each block to one of the 2m possible m-
length bit streams. Hence, for Hparity

map , we have dout = 2m. On
the other hand, for the belief network Hbelief

map , we set dout =
2m, that is for each original bit in the block we generate two
values in order to represent the likelihood values P (bi = 0)
and P (bi = 1) as a belief, with the help of a softmax layer5.
Finally, we note here that due to the average power constraint,
an extra layer for power normalization is required following
the Hparity

map , which follows the same procedure in [10], [13].

D. Implementation and Training Procedure

Here, we illustrate how the proposed GBAF code archi-
tecture is executed from an algorithmic perspective in order
to highlight its iterative structure. To describe the overall
encoding procedure at the transmitter, we introduce an iterative
algorithm, called unified iterative parity symbol encoding
(UIPSE), that generates l symbols after each communication
round, which is detailed in Algorithm 1.

To describe the final decoding mechanism at the receiver, we
introduce the joint parity symbol decoding (JPSD) algorithm,
where the parity symbols belonging to each block are decoded
jointly, as illustrated in Algorithm 2. Different from the

5Here, we remark that before the softmax operation we reshape the input,
i.e., 1× 2m −→ m× 2.

existing feedback code designs, due to the use of the block
structure, the decoder performs classification over all possible
bit blocks, 2m in total, rather than binary classification. Hence,
to recover the original bit-stream we further employ a lookup-
table A (line 16-18 in Algorithm 2), such that the ith row of
A, A[i,:], corresponds to the bit-wise representation of the ith
possible block.

From the training point of view, GBAF code performs a
multi-class classification task. Let x ∈ {0, 1}m be the m-bit
block to be transmitted. Then the relation between the data x
and its label y ∈ [0, . . . , 2m − 1] can be formulated as

y = xTz (13)

where z = [2m−1, 2m−2, . . . , 1]T . The data-label pairs (x, y)
are known at the transmitter. At the end of T iterations, the
receiver observes m̃-dimensional representation of x, denoted
by x̃, and its task is to predict y from observation x̃.

To generate the training data, we first generate a random
sequence of bits b ∈ {0, 1}K , which is then divided into
l blocks, each of size m bits, and assign the corresponding
label for each block as described in (13). Consequently, we
have B = {(b1, y1), . . . , (bl, yl)} as the training data with
corresponding labels. The generated block of bits, {b1, . . . , bl}
is then fed into the encoder, and at the end of T communication
iterations the decoder outputs a sequence of l 2m-dimensional
vectors, {w1, . . . ,wl}, as described in Algorithm 2, which are
then used to predict the class of each original block of bits.
We use the cross-entropy loss function defined as

L(W , Y) =

l∑
i=1

2m−1∑
c=0

− log
exp (W[i,c])∑2m−1

c=0 exp (W[i,c])
· 1yi ̸=c

(14)
where Y = {y1, . . . , yl} denotes the labels of the blocks in
the generated sequence, and W is the sequence {w1, . . . ,wl}
in matrix form. When a batch of sequences are generated for
training, the loss function in (14) is evaluated by taking the
average loss over the batch.

IV. NUMERICAL RESULTS

In this section, we present the results of numerical exper-
iments using the GBAF architecture and coding principles
explained above6.

A. Experiment Setup

In all the experiments, we consider a bit stream of length
K = 51 and a block size of m = 3, which corresponds to
l = 17 blocks. We consider communication in the low forward
SNR regime, where the availability of feedback can be particu-
larly effective. Specifically, we consider SNRff ∈ [−1, 2] dB,
and allow the transmission of T = 9 parity bits for each
block in total, which corresponds to a transmission rate of
R = 3/9 = 1/3.

For training, we use the AdamW optimizer, which is a
variation of the Adam optimizer with decoupled weight decay
regularization [29]. It was observed in [12] that for DNN-aided

6Codes are available on https://github.com/emre1925/GBAF

10

Algorithm 1 Unified iterative parity symbol encoding (UIPSE)

1: for τ = 1, . . . , T do # Generate 1 parity symbol per block at each pass
2: Update knowledge vector:
3: q(τ) = [b, c(1), . . . , c(τ), ỹ(1), . . . , ỹ(τ−1)]
4: if belief feedback is enabled then
5: Pre-process knowledge vector for belief network:
6:

{
q̃
(τ)
i , . . . , q̃

(τ)
l

}
= Sbelief(q

(τ)), q̃
(τ)
i = [ỹ

(1)
i , . . . , ỹ

(τ−1)
i]

7: Extract features:f̃ (τ)
i = Hbelief

extract(q̃
(τ)
i)

8: Attention-based neural-encoding:Ṽ(τ) = Hbelief
s2s (F̃ (τ))

9: Generate belief feedback: b̃
(τ)
i = Hbelief

map (ṽ
(τ)
i)

10: Pre-process knowledge vector:
{
q
(τ)
i , . . . , q

(τ)
l

}
= Sparity(q

(τ), b̃(τ))

11: else
12: Pre-process knowledge vector:

{
q
(τ)
i , . . . , q

(τ)
l

}
= Sparity(q

(τ))

13: Feature extraction:
14: for i ∈ [l] do f

(τ)
i = Hparity

extract(q
(τ)
i)

15: Attention-based neural-encoding:V(τ) = Hparity
s2s (F (τ))

16: Symbol mapping:
17: for i ∈ [l] do
18: c

(τ)
i = Hparity

map (v
(τ)
i) # Generate 1 parity symbol for ith block

Forward SNR (dB)

BLER

Forward SNR (dB)

BLER

Fig. 7: Performance comparison of GBAF with AttentionCode, DEFC, DRFC, DeepCode and NR-LDPC. GBAF (w/o BU)
corresponds to the GBAF architecture without the belief network. (a) Noiseless feedback; (b) Noisy feedback.

code design, the training accuracy improves with the batch
size. Accordingly, we consider a batch size of B = 8192, the
initial learning rate of 0.001, and a weight decay parameter
0.01. In addition, we apply gradient clipping with threshold
0.5. We train the network for 105 batches using cross-entropy
loss and apply polynomial decay to the learning rate. Fol-
lowing the previous works, we consider the BLER as the
performance measure for our analysis. To ensure the reliability
of the results, during test time we wait for at least 100 block
errors in each setting. 7

7We note that in the regime of 10−9 BLER, since observing 100 block
errors requires generating excessive number of samples and computational
capacity, we stop the test after observing 20 errors. At the observed BLER
levels of 10−8 − 10−9 even observing 20 errors can take several days of
simulations.

We conduct our experiments under two different scenarios,
noisy and noiseless feedback. In the noiseless feedback case,
we use the GeLU activation function in the feature extractor,
while in the noisy feedback case, we use ReLU. Further
discussion on the impact of the activation function can be
found in Appendix B.

B. Experimental Results

We start our analysis with the noiseless feedback scenario,
i.e., σ2

fb = 0. In the first part of the simulations, we focus
on a fixed transmission rate of R = 1/3, and compare the
proposed design with the existing DNN-based feedback de-
signs DeepCode [10], DEFC [11], DRFC [12], AttentionCode
[13] as well as NR-LDPC code [30]. In the first part of the
simulations, we examine two variations of the GBAF code

11

Algorithm 2 Joint parity symbol Decoding (JPSD)

1: Update Knowledge vector:
2: q̂ = [c̃(1), . . . , c̃(T−1),y(1), . . . ,y(T)]
3: Pre-process knowledge vector for decoder network:
4: Sdecoder(q̂) = {q̂1, . . . , q̂l}, q̂i = [ỹ

(1)
i , . . . , ỹ

(T)
i])

5: Feature extraction:
6: for i ∈ [l] do f̂i = Hdecoder

extract (q̂i)

7: Attention-based neural-encoding:V̂ = Hdecoder
s2s (F̂)

8: Mapping:
9: for i ∈ [l] do wi = Hdecoder

map (v̂i)

10: Block-wise classification: # predict the block index
11: for i ∈ [l] do pi = maxj(wi)[j]

12: Block index to bit stream conversion: # map block
indices to original bits

13: for i ∈ [l] do b̂ = [b̂,A[pi,:]]

depending on the adoption of belief network in order to high-
light its impact on the performance. The BLER performance
results are illustrated in Fig. 7(a) for the forward SNR values
within the range of [−1, 2] dB. The results clearly highlight
that GBAF code provides an order of magnitude improvement
compared to the best performing alternative in the literature.
We also observe that the adoption of the belief network
further improves the performance. Nevertheless, design of the
feature extraction module becomes more critical when the
belief network is employed, and we observe that the belief
network with the introduced feature extraction module may
not be effective for the noisy feedback scenario. For now, we
consider their joint design as an open research challenge, and
in the remaining simulations we disable the belief network for
the GBAF code.

Next, we consider the scenario in which the feedback chan-
nel is also exposed to additive Gaussian noise with 1/σ2

fb =
20dB. The illustrated results in Fig 7(b) indicate that except the
lowest SNR value of −1dB, GBAF code outperforms DEFC,
DRFC, DeepCode and NR-LDPC. We also observe that at
higher SNR values AttentionCode may outperform the GBAF
code. However, we highlight the fact that GBAF code utilizes
the feedback less frequently, approximately 6× less, compared
to the other codes considered in the figure. Hence, we can
conclude that better or similar performance can be achieved
with much less overhead.

In the second set of simulations, we will highlight the
flexibility of the proposed GBAF code design in terms of
channel code rates it can achieve. Unlike the existing designs,
the proposed framework can be easily adjusted to obtain codes
at different rates by changing the number of parity symbols
transmitted. This requires no variations in the architecture
itself. To this end, we consider T = 8, 7, 6, 5 to achieve
code rates R = 3/8, 3/7, 3/6, 3/5, respectively, and measure
the BLER performance for forward SNR values in the range
of [−1, 3] with noiseless feedback. The BLER performance
achieved with these codes is presented in Table III.

The results demonstrate that, in the higher SNR regimes,
it is possible to achieve acceptable BLER values with even

higher code rates. For example, a BLER target of 10−5,
which is sufficient for many tasks [14], can be achieved
at rates R = 3/8, 3/7, 3/6, 3/5 for SNRff = 0, 1, 2, 3
dB, respectively. Hence, unlike the existing designs, GBAF
design exhibits certain flexibility for rate adaptation based
on the SNR. We also notice from the table that the BLER
performance degrades quickly as the code rate approaches the
channel capacity at that SNR value. On the other hand, GBAF
code manages to drastically lower the error rate when the code
rate falls slightly below the capacity. We also note that the
GBAF code performance in Fig. 7(a) saturates to a BLER of
10−9 above 0 dB; however, simulations at this BLER levels are
less reliable as the code rarely observes any errors. Therefore,
it is very unlikely to achieve BLER values lower than 10−9

even at higher SNRs. On the other hand, we can see in Table
III that, when the code rate is increased to R = 1/2, the GBAF
code performance does not saturate up until 3 dB.

C. Further Discussions
The performance comparison between AttentionCode and

GBAF code illustrates that the performance gain achieved by
the GBAF code is not only related to the chosen sequence-to-
sequence encoder architecture but also to the way it is imple-
mented. Besides, compared to the AttentionCode implemen-
tation, GBAF code reduces the computational complexity and
the memory requirement since the block encoding approach
induces a reduction, linearly proportional to the block-size,
in the sequence length. The computational complexity of the
transformer architecture is O(l2), although there are recent
works targeting linear complexity [31]–[33]. This implies m2

times reduction in complexity, which makes GBAF codes
more practical compared to the AttentionCode for longer block
lengths. On the other hand, the computational complexity still
depends quadratically on the sequence length, l. Hence, when
the message length K increases, limiting the complexity of the
transformer architecture may require increasing the block size
m. However, this would then significantly increase the com-
plexity of the output mapping module Hparity

map , which grows
exponentially as a function of m. Therefore, adoption of a
light/sparse attention mechanism to the GBAF architecture for
large block length code design, which would allow processing
long sequences with limited computational complexity without
sacrificing the performance is an important future research
direction.

We also remark that existing solutions, e.g., DeepCode
or DRF code, transmit exactly two parity symbols at each
communication round, thus for rate R = 3/9, we need
T = 52 interactions between the forward and feedback
channels, whereas GBAF requires only T = 9, which implies
a significant reduction in the overhead. Finally, we expect that
by utilizing the curriculum learning scheme used in [13], the
BLER performance can be improved further, especially for
higher SNR values, where we observe certain saturation in
the BLER performance.

D. Fading channels
In this section, we evaluate the performance of GBAF codes

over fading channels. In particular, we consider the fading

12

TABLE III: BLER of GBAF codes at different code rates R.

SNR/Rate 3/8 3/7 3/6 3/5

-1 dB 1.8× 10−2 - - -
0 dB 6.15× 10−8 2.8× 10−3 - -
1 dB 2.7× 10−8 7.5× 10−8 1× 10−2 -
2 dB - 1× 10−9 1.5× 10−6 6.5× 10−2

3 dB - - 2.7× 10−8 8.7× 10−7

3GPP clustered delay line NLOS channel (NR-CDL-C)

Carrier frequency: 3.5GHz

RMS delay spread: 100 ns

Subcarrier spacing: 30KHz

Slot duration: 0.5ms

Mobile speed: 1~10 m/s

1 slot

One interaction

ℓ/2 subcarriers

Reciprocal channels

𝑇 interactions

1 slot 1 slot

Fig. 8: The communication between a mobile user and a
GNB with GBAF code. The communication lasts for T
interactions, corresponding to T slots. In each interaction, the
ℓ codes symbols are transmitted from the mobile user to the
gNB (feedforward link) in ⌈ℓ/2⌉ subcarriers; the feedback is
transmitted from the gNB to the mobile user (feedback link)
via the same ⌈ℓ/2⌉ subcarriers, where we assume reciprocal
channels in one interaction.

channel defined in new radio (NR) clustered delay line (CDL).
A CDL is used to model the channel when the received
signal consists of multiple delayed clusters, where each cluster
contains multi-path components with the same delay but slight
variations in the angles of departure and arrival.

We consider communication between a mobile user and
gNodeB (gNB), denoted by node A and node B, respectively,
with GBAF code. The speed of the mobile user is vu m/s and
the root-mean-square (RMS) delay spread is 100 ns. The 5G
system is configured with a carrier frequency of 3.5 GHz, a
subcarrier spacing of 30 KHz, and a slot duration of 0.5 ms.
As shown in Fig. 8, the user communicates with the gNB in T
interactions. One interaction corresponds to one slot and the ℓ
real coded symbols are modulated onto ⌈ℓ/2⌉ subcarriers. We
assume reciprocal channels, meaning that the channel gains
of the ⌈ℓ/2⌉ subcarriers are the same for the uplink (from the
user to the gNB) and downlink (from the gNB to the user)
transmissions in one interaction.

1) Channel-gain generation: Channel gains are gener-
ated by QUAsi Deterministic RadIo channel GenerAtor
(QuaDRiGa) [34] using the CDL-Model for NLOS (3GPP
TR38.901 NR-CDL-C). Specifically, for a given mobile speed
vu, we generate two long move paths of the mobile user and
record the channel-gain variations of the ⌈ℓ/2⌉ subcarriers. Let
us denote the two long trajectories of channel-gains by Trt(vu)
and Tre(vu), respectively. Trt(vu) will be used in the training
phase and Tre(vu) will be used in the evaluation phase. In the

Statistical property of ℎ :

1. Across subcarriers: correlated and almost-identical distribution.

2. For one subcarrier: Rayleigh distribution.

ℎ𝑖

PDF

Arg ℎ𝑖

𝜎 = 1.7

PDF

Fig. 9: The PDF of the amplitude and phase obtained from
the sampled channel gains of a subcarrier.

training phase, we randomly sample an initial point in Trt(vu)
and extract the channels gains of T consecutive slots starting
from the initial point as the channel gains of one training
epoch (one training epoch means one communication round
to deliver a stream of K bits). Likewise, in the evaluation
phase, we randomly sample an initial point in Tre(vu) and
extract the channels gains of T consecutive slots starting from
the initial point as the channel gains of one evaluation epoch
to assess the performance of a well-trained GBAF code model.

2) Sample statistics of the channel gains: Next, we analyze
the sample statistics of the channel gains in Trt(vu) and
Tre(vu). Two main results are as follows:

• Channel gains are correlated across subcarriers and in-
teractions: across subcarriers, the fading is almost flat;
across interactions, the amplitude and phase of the chan-
nel gains progressively increase or decrease.

• For each subcarrier, statistical properties of the channels
are almost the same. Let us focus on one subcarrier
and analyze the statistical properties of its amplitude and
phase.
Let vu = 1 m/s and consider the i-th subcarrier, i =
1, 2, ..., ⌈ℓ/2⌉. Fig. 9 presents the probability density
function (PDF) of |hi| and Arg(hi). As can be seen, the
PDF of |hi| can be fitted by a Rayleigh distribution with
σ = 1.7. The PDF of Arg(hi), on the other hand, is
approximately a uniform distribution. This indicates that
the channel coefficients generated by QuaDRiGa for a
single subcarrier can be viewed as Rayleigh fading.

3) Adapting GBAF code to fading channels: To apply
GBAF code in fading channels, we assume that the channel
gains are perfectly known to both nodes A (mobile user) and
B (gNB). The received symbols at nodes A and B in fading
channels can be written as

y = h⊙ c+ n, (15)
ỹ = h̃⊙ c̃+ ñ = h̃⊙ h⊙ c+ h̃⊙ n+ ñ, (16)

where ⊙ denotes the element-wise product; h and h̃ are the
feedforward and feedback channel gains, respectively. In the
case of reciprocal channels, we have h = h̃.

Given the knowledge of h, nodes A and B transform (15)
and (16) to

y ⊙ 1

h
= c+ n⊙ 1

h
, (17)

ỹ ⊙ 1

h
⊙ 1

h
= c+ n⊙ 1

h
+ ñ⊙ 1

h
⊙ 1

h
. (18)

13

𝔼 𝑆𝑁𝑅𝑓𝑓 (dB) 𝔼 𝑆𝑁𝑅𝑓𝑓 (dB)

𝑎 𝔼 𝑆𝑁𝑅𝑓𝑏 = ∞ dB 𝑏 𝔼 𝑆𝑁𝑅𝑓𝑏 = 32.23 dB

BLER BLER

Fig. 10: Performance of GBAF code in fading channels
benchmarked against DeepCode.

In so doing, the fading coefficients are transformed into the
noise terms – the architecture of GBAF code can be used with
the only difference being the non-AWGN noise.

4) Performance evaluation: Under the above setup, this
subsection evaluates the performance of GBAF codes in fading
channels. In the simulations, we generate the channel-gain
trajectories using two user speeds vu = 1 m/s and 10 m/s. The
feedback SNR depends on both fading coefficients and noise
power. When the feedback channel is noiseless (noise power
is 0), the feedback SNR is simply SNRfb = ∞ dB. When the
feedback channel is noisy, we fix the average feedback SNR
to E[SNRfb] = 32.23 dB (in which case the noise power is
the same as that of the AWGN channel case with 20 dB noisy
feedback).

Fig. 10 presents the BLER of GBAF code, where the
feedback channel is noiseless in (a) and noisy in (b). Note that
we do not simulate any prior works as benchmarks because
they are designed exclusively for the unit-time delay case and
do not fit into the considered NR-CDL model. As shown in
Fig. 10, although faster mobile speed leads to faster-changing
channel gains, GBAF code is robust to the mobile speed. The
BLER performance only degrades slightly when the mobile
speed increases from 1 m/s to 10 m/s.

V. CONCLUSION

In this work, we have introduced the novel GBAF code
design, empowered by the sequence-to-sequence encoding
DNN architecture, particularly the transformer architecture,
to generate parity bits, by incorporating a feedback mecha-
nism. Beyond introducing a generic code design framework,
unlike the existing solutions described through the employed
DNN architecture, the proposed framework addresses several
limitations of the existing DNN-based coding approaches,
and makes DNN-based feedback codes more applicable for
next generation networks. In particular, our architecture is not
limited to a fixed code rate, and achieves a significantly lower
overhead thanks to its block structure. Finally, in addition
to these operational advantages, GBAF codes significantly
outperforms existing solutions, especially in the noiseless
feedback scenario. This will be particularly attractive for
applications where the feedback link is from a base station
to a user equipment, and hence, can be assumed to achieve
relatively high SNR values. We also showed that GBAF codes
can be robust to channel fading, making them a promising

alternative for mobile channels with relatively good average
channel conditions.

APPENDIX A
IMPLEMENTATION DETAILS

The pre-processing unit of the encoder network can be oper-
ated under four different mode based on the enabled/disabled
feedback mechanisms and the way the available information
are aggregated. In Algorithm 3, we illustrate pre-processing
mechanism under each mode with different color. In our im-
plementation, we prefer the third option illustrated with blue.
Here, we also note that in our implementation we store the
original bits b in the knowledge vector in the BPSK modulated
form, i.e., b̄ = 2b − 1. In overall, with enable/disable option
for the belief network the GBAF code design can be operated
under 8 different modes as highlighted in Algorithm 3.

APPENDIX B
FEATURE EXTRACTORS

The feature extractor presented in the main body of this
paper is selected from a bunch of different designs. In this
appendix, we discuss these designs and explain how the feature
extractor is chosen.

A. Various designs of the feature extractor

Linear ReLu Linear ReLu Linear

Aggr

Linear ReLu Linear ReLu Linear

𝒒 𝜏 Linear

× −1

17

19

19 × 96

19 × 96

96 × 96

96 × 96

96 × 96

96 × 96

192 × 32

Share weights Share weights

Linear ReLu Linear ReLu Linear𝒒 𝜏17

19 19 × 96 96 × 96 96 × 32

Linear ReLu Linear𝒒 𝜏17

19 19 × 96 64 × 96

Linear𝒒 𝜏17

19 19 × 96

𝐴

𝐵

𝐶

𝐷

Linear𝒒 𝜏17

19 19 × 32

𝐴0

Linear ReLu Linear ReLu Linear

Aggr

Linear ReLu Linear ReLu Linear

𝒒 𝜏 Linear

× −1

17

19

19 × 96

19 × 96

96 × 96

96 × 96

96 × 96

96 × 96

192 × 32

Share weights Share weights

Linear ReLu Linear ReLu Linear𝒒 𝜏17

19 19 × 96 96 × 96 96 × 32

Linear ReLu Linear𝒒 𝜏17

19 19 × 96 64 × 96

Linear𝒒 𝜏17

19 19 × 96

𝐴

𝐵

𝐶

𝐷

Linear𝒒 𝜏17

19 19 × 32

𝐴0

Linear ReLu Linear ReLu Linear

Aggr

Linear ReLu Linear ReLu Linear

𝒒 𝜏 Linear

× −1

17

19

19 × 96

19 × 96

96 × 96

96 × 96

96 × 96

96 × 96

192 × 32

Share weights Share weights

Linear ReLu Linear ReLu Linear𝒒 𝜏17

19 19 × 96 96 × 96 96 × 32

Linear ReLu Linear𝒒 𝜏17

19 19 × 96 64 × 96

Linear𝒒 𝜏17

19 19 × 96

𝐴

𝐵

𝐶

𝐷

Linear𝒒 𝜏17

19 19 × 32

𝐴0

Linear ReLu Linear ReLu Linear

Aggr

Linear ReLu Linear ReLu Linear

𝒒 𝜏 Linear

× −1

17

19

19 × 96

19 × 96

96 × 96

96 × 96

96 × 96

96 × 96

192 × 32

Share weights Share weights

Linear ReLu Linear ReLu Linear𝒒 𝜏17

19 19 × 96 96 × 96 96 × 32

Linear ReLu Linear𝒒 𝜏17

19 19 × 96 64 × 96

Linear𝒒 𝜏17

19 19 × 96

𝐴

𝐵

𝐶

𝐷

Linear𝒒 𝜏17

19 19 × 32

𝐴0

Linear ReLu Linear

Aggr

Linear ReLu Linear

𝒒 𝜏 Linear

× −1

17

19 192 × 32

Share weights𝐸

Blocks of bits

Coded symbols

Noise realizations

𝐹

Linear ReLu Linear ReLu Linear

8 × 96 96 × 96 96 × 21

Blocks of bits

Coded symbols

Noise realizations

𝐺

Linear ReLu Linear ReLu Linear

8 × 96 96 × 96 96 × 96

21

8

3

32

107 × 32
8

3

Linear ReLu Linear

Aggr

Linear ReLu Linear

𝒒 𝜏 Linear

× −1

17

19 192 × 32

Share weights𝐸

Blocks of bits

Coded symbols

Noise realizations

𝐹

Linear ReLu Linear ReLu Linear

8 × 96 96 × 96 96 × 21

Blocks of bits

Coded symbols

Noise realizations

𝐺

Linear ReLu Linear ReLu Linear

8 × 96 96 × 96 96 × 96

21

8

3

32

107 × 32
8

3

Linear ReLu Linear

Aggr

Linear ReLu Linear

𝒒 𝜏 Linear

× −1

17

19 192 × 32

Share weights𝐸

Blocks of bits

Coded symbols

Noise realizations

𝐹

Linear ReLu Linear ReLu Linear

8 × 96 96 × 96 96 × 21

Blocks of bits

Coded symbols

Noise realizations

𝐺

Linear ReLu Linear ReLu Linear

8 × 96 96 × 96 96 × 96

21

8

3

32

107 × 32
8

3

Fig. 11: Seven designs of the feature extractor.

We propose seven different designs of feature extractor for
GBAF code, the architectures of which are summarized in
Fig. 11. Note that variations of these designs can be obtained
by changing the number of neurons in each layer or the
activation functions.

14

Algorithm 3 Pre-processing unit for Parity Network: Sparity()

1: if Belief b(τ) is available then
2: if Feedback only is True then
3: q

(τ)
i = [b((i−1)∗m+1:i∗m), b̃

(τ)
i , ỹ

(1)
i , . . . , ỹ

(τ−1)
i])

4: else if Noise only is True then
5: q

(τ)
i = [b((i−1)∗m+1:i∗m), b̃

(τ)
i , ỹ

(1)
i − c

(1)
i , . . . , ỹ

(τ−1)
i − c

(τ−1)
i])

6: else if Disentangle is True then
7: q

(τ)
i = [b((i−1)∗m+1:i∗m), b̃

(τ)
i , c

(1)
i , . . . , c

(τ−1)
i , ỹ

(1)
i − c

(1)
i , . . . , ỹ

(τ−1)
i − c

(τ−1)
i]

8: else
9: q

(τ)
i = [b((i−1)∗m+1:i∗m), b̃

(τ)
i , c

(1)
i , . . . , c

(τ−1)
i , ỹ

(1)
i , . . . , ỹ

(τ−1)
i]

10: else
11: if Feedback only is True then
12: q

(τ)
i = [b((i−1)∗m+1:i∗m), ỹ

(1)
i , . . . , ỹ

(τ−1)
i])

13: else if Noise only is True then
14: q

(τ)
i = [b((i−1)∗m+1:i∗m), ỹ

(1)
i − c

(1)
i , . . . , ỹ

(τ−1)
i − c

(τ−1)
i])

15: else if Disentangle is True then
16: q

(τ)
i = [b((i−1)∗m+1:i∗m), c

(1)
i , . . . , c

(τ−1)
i , ỹ

(1)
i − c

(1)
i , . . . , ỹ

(τ−1)
i − c

(τ−1)
i]

17: else
18: q

(τ)
i = [b((i−1)∗m+1:i∗m), c

(1)
i , . . . , c

(τ−1)
i , ỹ

(1)
i , . . . , ỹ

(τ−1)
i]

• Design A is simply a linear layer. This is the feature
extractor used in the original design of transformer [16].

• Design B consists of two linear layers with a ReLU
activation function in between. The output of ReLU is
0 when the input is negative. Therefore, it can be used
for truncation: whenever the DNN wants to truncate a
large output of a neuron (large in amplitude), say z, it
can simply multiply z by a weight −1 (when z > 0) or 1
(when z < 0) and then feed −z or z into ReLU, yielding
ReLU(−|z|) = 0.
With design B, we hope the ReLU non-linearity can trun-
cate noise realizations with large amplitude, mimicking
the modulo operation used in modulo-SK [9]. It is worth
noting that ReLU can be replaced by GeLU, which will
be discussed later.

• Design C is an extension of design B, where we use
three linear layers with two ReLU activation functions
in between. A single truncation layer in design B can
only truncate either positive or negative noise realizations
when the weights and bias of the linear layers are fixed.
This motivates us to add an additional ReLU truncation
in Design C such that one ReLU can truncate positive
noise realizations and the other can truncate negative
noise realizations.
Design C is the final design we choose as the default
feature extractor for GBAF code.

• In Design D, we use two parallel noise suppression flows
and each flow is the same as design C. In particular, 1) for
the second flow, the noise realization part is multiplied
by −1 as the input; 2) the two parallel flows share the
same weights. In doing so, we ask the DNN to tackle the
positive noise realization in one flow and the negative
noise realization in the other. After processing by two
parallel branches, the resulting features are aggregated
and transformed by a linear layer to obtain the output.

-1 dB forward, noiseless feedback, inner feedback + enhanced feature extractors, no belief update

BLER

Fig. 12: BLER performance of various designs. The system
setup is K = 51, N = 153, m = 3, ℓ = 17, the feedforward
SNR is fixed to −1 dB, and the feedback is noiseless. One
black point stands for one independent simulations.

• Design E is a simplification of design D, where each
of the two parallel flows is chosen to be design B, as
opposed to design C.

• Designs F and G are extensions of design C. Specifically,
instead of processing the whole feature matrix, we only
process the noise realizations by design C. After feature
extraction, we aggregate the extracted features with bits
and coded symbols to obtain the final features to be
fed into the attention network. The difference between
designs F and G lies in the last aggregation step: design
F simple aggregates the features, while the aggregation
in design G is followed by a linear transformation.

B. Architecture selection

This section compares the seven designs in Fig. 11 con-
sidering the noiseless feedback system. In particular, we fix

15

BLER

Forward SNR (dB) Forward SNR (dB)

BLER

a Noiseless feedback b feedback SNR = 20 dB

Fig. 13: BLER versus feedforward SNR for various feedback
codes. The system setup is K = 51, N = 153, m = 3, ℓ = 17.

the feedforward SNR to −1 dB and simulate each design
multiple times. The BLER performances of various designs
are presented in Fig. 12. To showcase the impact of feature
extractors, we do not incorporate belief network into GBAF
code.

As can be seen from Fig. 12, with the seven designs of
feature extractor, GBAF code can achieve a BLER as low
as 5 × 10−9 at a feedforward SNR of −1 dB. As far as
the BLER performance is concerned, the most preferable
architectures are designs C and D. On the other hand, as far
as the computational resource is concerned, design C is twice
more efficient than design D. In the following, we will focus
on designs C and D, and perform extensive simulations on
a wide range of SNRs and compare their performances with
other feedback codes.

Fig. 13 compares the BLER performance of different feed-
back codes with noiseless and noisy feedback. In particular,
we plot the theoretical performances of the SK and modulo-
SK schemes [2], [9] as benchmarks. In the noiseless feedback
case, GBAF code with either design C or design D achieves
significant performance gains over AttentionCode. To attain
a BLER of 10−8, GBAF code with designs C or D is about
1.2 dB better than AttentionCode. In the noisy feedback case
(20 dB feedback SNR), the performance of GBAF code with
design D deteriorates for a large margin. On the other hand,
GBAF code with design C still performs well.

Based on the simulation results in this section, we choose
design C as the default feature extractor for GBAF code. In the
noiseless feedback case, design C is slightly worse than design
D and outperforms all other designs. In the noisy feedback
case, design C is much better than design D. In addition,
design C is twice more efficient than design D as far as the
required computational resource is concerned.

C. ReLU versus GeLU

In the machine learning community, GeLU activation func-
tion is widely considered as a better alternative to ReLU,
thanks to its differentiability at x = 0 for an input x. In our
simulations, we find that the choice of the activation function is
crucial to the performance of GBAF codes, and GeLU is better
than ReLU only when an ultra-low BLER is to be achieved.
In this section, we perform extensive simulations to compare
the performance of ReLU and GeLU when used in the feature
extractor (design C) of the GBAF code.

BLER

Forward SNR (dB)

BLER

Forward SNR (dB)

𝑆𝑁𝑅𝑓𝑏 = 30dB

𝑆𝑁𝑅𝑓𝑏 = 25dB

𝑆𝑁𝑅𝑓𝑏 = 20dB

a Noiseless feedback b Noisy feedback

Fig. 14: Performance comparison between ReLU and GeLU
when used in feature extractor (design C) of GBAF code. The
system setup is K = 51, N = 153, m = 3, ℓ = 17. (a)
noiseless feedback, (b) noisy feedback.

BLERBLER

a Noiseless feedback b feedback SNR = 20 dB

Forward SNR (dB) Forward SNR (dB)

Fig. 15: Performance comparison between ReLU and GeLU
when used in feature extractor (design C) of GBAF code.
The system setup is K = 51, N = 153, m = 3, ℓ = 17.
GBAF code uses both feature extractor and belief network.
(a) noiseless feedback, (b) 20 dB noisy feedback.

Fig. 14(a) compares the performance of ReLU and GeLU
when used in the feature extractor, where the feedback is
assumed to be noiseless. As can be seen, GeLU is beneficial
to the BLER performance. Compared with ReLU, the perfor-
mance of GBAF code is improved by 5 times at a feedforward
SNR of −1 dB when GeLU is used as the activation function.

Fig. 14(b) compares the performance of ReLU and GeLU in
the noisy feedback setup, where we progressively decrease the
feedback SNR from 30 dB to 20 dB. As shown, when both the
feedforward and feedback SNRs are large (e.g., SNRff > 1
dB and SNRfb ≥ 25 dB), GeLU exhibits better performance
than ReLU. In contrast, when the feedforward and feedback
SNRs decrease, ReLU performs better. As a conclusion, if
an ultra-low BLER (e.g., BLER lower than 10−7) is to be
achieved, GeLU is a better choice than ReLU.

To confirm the above results, we perform additional simu-
lations by taking the belief network into account. Specifically,
we consider GBAF code with both feature extractor (design
C) and belief network. When ReLU and GeLU are used as the
activation function of the feature extractor, Fig. 15 compares
the performance achieved by GBAF code. When the feedback
channel is noiseless, GeLU yields much lower BLER than
ReLU. When the feedback channel is noisy (20 dB), on the
other hand, ReLU is better choice than GeLU. This confirms
our conclusions drawn from Fig. 14.

To conclude, the default feature extractor for GBAF code
is set to be design C with the ReLU activation function. An
alternative to ReLU is GeLU when the target BLER is ultra
low (e.g., lower than 10−7).

16

REFERENCES

[1] C. Shannon, “The zero error capacity of a noisy channel,” IRE Trans.Inf.
Theory, vol. 2, no. 3, pp. 8–19, 1956.

[2] J. Schalkwijk and T. Kailath, “A coding scheme for additive noise
channels with feedback i: No bandwidth constraint,” IEEE Trans. Inf.
Theory, vol. 12, no. 2, pp. 172–182, 1966.

[3] J. Schalkwijk, “A coding scheme for additive noise channels with
feedback ii: Band-limited signals,” IEEE Trans. Inf Theory, vol. 12,
no. 2, pp. 183–189, 1966.

[4] K. Zigangirov, “Upper bounds for the error probability for channels with
feedback,” Problemy Peredachi Informatsii, vol. 6, no. 2, pp. 87–92,
1970.

[5] N. C. Martins and T. Weissman, “Coding for additive white noise
channels with feedback corrupted by quantization or bounded noise,”
IEEE Trans. Inf. Theory, vol. 54, no. 9, pp. 4274–4282, 2008.

[6] R. G. Gallager and B. Nakiboğlu, “Variations on a theme by Schalkwijk
and Kailath,” IEEE Trans. on Inf. Theory, vol. 56, no. 1, pp. 6–17, 2009.

[7] Z. Chance and D. J. Love, “Concatenated coding for the AWGN channel
with noisy feedback,” IEEE Trans. Inf. Theory, vol. 57, no. 10, pp. 6633–
6649, 2011.

[8] Y.-H. Kim, A. Lapidoth, and T. Weissman, “The gaussian channel with
noisy feedback,” in IEEE ISIT, 2007, pp. 1416–1420.

[9] A. Ben-Yishai and O. Shayevitz, “Interactive schemes for the awgn
channel with noisy feedback,” IEEE Trans. Inf. Theory, vol. 63, no. 4,
pp. 2409–2427, 2017.

[10] H. Kim, Y. Jiang, S. Kannan, S. Oh, and P. Viswanath, “Deepcode:
Feedback codes via deep learning,” IEEE Journal on Selected Areas in
Information Theory, vol. 1, no. 1, pp. 194–206, 2020.

[11] A. R. Safavi, A. G. Perotti, B. M. Popovic, M. B. Mashhadi, and
D. Gunduz, “Deep extended feedback codes,” ITU Journal on Future
and Evolving Technologies - Wireless communication systems in beyond
5G era, vol. 2, no. 6, pp. 33–41, 2021.

[12] M. B. Mashhadi, D. Gündüz, A. Perotti, and B. M. Popovic, “DRF
codes: Deep SNR-robust feedback codes,” CoRR, vol. abs/2112.11789,
2021. [Online]. Available: https://arxiv.org/abs/2112.11789

[13] Y. Shao, E. Ozfatura, A. Perotti, B. Popovic, and D. Gunduz, “Attention-
code: Ultra-reliable feedback codes for short-packet communications,”
arXiv:2205.14955, 2022.

[14] M. Shirvanimoghaddam, M. S. Mohammadi, R. Abbas, A. Minja et al.,
“Short block-length codes for ultra-reliable low latency communica-
tions,” IEEE Commun. Magazine, vol. 57, no. 2, pp. 130–137, 2018.

[15] Y. Shao, S. C. Liew, and J. Liang, “Sporadic ultra-time-critical crowd
messaging in V2X,” IEEE Transactions on Communications, vol. 69,
no. 2, pp. 817–830, 2020.

[16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Proc. Systems, vol. 30, 2017.

[17] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” CoRR,
vol. abs/1810.04805, 2018. [Online]. Available: http://arxiv.org/abs/
1810.04805

[18] Y. Wang, Z. Gao, D. Zheng, S. Chen, D. Gunduz, and H. V. Poor,
“Transformer-empowered 6G intelligent networks: From massive mimo
processing to semantic communication,” IEEE Wireless Communications
Magazine, 2022.

[19] Y. Shao and D. Gunduz, “Semantic communications with discrete-time
analog transmission: A PAPR perspective,” arXiv:2208.08342, 2022.

[20] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
CoRR, vol. abs/1409.1259, 2014.

[21] H. Sak, A. W. Senior, and F. Beaufays, “Long short-term memory based
recurrent neural network architectures for large vocabulary speech
recognition,” CoRR, vol. abs/1402.1128, 2014. [Online]. Available:
http://arxiv.org/abs/1402.1128

[22] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[23] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” in Ad-
vances in Neural Information Processing Systems, vol. 26, 2013.

[24] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” 2013.

[25] D. Hendrycks and K. Gimpel, “Gaussian error linear units (GELUs),”
arXiv preprint arXiv:1606.08415, 2016.

[26] M. Geva, R. Schuster, J. Berant, and O. Levy, “Transformer feed-
forward layers are key-value memories,” CoRR, vol. abs/2012.14913,
2020. [Online]. Available: https://arxiv.org/abs/2012.14913

[27] R. Xiong, Y. Yang, D. He, K. Zheng, S. Zheng, C. Xing, H. Zhang,
Y. Lan, L. Wang, and T. Liu, “On layer normalization in the transformer
architecture,” CoRR, vol. abs/2002.04745, 2020. [Online]. Available:
https://arxiv.org/abs/2002.04745

[28] T. Lin, Y. Wang, X. Liu, and X. Qiu, “A survey of transformers,”
CoRR, vol. abs/2106.04554, 2021. [Online]. Available: https://arxiv.org/
abs/2106.04554

[29] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in
International Conference on Learning Representations, 2019. [Online].
Available: https://openreview.net/forum?id=Bkg6RiCqY7

[30] Huawei-HiSilicon, “Performance evaluation of LDPC codes for
NR eMBB data,” in R1-1713740, 3GPP RAN1 meeting 90,
August 2017. [Online]. Available: https://www.3gpp.org/dynareport?
code=TDocExMtg--R1-90--17073.htm

[31] N. Kitaev, L. Kaiser, and A. Levskaya, “Reformer: The efficient trans-
former,” CoRR, vol. abs/2001.04451, 2020.

[32] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma, “Linformer:
Self-attention with linear complexity,” CoRR, vol. abs/2006.04768,
2020. [Online]. Available: https://arxiv.org/abs/2006.04768

[33] K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane,
T. Sarlós, P. Hawkins, J. Davis, A. Mohiuddin, L. Kaiser, D. Belanger,
L. J. Colwell, and A. Weller, “Rethinking attention with performers,”
CoRR, vol. abs/2009.14794, 2020.

[34] S. Jaeckel, L. Raschkowski, K. Börner, and L. Thiele, “Quadriga: A
3-D multi-cell channel model with time evolution for enabling virtual
field trials,” IEEE Trans. Antennas and Propagation, vol. 62, no. 6, pp.
3242–3256, 2014.

https://arxiv.org/abs/2112.11789
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1402.1128
https://arxiv.org/abs/2012.14913
https://arxiv.org/abs/2002.04745
https://arxiv.org/abs/2106.04554
https://arxiv.org/abs/2106.04554
https://openreview.net/forum?id=Bkg6RiCqY7
https://www.3gpp.org/dynareport?code=TDocExMtg--R1-90--17073.htm
https://www.3gpp.org/dynareport?code=TDocExMtg--R1-90--17073.htm
https://arxiv.org/abs/2006.04768

	Introduction
	Problem Statement
	System model
	Existing DL-Based Feedback Codes
	General overview
	Sequence-to-one encoding

	Generalized Block Attention Feedback (GBAF) Codes
	Overview of Innovations
	Sequence-to-sequence encoding
	Sequence of bits to sequence of blocks

	GBAF Architecture
	Modules
	Feature extractor
	Sequence-to-sequence encoder
	Output mapping

	Implementation and Training Procedure

	Numerical Results
	Experiment Setup
	Experimental Results
	Further Discussions
	Fading channels
	Channel-gain generation
	Sample statistics of the channel gains
	Adapting GBAF code to fading channels
	Performance evaluation

	Conclusion
	Appendix A: Implementation Details
	Appendix B: Feature extractors
	Various designs of the feature extractor
	Architecture selection
	ReLU versus GeLU

	References

