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Abstract—Explicit coding schemes are proposed to achieve
the rate-distortion bound for the Heegard-Berger problem using
polar codes. Specifically, a nested polar code construction is
employed to achieve the rate-distortion bound for the binary
case. The nested structure contains two optimal polar codes for
lossy source coding and channel coding, respectively. Moreover,
a similar nested polar lattice construction is employed for the
Gaussian case. The proposed polar lattice is constructed by
nesting a quantization polar lattice and an AWGN capacity-
achieving polar lattice.

I. INTRODUCTION

The well-known Wyner-Ziv problem is a lossy source co-
ding problem in which a source sequence is compressed to be
reconstructed in the presence of a correlated side information
at the decoder [1]. An interesting question is whether a
reconstruction with a non-trivial distortion quality can still be
obtained in the absence of the side information at the receiver.
The equivalent coding system for this problem contains two
decoders, one with the side information, and the other without,
as shown by Fig. 1.

In 1985, Heegard and Berger [2] characterized the rate-
distortion function RHB (D1, D2) for this scenario, where D1

is the distortion achieved without side information, D2 is the
distortion achieved with it, and RHB (D1, D2) denotes the
minimum rate required to achieve the distortion pair (D1, D2).
They also gave an explicit expression for the quadratic Gaus-
sian case. Kerpez [3] provided upper and lower bounds on
the Heegard-Berger rate-distortion function (HBRDF) for the
binary case. The explicit expression for RHB (D1, D2) in the
binary case was derived in [4] together with the corresponding
optimal test channel. Our goal in this paper is to propose
explicit coding schemes that can achieve the HBRDF for
binary and Gaussian distributions.

Polar codes are optimal for the Wyner-Ziv problem [5], as
well as general distributed hierarchical source coding problems
[6]. The optimality of polar codes for lossy compression of
nonuniform sources is shown in [7]. For Gaussian sources,
a polar lattice to achieve both the classical and Wyner-Ziv
rate-distortion functions is proposed in [8]. Practical codes
for the Gaussian Heegard-Berger problem were developed in
[9] which hybridize trellis codes and low-density parity-check
codes. Here, we propose practical coding schemes using polar
codes and polar lattices to achieve the theoretical performance
bound in the Heegard-Berger problem.
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Fig. 1. Illustration of the Heegard-Berger rate-distortion problem.

Notation: PX denotes the probability distribution of a
random variable X taking values in set X . For two positive
integers i < j, xi:j denotes the vector

(
xi, . . . , xj

)
, which

represents the realizations of random variables Xi:j . For a set
F of positive integers, xF denotes the subvector {xi}i∈F .
Fc and |F| denote the complement and cardinality of set
F , respectively. For a positive integer N , we define [N ] ,
{1, . . . , N}. All logarithms are base two, and information is
measured in bits.

II. PROBLEM STATEMENT

A. Heegard-Berger Problem

Let (X ,Y, PXY ) be discrete memoryless sources (DMSs)
characterized by the random variables X and Y with a generic
joint distribution PXY over the finite alphabets X and Y .

Definition 1. An (N,M,D1, D2) Heegard-Berger code for
source X with side information Y consists of an encoder
f (N) : XN → [M ] and two decoders g(N)

1 : [M ] → X̂N1 ;
g

(N)
2 : [M ] × YN → X̂N2 , where X̂1, X̂2 are finite recon-

struction alphabets, such that

E

 1

N

N∑
j=1

d
(
Xj , X̂j

i

) ≤ Di, i = 1, 2,

where E is the expectation operator, and d (·, ·) < ∞ is a
per-letter distortion measure.

In this paper, we set d (·, ·) to be the Hamming distortion for
binary sources, and the squared error distortion for Gaussian
sources.

Definition 2. Rate R is said to be {(D1, D2)− achievable},
if for every ε > 0 and sufficiently large N there exists an
(N,M,D1 + ε,D2 + ε) code with R+ ε ≥ 1

N logM .

The HBRDF, RHB (D1, D2), is defined as the infimum
of (D1, D2)-achievable rates. A single-letter expression for
RHB (D1, D2) is given in the following theorem.
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Theorem 3. ([2, Theorem 1])

RHB (D1, D2) = min
(U1,U2)∈P(D1,D2)

[I (X;U1) + I (X;U2|U1, Y )] ,

where P (D1, D2) is the set of all auxiliary random variables
(U1, U2) ∈ U1×U2 jointly distributed with the generic random
variables (X,Y ), such that: i) Y ↔ X ↔ (U1, U2) form a
Markov chain; ii) |U1| ≤ |X |+ 2 and |U2| ≤ (|X |+ 1)

2; iii)
there exist functions ϕ1 and ϕ2 such that Ed (X,ϕ1 (U1)) ≤
D1 and Ed (X,ϕ2 (U1, U2, Y )) ≤ D2.

B. Doubly Symmetric Binary Sources (DSBS)

Let X be a binary DMS, i.e., X = {0, 1}, with uni-
form distribution. The binary side information is specified by
Y = X ⊕ Z, where Z is a Bernoulli random variable with
PZ (z = 1) = p < 0.5, and ⊕ denotes modulo two addition.

The HBRDF for DSBS can be characterized over four regi-
ons [3]. Region I (0 ≤ D1 < 0.5 and 0 ≤ D2 < min (D1, p))
is a non-degenerate region, and RHB(D1, D2) is a function
of D1 and D2; Region II (D1 ≥ 0.5 and 0 ≤ D2 ≤ p)
is a degenerate region as the Heegard-Berger problem boils
down to the Wyner-Ziv problem for the second decoder;
Region III (0 ≤ D1 ≤ 0.5 and D2 ≥ min (D1, p)) is
also degenerate since the problem boils down to the classical
lossy compression problem for the first decoder; Region IV
(D1 > 0.5 and D2 > p) can be trivially achieved without
coding. Note that, the HBRDF in the degenerate Regions II
and III can be achieved by using polar codes as described in
[5]. Here we focus on the non-degenerate Region I.

First, we recall the function G (u) , h (p ∗ u)− h(u) from
[1], defined over the domain 0 ≤ u ≤ 1, where h(u) is the
binary entropy function h(u) , −u log u−(1−u) log (1− u),
and p ∗ u is the binary convolution for 0 ≤ p, u ≤ 1, defined
as p ∗ u , p (1− u) + u (1− p). The explicit calculation of
HBRDF for DSBS in Region I is given in [4] as follows:

Define the function

SD1 (α, µ, θ, θ1) ,

1− h (D1 ∗ p) + (θ − θ1)G (α) + θ1G (µ) + (1− θ)G (γ) ,

where

γ ,

{
D1−(θ−θ1)(1−α)−θ1µ

1−θ θ 6= 1

0.5 θ = 1
,

on the domain 0 ≤ θ1 ≤ θ ≤ 1, 0 ≤ α, µ ≤ p, p ≤ γ ≤ 1−p.
The next theorem characterizes the HBRDF in Region I.

Theorem 4. [4, Theorem 2] For 0 ≤ D1 < 0.5 and
0 ≤ D2 < min (D1, p), we have RHB (D1, D2) =
minSD1 (α, µ, θ, θ1), where the minimization is subject to the
constraint (θ − θ1)α+ θ1µ+ (1− θ) p = D2.

The corresponding forward test channel structure is also
given in [4], reproduced in Table I. It constructs random
variables with joint distribution PX,U1,U2

(x, u1, u2), which
satisfy I (X;U1) + I (X;U2|U1, Y ) = SD1 (α, µ, θ, θ1).

Next, recall the definition of the critical distortion, dc, in the
Wyner-Ziv problem for DSBS [1], for which G(dc)

dc−p = G′ (dc).

(u1, x)
= (0, 0)

(u1, x)
= (0, 1)

(u1, x)
= (1, 0)

(u1, x)
= (1, 1)

u2 = 0 1
2θ1 (1− µ) 1

2θ1µ
1
2 (θ − θ1) ·

(1− α)
1
2 (θ − θ1)α

u2 = 1 1
2 (θ − θ1)α

1
2 (θ − θ1) ·

(1− α)
1
2θ1µ

1
2θ1 (1− µ)

u2 = 2
1
2 (1− θ) ·

(1− γ)
1
2 (1− θ) γ 1

2 (1− θ) γ
1
2 (1− θ) ·

(1− γ)

TABLE I
JOINT DISTRIBUTION PX,U1,U2

(x, u1, u2) [4].

BSC(𝐷2)BSC(𝑝) BSC(𝜂)
XY 𝑈2 𝑈1

Fig. 2. The optimal forward test channel for Region I-B. The crossover
probability η for the BSC between U2 and U1 satisfies D2 ∗ η = D1.

Then the following corollary given by [4] specifies the HBRDF
in region D2 ≤ min (dc, D1) and D1 ≤ 0.5. This region
belongs to Region I and we refer to it as Region I-B.

Corollary 5. (Region I-B [4, Corollary 2]) For distortion pairs
(D1, D2) satisfying D1 ≤ 0.5 and D2 ≤ min (dc, D1), we
have

RHB (D1, D2) = 1− h (D1 ∗ p) +G (D2) . (1)

From [4], the optimal forward test channel for Region I-B is
given as a cascade of two binary symmetric channels (BSCs),
as depicted in Fig. 2.

We first propose a polar code design that achieves the
HBRDF in Region I-B for DSBSs in Section III-A. We then
provide a polar code construction that achieves the HBRDF
in the entire Region I in Section III-B.

C. Gaussian Sources

Suppose Y = X+Z, where X and Z are independent (zero-
mean) Gaussian random variables with variances σ2

X and σ2
Z ,

respectively, i.e., X ∼ N
(
0, σ2

X

)
and Z ∼ N

(
0, σ2

Z

)
. The

explicit expression for RHB (D1, D2) in this case is given in
[2]. The optimal test channels are given by X = U1 +Z1 and
X = U2+Z2, where Z, Z1 and Z2 are independent zero-mean
Gaussian. We have Zi ∼ N (0, Di) , i = 1, 2.

For D1 ≤ σ2
X and D2 ≥ D1σ

2
Z

D1+σ2
Z

, the problem degenerates
into a classical lossy compression problem for Decoder 1,
and the HBRDF is given by RHB (D1, D2) = 1

2 log
(
σ2
X

D1

)
.

For D1 > σ2
X and D2 ≤ D1σ

2
Z

D1+σ2
Z

, the problem degenerates
into a Wyner-Ziv coding problem for Decoder 2, and we have

RHB (D1, D2) = 1
2 log

(
σ2
Xσ

2
Z

D2(σ2
X+σ2

Z)

)
. The region specified

by D1 > σ2
X and D2 ≥ D1σ

2
Z

D1+σ2
Z

requires no coding. Polar
lattice codes that meet the classical and Wyner-Ziv rate-
distortion functions for Gaussian sources, introduced in [8],
can be used to achieve the HBRDF in these degenerate regions.
The only non-degenerate distortion region is specified by
D1 ≤ σ2

X and D2 ≤ D1σ
2
Z

D1+σ2
Z

, and the HBRDF in this region
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is given by [2]:

RHB (D1, D2) =
1

2
log

(
σ2
Xσ

2
Z

D2 (D1 + σ2
Z)

)
. (2)

We will focus on the construction of polar lattice codes that
achieve the HBRDF in (2) in Section IV.

III. POLAR CODES FOR DSBS

In this section, we present a construction of polar codes that
achieves RHB (D1, D2) for DSBS in Region I. First, we give
a brief overview of polar codes.

Let G2 , [ 1 0
1 1 ], and define GN , G⊗n2 as the

generator matrix of polar codes with length N = 2n,
where ‘⊗’ denotes the Kronecker product. A polar code
CN (F , uF ) [5] is a linear code defined by CN (F , uF ) ={
v1:NGN : vF = uF , vFc ∈ {0, 1}|F

c|
}
, for any F ⊆ [N ]

and uF ∈ {0, 1}|F|, where F is referred to as the frozen
set. The code CN (F , uF ) is constructed by fixing uF and
varying the values in Fc. Moreover, the frozen set can be
determined by the Bhattacharyya parameter [5]. For a binary
memoryless asymmetric channel with input X ∈ X = {0, 1}
and output Y ∈ Y , the Bhattacharyya parameter Z is defined
as Z (X|Y ) , 2

∑
y

√
PX,Y (0, y)PX,Y (1, y).

A. Polar Code Construction for Region I-B

As for Region I-B, we observe from the optimal test channel
in Fig. 2 that the minimum rate for Decoder 1 to achieve the
target distortion D1 is R1 = I (U1;X) = 1 − h (D1) . It
is shown in [10, Theorem 3] that polar codes are optimal
for lossy source coding for the binary symmetric source.
Considering the source sequence X1:N as N independent and
identically distributed (i.i.d.) copies of X , we know from [10,
Theorem 3] that Decoder 1 can recover a reconstruction X̂1:N

1

that is asymptotically close to U1:N
1 as N becomes sufficiently

large. Therefore, we assume that both Decoder 1 and Decoder
2 can obtain U1:N

1 in the following.
Decoder 2 observes the side information Y 1:N , in addition

to U1:N
1 that can be reconstructed using the same method as

Decoder 1. Hence, both Y 1:N and U1:N
1 can be considered as

side information for Decoder 2 to achieve distortion D2. The-
refore, the problem at Decoder 2 is very similar to Wyner-Ziv
coding except that the decoder observes extra side information.

Recall that achieving the Wyner-Ziv rate-distortion function
using polar codes is based on the nested code structure
proposed in [5]. Consider the Wyner-Ziv problem consisting
in compressing a source X1:N in the presence of some
side information Y 1:N using polar codes. The code Cs with
corresponding frozen set Fs is designed to be a good source
code for distortion D2. Further, the code Cc with corresponding
frozen set Fc is designed to be a good channel code for
BSC(D2 ∗ p). It has been shown in [5] that Fc ⊇ Fs, because
the test channel BSC(D2 ∗ p) is degraded with respect to
BSC(D2). In this case, the encoder transmits to the decoder the
subvector that belongs to the index set Fc\Fs. The optimality
of this scheme is proven in [5].

Similarly, the optimal rate-distortion performance for Deco-
der 2 in the Heegard-Berger problem can also be achieved by
using nested polar codes. For (U1, U2) ∈ P (D1, D2),

I (X;U2|U1, Y ) = I (U2;X,U1, Y )− I (U2;Y,U1)

= I (U2;X,U1)− I (U2;Y, U1) .
(3)

The second equality holds since Y ↔ X ↔ (U1, U2) form
a Markov chain. Motivated by (3), the code Cs2 with corre-
sponding frozen set Fs2 is designed to be a good source code
for the source pair

(
X1:N , U1:N

1

)
with reconstruction U1:N

2 .
Ts denotes the test channel for this source code. Additionally,
code Cc2 with corresponding frozen set Fc2 is designed to be
a good channel code for the test channel Tc with input U1:N

2

and output
(
Y 1:N , U1:N

1

)
. According to [5, Lemma 4.7], in

order to show the nested structure between Cs2 and Cc2 , we
need to show that Tc is stochastically degraded with respect
to Ts.

Proposition 6. Tc : U2 → (Y, U1) is stochastically degraded
with respect to Ts : U2 → (X,U1), if the random variables
(X,Y, U1, U2) agree with the forward test channel as shown
in Fig. 2.

Proof: From the test channel structure, Y ↔ X ↔
U2 ↔ U1 form a Markov chain. By definition, we have
PX,U1|U2

(x, u1|u2) = PX|U2
(x|u2)PU1|U2

(u1|u2) . We also
have

PY,U1|U2
(y, u1|u2)

= PY |U2
(y|u2)PU1|U2

(u1|u2)

=
∑
x

PX,Y |U2
(x, y|u2)PU1|U2

(u1|u2)

=
∑
x

PX|U2
(x|u2)PY |X,U2

(y|x, u2)PU1|U2
(u1|u2)

=
∑
x

PX,U1|U2
(x, u1|u2)PY |X (y|x) ,

completing the proof.
Therefore, we can claim that Fc2 ⊇ Fs2 , and rather than

sending the entire vector that belongs to the index set Fcs2 , the
encoder sends only the subvector that belongs to Fc2 \Fs2 to
Decoder 2, since Decoder 2 can extract some information on
U1:N

2 from the side information
(
U1:N

1 , Y 1:N
)
. In summary,

the coding scheme for the Heegard-Berger problem in Region
I-B is given as follows:

Encoding: The encoder first applies lossy compression to
source sequence X1:N with reconstruction U1:N

1 and corre-
sponding average distortion D1. We construct the code Cs1 =

CN (Fs1 , 0̄) =
{
w1:NGN : wFs1 = 0̄, wFcs1 ∈ {0, 1}

|Fcs1 |
}

,
and the encoder transmits the compressed sequence wFcs1
to the decoders. The encoder is also able to recover U1:N

1

from Cs1 . Next, the encoder applies lossy compression jointly
for sources

(
X1:N , U1:N

1

)
with reconstruction U1:N

2 and tar-
get distortion D2 and d (U1, U2) = η. We then construct
Cs2 = CN (Fs2 , 0̄). Finally, the encoder applies channel
coding to the symmetric test channel Tc with input U1:N

2 and
output

(
Y 1:N , U1:N

1

)
. We derive Cc2 = CN

(
Fc2 , uFc2 (v̄)

)
,
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where uFc2 (v̄) is defined by uFs2 = 0̄ and uFc2\Fs2 = v̄

for v̄ ∈ {0, 1}|Fc2\Fs2 |. The encoder sends the subvector
uFc2\Fs2 to the decoders.

Decoding: Decoder 1 receives wFcs1 and outputs the re-
construction sequence u1:N

1 = w1:NGN . Decoder 2 receives
uFc2\Fs2 , and hence, it can derive uFc2 . Moreover, Decoder
2 can also recover U1:N

1 from wFcs1 . Decoder 2 applies the
successive cancellation (SC) decoding algorithm to obtain the
codeword U1:N

2 from the realizations of
(
Y 1:N , U1:N

1

)
.

Next we present the rates that can be achieved in the
proposed scheme. From the polarization theorem for lossy
source coding in [10], we know that the required rate for

Decoder 1 is |F
c
s1
|

N

N→∞−−−−→ I (U1;X) = 1− h (D1).
From the polarization theorems for source and channel

coding [5], the code rate required for reliable decoding at De-

coder 2 can be derived by |Fc2 |−|Fs2 |N

N→∞−−−−→ I (U2;X,U1)−
I (U2;Y,U1)= G (D2) − G (D1) . Therefore, the total rate

will be asymptotically given by |F
c
s1
|+|Fc2 |−|Fs2 |

N

N→∞−−−−→
1− h (D1 ∗ p) +G (D2) for Region I-B.

Furthermore, according to [5], [10], the expected distortions
asymptotically approach the target values D1 and D2 at
Decoders 1 and 2, respectively, as N becomes sufficiently
large. The encoding and decoding complexity of this scheme
is O (N logN).
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Fig. 3. Simulation of RHB (D1, D2) corresponding to D2 for Region I-B.

Note that, in our scheme, the performance of Decoder 2 is
more challenging than that of Decoder 1. Thus, the simulation
is conducted by fixing D1 = 0.35, p = 0.4, and varying D2 ∈
(0,min (dc, D1)). These settings satisfy the requirements for
Region I-B. The performance curves are shown in Fig. 3 for
n = 10, 12, 14, 16, 18. It shows that the performances achieved
by polar codes approaches the HBRDF as n increases.

B. Coding Scheme for Entire Region I

Now, we present a coding scheme that can achieve the
HBRDF given by Theorem 4 for the entire Region I.

From the optimal test channel structure shown in Table
I, U2 is a ternary random variable, i.e., U2 = {0, 1, 2}.

Therefore, we express U2 as two binary random variables Ua
and Ub, where U2 = 2Ub + Ua, i.e., (Ua, Ub) ∈ {00, 10, 01}.
For Decoder 1, we can apply the same scheme specified
in the previous subsection to achieve D1. Again, U1:N

1 and
Y 1:N can be considered as side information for Decoder
2. Then, the rate required to transmit U1:N

2 is evaluated as
I (X;U2|U1, Y ) = I (X;Ua, Ub|U1, Y ) = I (X;Ua|U1, Y ) +
I (X;Ub|U1, Ua, Y ). Accordingly we can design two separate
coding schemes to achieve the rates I (X;Ua|U1, Y ) and
I (X;Ub|U1, Ua, Y ), respectively.

Since Y ↔ X ↔ (U1, Ua, Ub) form a Markov chain, we
have I (X;Ua|U1, Y ) = I (Ua;X,U1)−I (Ua;Y,U1), and the
test channel TCa : Ua → (Y, U1) is degraded with respect to
TSa : Ua → (X,U1). We can observe from Table I that Ua
and Ub can be nonuniform.

Let K1:N = U1:N
a GN , and for 0 < β < 0.5, the frozen set

FSa (FCa), the information set ISa (ICa), and the shaping set
SSa (SCa) can be identified as

FSa =
{
i ∈ [N ]:Z

(
Ki|K1:i−1, X1:N , U1:N

1

)
≥ 1− 2−N

β
}

ISa =
{
i ∈ [N ]:Z

(
Ki|K1:i−1, X1:N , U1:N

1

)
< 1− 2−N

β
}

∩
{
i ∈ [N ]:Z

(
Ki|K1:i−1

)
> 2−N

β
}

SSa =
{
i ∈ [N ]:Z

(
Ki|K1:i−1

)
≤ 2−N

β
}
,

FCa =
{
i ∈ [N ]:Z

(
Ki|K1:i−1, Y 1:N , U1:N

1

)
≥ 1− 2−N

β
}

ICa =
{
i ∈ [N ]:Z

(
Ki|K1:i−1, Y 1:N , U1:N

1

)
≤ 2−N

β
}

∩
{
i ∈ [N ]:Z

(
Ki|K1:i−1

)
≥ 1− 2−N

β
}

SCa =
{
i ∈ [N ]:Z

(
Ki|K1:i−1

)
< 1− 2−N

β
}
∪{

i ∈ [N ]: 2−N
β

< Z
(
Ki|K1:i−1, Y 1:N , U1:N

1

)
< 1− 2−N

β
}

By [5, Lemma 4.7] and the channel degradation, we have
FSa ⊆ FCa , ICa ⊆ ISa and SSa ⊆ SCa . In addition, we
observe that the proportion |SCa\SSa |N → 0, as N →∞.

Encoding: The encoder first applies lossy compression to
X1:N with target distortion D1 to obtain U1:N

1 , and treats(
X1:N , U1:N

1

)
as a joint source sequence to evaluate KISa

by randomized rounding with respect to PKi|K1:i−1,X1:N ,U1:N
1

.
The encoder sends KISa\ICa to the decoders. KFSa is
determined uniformly from {0, 1} and pre-shared between
the encoder and the decoders. For i ∈ SSa , we use
the maximum a posteriori (MAP) decision, i.e. ki =
arg maxk PKi|K1:i−1

(
k|k1:i−1

)
.

Decoding: Using the pre-shared KFSa and received
KISa\ICa , Decoder 2 recovers KICa and KSSa from the side
information sequences Y 1:N by SC decoding and the MAP
rule, respectively. KICa∪SSa and KSCa\SSa can be recovered
with vanishing error probability, since their Bhattacharyya pa-
rameters are arbitrarily small when N →∞. Hence, we obtain
K1:N , and the reconstruction is given by U1:N

a = K1:NGN .
Note that, from [7], KSCa should be covered by a pre-shared

random mapping. However, it is shown in [8, Theorem 2] that
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replacing the random mapping with MAP decision for KSSa
preserves the optimality. By the nested constructions, we can
achieve |ISa\ICa |N

N→∞−−−−→ I (X;Ua|U1, Y ). The encoding and
decoding complexity is O (N logN).

For the second level, the encoder and Decoder 2 first recover
U1:N
a . Consequently, the encoder treats

(
X1:N , U1:N

1 , U1:N
a

)
as a joint source, and Decoder 2 treats

(
Y 1:N , U1:N

1 , U1:N
a

)
as a joint side information. Likewise, according to Y ↔ X ↔
(U1, Ua, Ub), we have the test channel TCb : Ub → (Y, U1, Ua)
is degraded with respect to TSb : Ub → (X,U1, Ua), and the
rate of the second level approaches I (X;Ub|U1, Ua, Y ) =
I (Ub;X,U1, Ua)− I (Ub;Y,U1, Ua) by the same arguments.
Hence, this coding scheme can achieve the optimal HBRDF, as
long as the optimal parameters α, µ, θ, and θ1 that achieve the
minimum value of SD1 (α, µ, θ, θ1) can be specified. Finally,
we state the achievability of the HBRDF for DSBS for the
entire Region I in the following theorem.

Theorem 7. Consider target distortions 0 ≤ D1 < 0.5 and
0 ≤ D2 < min (D1, p) for DSBS X when side information Y
is available only at Decoder 2. For any 0 < β′ < β < 0.5 and
any rate R > minSD1

(α, µ, θ, θ1), there exist a polar code
C1 with rate R1 < I(X;U1) and a two-level polar code C2
with rate R2 < I (X;U2|U1, Y ), with R1 + R2 < R, which
together achieve the expected distortions D1 +O

(
2−N

β
)

at

Decoder 1 and D2 + O
(

2−N
β′
)

at Decoder 2, respectively,
if PX,U1,U2

is as given in Table I.

Proof: The full proof is given in Theorem 10 in [11].

IV. POLAR LATTICES FOR GAUSSIAN SOURCES

It is shown in [8] that polar lattices can achieve the optimal
rate-distortion performance for both the classical and the
Wyner-Ziv compression of Gaussian sources under squared-
error distortion. The Wyner-Ziv problem for the Gaussian case
can be solved by a nested code structure that combines the
AWGN capacity achieving polar lattices [12] and the rate-
distortion optimal ones [8]. Here we show that the HBRDF for
the non-degenerate region specified in (2) can also be achieved
by a similar nested code structure.

We start with a basic introduction to polar lattices. An n-
dimensional lattice is a discrete subgroup of Rn which can be
described by

Λ = {λ = Bz : z ∈ Zn},

where B is the full rank generator matrix. The Voronoi
region of Λ is defined by V (Λ) , {z : QΛ (z) = 0}, where
QΛ (z) , arg minλ∈Λ ‖λ− z‖ is the nearest-neighbor quan-
tizer associated with Λ. A measurable set R (Λ) ⊂ Rn is a
fundamental region of Λ if ∪λ∈Λ (R (Λ) + λ) = Rn and if
(R (Λ) + λ) ∩ (R (Λ) + λ′) has measure 0 for any λ 6= λ′ in
Λ. For σ > 0 and c ∈ Rn, the Gaussian distribution of variance
σ2 centered at c is defined as fσ,c(x) = 1

(
√

2πσ)n
e−
‖x−c‖2

2σ2 , x ∈
Rn. Let fσ,0(x) = fσ(x) for short. The Λ-periodic function is

defined as fσ,Λ(x) =
∑
λ∈Λ

fσ,λ(x) = 1
(
√

2πσ)n

∑
λ∈Λ

e−
‖x−λ‖2

2σ2 .

Note that, when x is restricted to the fundamental region
R (Λ), fσ,Λ(x) is actually a probability density function (PDF)
of the Λ-aliased Gaussian noise [13].

The flatness factor of a lattice Λ is defined as εΛ(σ) ,
max
x∈R(Λ)

|V (Λ)fσ,Λ(x) − 1|, where V (Λ) = |det (B)| denotes

the volume of a fundamental region of Λ [13]. It can be
interpreted as the maximum variation of fσ,Λ(x) with respect
to the uniform distribution over a fundamental region of Λ.

We define the discrete Gaussian distribution over Λ centered
at c as the discrete distribution taking values in λ ∈ Λ as

DΛ,σ,c(λ) =
fσ,c(λ)

fσ,c(Λ)
, ∀λ ∈ Λ,

where fσ,c(Λ) =
∑
λ∈Λ fσ,c(λ). For convenience, we write

DΛ,σ = DΛ,σ,0. It has been shown in [14] that lattice Gaus-
sian distribution preserves many properties of the continuous
Gaussian distribution when the flatness factor is negligible. To
keep the notations simple, we always set c = 0 and n = 1.

For the Gaussian Heegard-Berger problem, let
(X,Y, Z, Z1, Z2, U1, U2) be chosen as specified in Section
II-C. Given Y as the side information for Decoder 2, the
HBRDF is given by (2). To achieve the HBRDF at Decoder 1,
we can design a quantization polar lattice for source X with
variance σ2

X and target distortion D1 as in [8]. As a result,
for a target distortion D1 and any rate R1 >

1
2 log

(
σ2
X/D1

)
,

there exists a polar lattice with rate R1, such that the average
distortion is asymptotically close to D1 as blocklength is
sufficiently large [8, Theorem 4]. Therefore, both decoders
can recover U1 and (U1, Y ) can be regarded as the side
information at Decoder 2.

As for Decoder 2, we first need a code that achieves the rate-
distortion requirement for source X ′ , X−U1 with Gaussian
reconstruction alphabet U ′. In fact, X ′ = Z1 ∼ N (0, D1) is
Gaussian and independent of U1 and Z. Let

γ ,
D1σ

2
Z

D1σ2
Z −D2 (D1 + σ2

Z)
,

and consider an auxiliary Gaussian random variable U ′ defined
as U ′ = X ′ + Z4, where Z4 ∼ N (0, γD2). Moreover, we
define Y ′ , Y − U1 = X ′ + Z and Y ′ ∼ N

(
0, D1 + σ2

Z

)
.

Then we can apply the minimum mean square error (MMSE)
rescaling parameter α = D1

D1+σ2
Z

to Y ′. As a result, we obtain
X ′ = αY ′ +Z3, where Z3 ∼ N

(
0, ασ2

Z

)
. We can also write

U ′ = αY ′ + Z5, where Z5 ∼ N
(
0, γD2 + ασ2

Z

)
, which

requires an AWGN capacity-achieving code from αY ′ to U ′.
The final reconstruction of Decoder 2 is given by X̂2 =

U1 +αY ′+ 1
γ (U ′ − αY ′) . Note that 1

γ (U ′ − αY ′) is a scaled
version of Z5, which is independent of Y ′. Thus, the variance
of αY ′+ 1

γ (U ′ − αY ′) is αD1+ 1
γ2

(
γD2 + ασ2

Z

)
= D1−D2.

Therefore, we have X − U1 = X̂2 − U1 + N (0, D2) as
we desired. Furthermore, the required data rate for Deco-
der 2 is then given by R2 > I (U ′;X ′) − I (U ′;αY ′) =

1
2 log

(
D1σ

2
Z

D2(D1+σ2
Z)

)
.

Note that U ′ is a continuous Gaussian random variable
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Fig. 4. A reversed solution of test channels to construct polar lattices.

which is impractical for the design of polar lattices. Hence,
we use the discrete Gaussian distribution DΛ,σ2

U′
to replace it.

Before that, we need to perform MMSE rescaling on U ′ for
the test channels X ′ → U ′ and Y ′ → U ′ described in previous
paragraphs with scales αq and αc, respectively. Consequently,
a reversed version of the test channel can be derived, as
depicted in Fig. 4, where D′2 , γD2, αq = D1

D1+D′2
and

αc =
D2

1

(D1+D′2)(D1+σ2
Z)

. The reconstruction of X at Decoder 2

is determined as X̂2 = U1+αqU
′+η

(
αq
αc
αY ′ − αqU ′

)
, η =

D2

σ2
Z
, such that X = X̂2 +N (0, D2).

Based on the reversed test channel, we can replace the con-
tinuous Gaussian random variable αqU ′ with a discrete Gaus-
sian distributed variable A ∼ DΛ,σ2

a
, where σ2

a = α2
qσ

2
U ′ . Let

X̄ ′ , A+N (0, αqD
′
2) and αq

αc
αȲ ′ = X̄ ′+N

(
0,

αq
αc
σ2
Z3

)
. We

also define B̄ , αq
αc
αȲ ′, whose variance is σ2

b =
α2
q

α2
c
α2σ2

Y ′ .
By [8, Lemma 1], the distributions of X̄ ′ and Ȳ ′ can be made
arbitrarily close to the distributions of X ′ and Y ′, respectively.
Therefore, polar lattices can be designed for the source X̄ ′

and the side information Ȳ ′ at Decoder 2. Specifically, a rate-
distortion achieving polar lattice L1 is constructed for the
source X̄ ′ with distortion αqD

′
2, and an AWGN capacity-

achieving polar lattice L2 is constructed for the channel
A→ αq

αc
αȲ ′, as shown in Fig. 4. According to [8, Lemma 2],

L2 is nested within L1, i.e., L2 ⊆ L1. The code constructions
of L1 and L2 can be adapted from [8, Section V] and we
omit them here for brevity. In the end, the reconstruction of
Decoder 2 is given by X̌2 = U1 +A+ η

(
B̄ −A

)
.

The rate for Decoder 1 is R1 → 1
2 log

(
σ2
X

D1

)
according to

[8, Theorem 4]. The rate RL1 of L1 approaches 1
2 log

(
D1

αqD′2

)
when the flatness factor is negligible. By [12, Theorem 7],

the rate RL2 of L2 approaches 1
2 log

(
σ2
b

αqD′2+
αq
αc
σ2
Z3

)
with a

negligible flatness factor. Since L2 ⊆ L1, the rate for Decoder
2 is R2 = RL1

−RL2
, and the total rate is given by R1+R2 →

1
2 log

(
σ2
Xσ

2
Z

D2(D1+σ2
Z)

)
which is the same as (2).

Next, we give the main theorem of the Gaussian Heegard-
Berger problem for the non-degenerate region.

Theorem 8. Let (X,Y, Z,D1, D2) be as specified in Section
II-C. For any rate R1 > 1

2 log
(
σ2
X

D1

)
, there exists a polar

lattice code at rate R1 with sufficiently long blocklength,
whose expected distortion is arbitrarily close to D1. For
any 0 < β′ < β < 0.5, there exist nested polar lattices
L1 and L2 with R2 , RL1

− RL2
arbitrarily close to

1
2 log

(
D1σ

2
Z

D2(D1+σ2
Z)

)
such that the expected distortion DQ2

satisfies DQ2
≤ D2 +O

(
2−N

β′
)

.

Proof: The full proof is given in Theorem 12 in [11].

V. DISCUSSION

We reserve for a future work the study of the optimality
of polar codes and polar lattices for the Kaspi problem [15]
which is a generalization of the Heegard-Berger problem,
where the encoder may have access to the side information.
The explicit rate-distortion functions for the Gaussian case
and binary erasure case have been given in [16] and [17],
respectively.
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