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Abstract—A point-to-point communication system in which the
transmitter is equipped with an energy harvesting (EH) device
and a rechargeable battery of limited size is considered. The
harvested energy profile is assumed to be known in advance, that
is, the problem is studied in the offline optimization framework.
A practical communication system is considered, in which the
possible transmission rates, and equivalently, power levels, belong
to a finite set of discrete values. This problem is formulated as a
convex optimization problem, which can be solved numerically.
In order to provide further insights into the nature of the
optimal transmission policy, an alternative solution is provided
based on the solution of the continuous version of this problem,
which itself has a “shortest path” interpretation. We propose
an optimal algorithm, which permits us to easily build the
solution of the discrete case from the continuous case, using an
equivalence notion between different transmission policies, and
several equivalence- preserving transformations.

I. INTRODUCTION

Energy harvesting (EH) has recently emerged as a promising
technology to extend the lifetime of communication networks.
Today’s battery limited wireless devices have limited lifetimes,
which can be extended using rechargeable batteries and EH
technology. Thanks to the recent advances in the efficiency of
EH devices, the environment offers an unlimited energy supply
that can be harvested and used for communication. More than
simply being a sustainable and green energy source, harvested
ambient energy permits us to extend the lifetime of a device
to its material constraint limits. Nevertheless, depending on
the characteristics of the energy source and the environment,
harvested energy quantity can vary significantly over space
and time. It is thus essential that this limited energy be used
in the most efficient way.

The design of EH communication systems has motivated a
substantial amount of research activity in recent years [1]–[10].
Assuming that the profile of the harvested energy is known
non-causally, i.e., offline optimization, the optimal transmis-
sion strategy has been studied for point-to-point systems with
discrete [1] as well as continuous [2] energy arrivals. Follow-
up work has extended this model and solutions to fading
channels [3], various multi-user scenarios [11], multi-hop relay
networks [6] as well as an EH receiver model [12]. In online
optimization, only a statistical knowledge is assumed about
the energy harvesting and the data arrival processes, and the
optimization problem is modelled as a Markov Decision Pro-
cess with the long-term average throughput as the performance
measure [8], [9], [13], [14].

In online optimization problems, possible transmission rates
in the system are generally assumed to be discrete in order to
limit the dimension of the state space; and hence, the com-
plexity of the corresponding dynamic programming solution
[8], [13], [14]. However, to the best of our knowledge, no prior
work has so far considered a discrete set of available trans-
mission rate/ power levels in offline optimization. In practice,
devices can transmit only from a predetermined discrete and
finite set of transmission rates. Assuming that the transmitter
intends to keep the error probability constant throughout the
transmission, this corresponds to a finite and discrete set of
transmission power values as well. As a consequence the
existing literature that studies the continuous problem does not
reflect the real performance of EH communication systems in
practice.

Our goal in this paper is to characterize the optimal
transmission policy for any given EH profile and rate-power
function for a target error probability, taking into account the
discrete values of power levels. This optimization problem
is shown to be convex; and hence, lends itself to efficient
numerical solutions; however, the main contribution of our
paper is a low-complexity algorithm based on the geometric in-
terpretation of the optimal transmission policy. This algorithm
allows us to obtain the optimal solution of the discrete problem
directly from the optimal solution of the continuous problem,
which itself has an attractive “shortest-path” interpretation.

The rest of the paper is organized as follows. The system
model and the problem description is presented in Section
II. Section III is dedicated to various definitions that will be
used in the rest of the paper to prove the optimality of the
proposed algorithm. In Section IV we consider the solution
of the DP when the optimal solution of the OP is a constant
power transmission curve, and an algorithm that provides the
transmission policy with discrete set of transmission powers
is presented. In Section V we generalize this algorithm to any
scenario, and prove its optimality. Section VI provides some
numerical results illustrating the loss due to the discreteness
of the transmission rates. Finally, we conclude our paper in
Section VII.

II. SYSTEM MODEL

We consider an EH transmitter communicating data over
a point-to-point channel. Similarly to [1] the EH process is
characterized by a packet arrival model; that is, the transmitter
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receives an energy packet of Hn units of energy at time
instant sn, for n = 1, . . . , N . We assume that the energy
arrival instants and the packet sizes are known in advance
by the transmitter, i.e., offline optimization. We let s1 = 0,
and define sn+1 = T as the deadline for the operation of the
transmitter. The time period between two consecutive energy
packet arrivals sn and sn+1 is called epoch n. We then define
the length of epoch n as Tn , sn+1 − sn, for n = 1, . . . , N .

Following [2] and [4], we assume that the transmitter is
equipped with a finite-capacity battery; that is, the battery can
store up to Hmax units of energy. We assume that the harvested
energy packet En is first stored into the battery, and can then
be used for transmission after time sn; hence, we can assume
that En ≤ Hmax, ∀n.

We consider continuous-time transmission, where p(t) ≥ 0
is the instantaneous transmission power at time t. To the best
of our knowledge, in all the previous literature on EH commu-
nication systems, zero-error communication is assumed, and
the transmitter is allowed to transmit at any desired rate at
any point in time. The instantaneous rate is then assumed
to be a monotonically increasing function of the instanta-
neous transmission power. This corresponds to a continuous
optimization problem, in which the transmitter optimizes its
transmission power over time period [0, T ], where p(t) at
time t can take any non-negative value. However, in practical
communication systems, a transmitter is limited to a set of
pre-defined modulation schemes and coding rates; and hence,
the transmission rate can only be chosen from a discrete set of
rates. While the transmission power can be chosen arbitrarily,
once the modulation scheme and the coding rate is fixed,
increasing the transmission power improves the reliability, but
not the transmission rate.

Motivated by this practical constraint, here we assume that
the transmitter can choose from a finite set of transmission
rates. We also assume that the transmitter has a fixed target
error probability throughout its transmission, which fixes the
corresponding transmit power for each rate. Equivalently, we
can consider a finite set of transmission power levels that
the transmitter can choose from, denoted by P = {pk, k =
1, . . . ,K}. For a fixed target error probability, the rate cor-
responding to each transmit power level is given by the rate-
power function r(p), which is assumed to be a non-negative,
increasing, strictly concave function.

We consider the problem of maximizing the total transmit-
ted data by time T . Considering there are no retransmissions,
this corresponds to maximizing the throughput, since the target
error probability is fixed. Our model also assumes that there
is an infinite amount of data to be transmitted in the data-
backlogged system.

We use the cumulative curve approach to state the problem.
We denote by E(t) the transmitted energy curve, which
represents the energy that has been used for transmission until
time t. We define H(t) as the harvested energy curve, which
denotes the total energy harvested by time t. Assuming that
the battery is empty for t < 0, we have E(0) = 0, and since
one cannot use more energy than that has been harvested, i.e.,

the energy causality constraint, we have E(t) ≤ H(t) for
t ≥ 0. In order to harvest as much energy as possible from
the environment; and thus, to maximize its use, we want to
avoid battery overflows. Defining M(t) , H(t) − Hmax as
the minimum energy curve, the no-battery-overflow constraint
can be achieved imposing E(t) ≥M(t) for t ≥ 0.

We first consider the problem without any limitations on the
possible transmission rate or power values; that is, P = R+,
where R+ denotes the set of non-negative real numbers. We
call this the original problem (OP). It is well-known that the
optimal transmission strategy keeps the transmission power
fixed within each epoch due to the strict concavity of the r(·)
[1]. Denoting the transmission power in epoch i by pi, the OP
is formulated as follows:

max
pn≥0

N∑
n=1

Tnr(pn) (1)

s.t
L∑

n=1

Tnpn ≤
L∑

n=1

Hn L = 1, . . . , N,

L+1∑
n=1

Hn −
L∑

n=1

Tnpn ≤ Hmax L = 2, . . . , N − 1.

This is a convex optimization problem, and as such, it has a
unique solution. More importantly, the optimal solution has a
“shortest path” interpretation [2]. The optimal power allocation
strategy E(t), is given by the shortest path from the origin
(0, 0), to the point (T,H(T )) that lies between H(t) and M(t)
for all t ≥ 0. This interpretation also allows us to design a
simple algorithm that identifies the optimal power allocation
scheme [1], instead of being limited to numerical solutions.

Now we consider the case in which the transmission
power can only be chosen from a finite set of values, P =
{p1, . . . , pK}. We assume that 0 ∈ P . We call this the discrete
problem (DP). Denoting the time within epoch i that the
transmitter transmits with power pk by ti,k, the optimisation
problem can be written as follows:

max
tn,k≥0

N∑
n=1

K∑
k=1

tn,kr(pk) (2)

s.t
L∑

n=1

K∑
k=1

tn,kpn ≤
L∑

n=1

Hi, L = 1, . . . , N,

L+1∑
n=1

Hn −
L∑

n=1

K∑
k=1

tn,kpn ≤ Hmax, L = 2, . . . N − 1,

K∑
k=1

tn,k = Tn, n = 1, . . . , N.

Remark 1: As opposed to OP, in which pn are the opti-
misation variables, in DP, the optimisation variables are tn,k.
Similarly to OP, the DP is also a convex optimisation problem.

While the above problem can be solved numerically, our
goal in the rest of the paper is to come up with a low
complexity algorithm, similar to the shortest path algorithm
for OP, which will provide a better understanding of the
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limitations and the consequences of limited set of transmission
rates in an EH communication system.

III. NECESSARY DEFINITIONS

Let E(t) be any piecewise-linear transmitted energy curve,
consisting of M linear components. Then E(t) can be de-
scribed by a set E = {(pm, tm),m = 1, . . . ,M} ∈
(R+ × R+∗)

M , where
∑M

m=1 tm = T , and R+∗ denotes the
set of positive real numbers. The set E is ordered, in the sense
that the transmitter first transmits at power p1 for t1 time units,
then at power p2 for t2, and so on so forth. Note that the same
power level can appear multiple times in this set. In the rest of
the paper we will use E(t) and E interchangeably to denote
the same transmission strategy. We have:

E(t) =

j(t)∑
i=1

piti + pj(t)+1

t−
j(t)∑
i=1

ti

 ,

where

j(t) , max

{
j :

j∑
i=1

ti ≤ t

}
.

For a given r(p), the total amount of transmitted data by
time t is then given by

DE(t) =

j(t)∑
i=1

r(pi)ti + r(pj(t)+1)

t−
j(t)∑
i=1

ti

 .

Definition 1: We say that two energy curves E1(t) and
E2(t), with their respective descriptions E1 and E2, are equiv-
alent over a period T , denoted by E1

T⇔ E2, if they transmit
the same amount of data using the same amount of energy:

E1
T⇔ E2 iff E1(T ) = E2(T ) and DE1

(T ) = DE2
(T ).

There are many ways to obtain equivalent policies, and
we define two such operations: re-ordering (ReO) and re-
distributing (ReD), that permit to modify a transmitted energy
curve description without loss of equivalence.

ReD :
(
R+ × R+∗)M × N+ 7−→

(
R+ × R+∗)aM ,

ReD(E , a) =
{((

p1,
t1
a

)
, . . . ,

(
p1,

t1
a

)
, . . .(

pM ,
tM
a

)
, . . . ,

(
pM ,

tM
a

))}
. (3)

ReO :
(
R+ × R+∗)M × (N∗)2 7−→

(
R+ × R+∗)M .

For E = {(p1, t1), . . . , (pa, ta), . . . , (pb, tb), . . . , (pM , tM )},
we have

ReO(E , a, b) = {(p1, t1), . . . ,(pb, tb), . . . ,
(pa, ta), . . . , (pM , tM )}. (4)

Re-distributing an energy curve E divides each of its epoch
into a smaller epochs with the same transmission power. In
other words, re-distributing can be seen as increasing the

‘resolution’. Re-ordering an energy curve is simply switching
the order of two epochs.

Proposition 1: Given E = {(pm, tm),m = 1, . . . ,M}, we
have the following equivalences over the period T :

ReD(E , a) T⇔ E ,∀a ∈ N+, (5)

ReO(E , a, b) T⇔ E ,∀a, b ∈ {1, . . . ,M}. (6)

Proof: These two operations change neither the total
energy used during T , nor the amount of transmitted data.

Remark 2: Even if an equivalent transmitted energy curve
is obtained with these operations, it is possible that energy
causality, or no-battery-overflow constraints are violated.

For a given energy curve E = {(pm, tm),m = 1, . . . ,M},
we can use operation ReO(E) to re-order the transmission
policy into:

MinC(E) = {(pm, tm),m = 1, . . . ,M} with pm+1 ≥ pm ∀m.

Note that MinC(E) is the minimum transmitted energy curve
equivalent to E , such that MinC(E)(t) ≤ E(t) ∀t.

Similarly, using ReO we can obtain:

MaxC(E) = {(pm, tm),m = 1, . . . ,M} with pm+1 ≤ pm ∀m.

Then, MaxC(E) is the maximum transmitted energy curve
equivalent to E , such that MaxC(E)(t) ≥ E(t) ∀t.

Next we define a ‘two-slope curve with respect to another
curve’ in Definition 2. This will be used to state Proposition
2, which claims that we can transform any curve that starts
and ends at the same points with a constant transmission rate
curve, into a ‘two-slope curve’ with respect to the latter, using
the equivalence-preserving transformations ReO and ReD.

Definition 2: For a given energy cure E1(t), we say that an
energy curve E2(t) is a two-slope curve with respect to E1(t)
if it uses a maximum of two different transmission power
levels between any consecutive time instants that it crosses
E1(t). The time intervals defined by the time instants at which
the two curves cross are called the two-slope intervals.

In the next section we will show that if the optimal solution
of OP for a given r(t) and EH profile is a constant transmission
power policy with p∗, then the optimal solution of DP for
the same system uses the two closest power levels to p∗, one
higher and one lower, available in P . To prove this result, we
first need to explain how any transmitted energy curve which
uses the same amount of energy as the constant power policy
with p∗ is equivalent to a two-slope curve, as illustrated in
Figure 1. Then on each two-slope interval we will be able to
show that it is better to use the two closest power levels to p∗

available in P . This will prove our statement.
Proposition 2: Consider two energy curves E∗(t) and E(t),

with their corresponding descriptions E∗ and E , respectively.
Let E∗(t) be a constant transmission rate curve with E∗ =
{(p∗, T )}, and E(T ) = p∗T . It is always possible to transform
E into an equivalent two-slope curve with respect to E∗ using
only ReO and ReD. Moreover, one can always do this such
that the new curve never crosses above or below E .
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Fig. 1: Curve C is a two-slope curve with respect to B built
from curve A using ReO.

The proof is omitted due to space limitations. See Fig. 1
for an example of such a transformation.

IV. CONSTANT RATE TRANSMISSION

We now consider the case in which the solution of OP is
a constant power transmission scheme; i.e., E∗ = (p∗, T ).
We want to find out the optimal transmission scheme if the
transmitter is constrained to power levels from the set P .
Assume that we are constrained to use only two different
power levels from P . Let D(pi, pj) denote the maximum
transmitted data if we use power levels pi, pj ∈ P . We can
prove the following proposition.

Proposition 3: Consider transmission power values
p1, . . . , p4 ∈ P such that: p1 < p2 < p∗ < p3 < p4. Then, we
have

D(p2, p3) > D(p1, p3), (7)
D(p2, p3) > D(p3, p4). (8)

The proof is omitted due to space limitations.
We can now give the rule for replacing a constant power

energy curve with the optimal energy curve that uses power
levels from a finite set.

Theorem 1: For an EH transmission system with r(p), if
the solution of OP is given by a constant power transmission
curve with p∗, the optimal transmitted energy curve that uses
only the values in P is obtained as follows:

1) If p∗ ∈ P then p(t) = p∗ ∀t ∈ [0, T ].
2) If maxP < p∗ then p(t) = maxP ∀t ∈ [0, T ].
3) If minP > p∗ then p(t) = minP ∀t ∈ [0, p∗T

minP ], and
p(t) = 0 ∀t ∈ ( p∗T

minP , T ] (or the inverse).
4) In all the other cases, we use only two power values in
P: the smallest value that is higher than p∗, denoted by
ph, and the highest value smaller than p∗, denoted by pl.
Their respective transmission durations are given by tl =
Tph−p∗T
ph−pl

and th = p∗T−Tpl

ph−pl
. We have p(t) = pl ∀t ∈

[0, tl] and p(t) = p ∀ ∈ [tl, tl + th] (or the inverse).
Proof: The first three points are obvious. To prove the

last one, we select any possible solution. We re-order and re-
distribute it such that you get a two-slope curve with respect
to p∗. This is always possible due to Proposition 2. Then,
consider the first two-slope interval. Let the power values used

in this interval be p1 and p2 with p1 < p2. Since the two curves
intersect at the end of the first two-slope interval, we have
p1 < p∗ < p2. From Proposition 3, we know that D(p1, p2) <
D(p1, ph) < D(pl, ph). Hence, by replacing p1 and p2 with pl
and ph, we can improve the amount of data transmitted over
this two-slope interval.

We can apply the same argument to all the other two-slope
intervals. We end up using only the power levels pl and ph,
and their respective durations are found as given above.

Note that once we reduce the transmission strategy to the
two power values pl and ph, it is always possible to come up
with an equivalent curve that lies between the H(t) and M(t)
curves. Note that, by switching between pl and ph, we can get
arbitrarily close to the constant transmission rate curve.

V. THE GENERAL SCENARIO

Now we address the general problem, that is, the solution
of DP when the solution of OP can be an arbitrary piecewise
linear function. We know that the optimal continuous solution
for the OP uses constant power transmissions during each
epoch, some of them being equal. We denote this scheme
by E∗OP = {(p∗i,OP , t

∗
i,OP ), i = 1, . . . , N}, where N is the

number of epochs. We assume that there exists in P at least
one power value larger than the highest power value used in
E∗OP , and at least one power value smaller than the smallest
power used in E∗OP . The latter is always satisfied since 0 ∈ P .

Algorithm 1
EDP = {}
for n = 1 : N do

if p∗n,OP ∈ P then
pn,DP ← p∗n,OP

tn,DP ← t∗n,OP

else
find ph = min{P} s.t. ph > p∗n,OP .
find pl = max{P} s.t. pl < p∗n,OP .

th,DP ←
p∗n,OP t∗n,OP−t

∗
n,OP pl

ph−pl

t2,DP ←
t∗n,OP ph−p∗n,OP t∗n,OP

ph−pl

end if
EDP ← EDP

⋃
{(ph, th,DP ), (pl, tl,DP )}

end for

This algorithm builds epoch after epoch the best approxi-
mation to the solution of the OP. Note that the new transmitted
energy curve obtained from this algorithm touches the H(t)
and M(t) curves at exactly the same points as the solution of
the OP. Since H(t) and M(t) are step functions, the optimal
transmitted energy curve of DP remains bounded between the
two, and satisfy both energy causality and no-battery-overflow
constraints.

A. Proof of optimality

Due to the space limitation, the detailed proof of the
optimality of Algorithm 1 is not included here. However,
we describe its main challenges. The difficulty here is to
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understand why we are allowed to generalize the result of
the previous theorem over each epoch [si, si+1] to get global
optimality. In fact, the previous theorem gives a rule that
ensures the optimality over the energy curves starting and
ending at the same points (i.e., using the same amount of
energy during a period previously referred as T ). Any other
transmitted energy curve using power levels in P that would
not be equal to the optimal solution of problem OP at the time
instants si does not follow from Theorem 1. In such a case,
it is not possible to directly use the theorem over the epochs
defining the problem.

Therefore, the main challenge in the proof of the optimality
of Algorithm 1 is to show that any other feasible energy curve
using power levels in P can be transformed into an equivalent
energy curve equal to E∗OP at instants si using ReD and ReO.
That is, we will have E(si) = E∗OP (si) for all i. Once this
is achieved, we know that the optimality of a transmission
strategy that uses only two power levels within each epoch
follows from Theorem 1.

As before, once the two optimal power levels for each epoch
are identified, we can obtain an equivalent transmitted energy
curve using ReD and ReO such that both M(t) and H(t)
constraints are satisfied.

VI. NUMERICAL RESULTS

In this section we present some numerical results that
illustrate the loss in terms of transmitted data by constraining
the transmitter to a discrete set of transmission power values.
We consider a scenario with seven epochs, in which the sizes
of the arriving energy packets have the following values in
terms of the energy unit used: 5, 15, 20, 5, 15, 15, 18. The
durations of the respective epochs are: 5, 5, 10, 10, 5, 5, 2
time units. The battery capacity is taken to be Hmax = 20.

We first find the solution of the OP with continuous
transmission power values, described by the set EOP =
{(1, 5), (2.6, 5), (1.35, 10), (1.35, 10), (3, 5), (3, 5), (9, 2)}.
Even if this set is equivalent to the re-distributed set
E ′OP = {(1, 5), (2.6, 5), (1.35, 20), (3, 10), (9, 2)}, the first
description permits to visualize the initial epochs defining the
energy arrivals. We then use our algorithm on different sets
of available transmit power levels.

In our simulations we run our algorithm for a set of available
powers from 0 to 10 with an increasing number of available
power values, K. We start with K = 2, i.e., only two available
power levels 0 and 10 can be used; and finish by allowing
K = 11 power levels [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. For K = 3
to K = 10, the available power levels are chosen uniformly
over the range [0, 10]. For example, for K = 4, we have P =
[0, 3.33, 6.66, 10]. Our simulations give the results presented
in Table I. The first column indicates the ratio of the total
transmitted data with K power levels uniformly distributed
over [0, 10] to the solution of the OP, which allows arbitrary
transmission power values.

We observe that the general trend is that the total transmitted
data decreases as less and less power levels are available to the
transmitter. This is due to the fact that the transmitter is not

Data Ratio K
0.441 2
0.658 3
0.812 4
0.882 5
0.917 6
0.951 7
0.980 8
0.987 9
0.986 10
0.989 11

TABLE I: The ratio of the total transmitted data, with K power
levels uniformely distributed over [0,10], to the solution of OP.

able to exploit the available energy in the most efficient way.
Table I illustrates another important fact. While the number
of available power levels affects the overall performance, the
exact values of these levels are also important. For example,
if we compare the two cases K = 9 and K = 10, we
see that the former transmits more data despite it has less
power levels. This observation points to an important design
criteria for EH transmission systems. For a simple EH sensor
transmitter limited to a finite number of transmission rate and
power values, the values of these can be designed optimally
based on the characteristics of the underlying EH process, if
it is known before the deployment of the sensor.

VII. CONCLUSIONS

We have considered a point-to-point communication system
with an EH transmitter which can store the harvested energy
in a finite-capacity battery. We have considered the practical
constraint that the transmitter can only choose from a finite
number of transmission rate values, or equivalently, a finite set
of transmission power levels for a fixed target error probability.
We have shown that the corresponding optimization problem
is convex, and hence, can be solved numerically. Then, in
order to obtain further insights into the nature of the optimal
transmission policy, we have proposed an algorithm that allows
us to extend the results of the continuous problem (i.e.,
transmission power and rate can take any non-negative value)
to the discrete case. We have shown that, with a finite number
of energy arrivals, once the optimal solution of the continuous
problem is obtained through a simple shortest path algorithm,
it is sufficient to replace each optimal power level for the
continuous case with the two closest power levels from the
available set. This new transmission scheme will automatically
satisfy both the energy causality and the no battery overflow
constraints.

By relaxing the idealized continuous transmission rate/
power assumptions for EH communication systems, we have
made a new step forward to understand the potential limits
of practical communication systems with harvested energy
devices. We also note that our results directly apply to the
optimal scheduling problems with data packet arrivals over
time studied in [15], when the transmitter is limited to a
discrete set of transmission power levels and rates.
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