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Joint Source-Channel Coding with Time-Varying
Channel and Side-Information

Iñaki Estella Aguerri and Deniz Gündüz

Abstract—Transmission of a Gaussian source over a time-
varying Gaussian channel is studied in the presence of time-
varying correlated side information at the receiver. A block
fading model is considered for both the channel and the side
information, whose states are assumed to be known only at the
receiver. The optimality of separate source and channel coding in
terms of average end-to-end distortion is shown when the channel
is static while the side information state follows a discrete or a
continuous and quasiconcave distribution. When both the channel
and side information states are time-varying, separate source and
channel coding is suboptimal in general. A partially informed
encoder lower bound is studied by providing the channel state
information to the encoder. Several achievable transmission
schemes are proposed based on uncoded transmission, separate
source and channel coding, joint decoding as well as hybrid
digital-analog transmission. Uncoded transmission is shown to
be optimal for a class of continuous and quasiconcave side
information state distributions, while the channel gain may have
an arbitrary distribution. To the best of our knowledge, this is
the first example in which the uncoded transmission achieves the
optimal performance thanks to the time-varying nature of the
states, while it is suboptimal in the static version of the same
problem. Then, the optimal distortion exponent, that quantifies
the exponential decay rate of the expected distortion in the high
SNR regime, is characterized for Nakagami distributed channel
and side information states, and it is shown to be achieved
by hybrid digital-analog and joint decoding schemes in certain
cases, illustrating the suboptimality of pure digital or analog
transmission in general.

Index Terms—Distortion exponent, joint source-channel cod-
ing, fading channel and side information, side information diver-
sity, uncoded transmission, hybrid digital-analog transmission,
joint decoding.

I. INTRODUCTION

Many common applications, such as multimedia transmis-
sion over cellular networks, or the accumulation of local sensor
measurements at a fusion center, require the transmission of
a continuous amplitude source signal over a wireless fading
channel, to be reconstructed with the minimum possible aver-
age distortion at the destination. Depending on the application
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layer requirements, additional delay constraints might be im-
posed on the system. For example, in video streaming or voice
transmission, the source signal has to be reconstructed within
a certain deadline. Moreover, in many practical scenarios, in
addition to the received signal, the destination might have
access to additional side information correlated with the source
signal. This correlated side information might be obtained
either from other transmitters in the network, or through
the own sensing devices of the destination. While current
protocols do not exploit this extra information, theoretical
benefits of correlated side information are well known [4]. We
model this practical communication scenario as a joint source-
channel coding problem of transmitting a Gaussian source
over a time-varying Gaussian channel with the minimum
average end-to-end distortion in the presence of time-varying
correlated side information at the receiver. We consider a block
fading model for the states of both the channel and the side
information, which are assumed to be known perfectly at the
receiver.

When both the channel and the side information are static,
Shannon’s separation theorem applies [5], and the optimal
performance is achieved by separate source and channel
coding; that is, the concatenation of an optimal Wyner-Ziv
source code [4] with an optimal capacity achieving channel
code. However, under strict delay constraints, if the channel
and the side information are time-varying, and the channel
state information (CSI) is available only at the receiver, the
transmitter cannot know the optimal source and channel coding
rates, and the separation theorem fails. In order to have a
good performance on average, the transmitter has to adapt
to the time-varying nature of both the channel and the side
information without knowing their realizations.

Strategies based on separate source and channel coding
suffer from the threshold effect and do not adapt well to the
uncertainties of the channel [6]. On the other hand, uncoded
(analog) transmission is a simple joint source-channel coding
scheme robust to signal-to-noise (SNR) mismatch, and does
not suffer from the threshold effect. In Gaussian point-to-
point channels, uncoded transmission is an alternative optimal
scheme in the absence of side information [7], [8]. However,
it becomes suboptimal in the presence of correlated side
information. In broadcasting and relaying scenarios where
multiple users with different channel and side information
qualities are present, a purely digital coding scheme based
on joint decoding of the channel and source codewords, is
shown to exhibit improved robustness to the threshold effect,
and to achieve the optimal or superior performance [9]–[11].
In [12] a hybrid digital-analog coding scheme, called HDA,
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is proposed and shown to be robust to the threshold effect,
and unlike uncoded transmission, HDA is optimal even in
the presence of correlated side information at the receiver.
Hybrid digital analog transmission is also shown to outperform
separate source and channel coding and uncoded transmission
in certain static setups, such as the transmission of a Gaussian
source in the presence of correlated interference [13], [14],
the transmission of a bivariate Gaussian over a multiple access
channel [15] or an interference channel [16], or to achieve the
optimal distortion in the transmission of a bivariate Gaussian
source over a broadcast channel [17].

Characterization of the optimal expected distortion in the
absence of time-varying side information has received a lot
of interest in recent years [18]–[22]. Despite the ongoing
efforts, the optimal performance remains an open problem.
The expected distortion in this model is studied using multi-
layer source codes concatenated superposition coding schemes
[18], [19]. More conclusive results on this problem have
been obtained by focusing on the high SNR behavior of
the expected distortion. The SNR exponent of the expected
distortion, called the distortion exponent, is characterized in
the multi-antenna setup in certain regimes in [20], [21] and
[22], and it is shown that multi-layer source and channel codes,
or hybrid digital-analog coding schemes are needed to achieve
the optimal distortion exponent.

The pure source coding version of our problem, in which
the channel is considered as an error-free constant-rate link,
is studied in [23], and it is shown that, contrary to the
channel coding problem, when the side information follows
a continuous quasiconcave fading distribution, a single layer
source code suffices to achieve the optimal performance.
Recently, the joint source channel coding problem has also
been considered in [24] and [25]. In [24], the distortion
exponent for separate source and channel coding is derived
when the side information sequence has two states, the side
information average gain does not increase with the SNR,
and the channel has Rayleigh fading. In [25], HDA and joint
decoding schemes are considered, and their performance is
studied using the distortion loss, which quantifies the loss with
respect to a fully informed encoder that perfectly knows the
channels and side information states.

In this paper, we consider the joint source-channel coding
problem both in the finite and high SNR regimes. We first
show the optimality of separate source and channel coding
when the channel is static. Leveraging on this result and by
providing the encoder with the channel state information, we
derive a lower bound on the expected distortion. We then study
achievable schemes based on uncoded transmission, separate
source and channel coding (SSCC), joint decoding (JDS),
as well as hybrid digital-analog transmission (S-HDA) and
compare the performance of these schemes with the lower
bound. We show that uncoded transmission meets the lower
bound when the side information fading state belongs to a
certain class of continuous quasiconcave distributions, while
separate source and channel coding is suboptimal. This class
includes monotonically decreasing functions, which occur, for
example, under Rayleigh fading. To the best of our knowledge,
this is the first result showing the optimality of uncoded

Fig. 1. Block diagram of the joint source-channel coding problem with fading
channel and side information.

transmission in a fading channel scenario while it would be
suboptimal in the static case. Then, we show that JDS always
outperforms SSCC, and we numerically show that S-HDA
performs very close to the proposed lower bound, although
in general no particular scheme outperforms the others at all
conditions.

Next, we obtain the distortion exponent corresponding to the
proposed upper and lower bounds for Nakagami distributed
channel and side information states. We parameterize the
uncertainty by the shape parameter, denoted by Lc for the
channel and Ls for the side information. For Lc ≥ 1, we
characterize the optimal distortion exponent and show that it
is achieved by S-HDA, in line with the numerical results. For
Lc < 1, we show that JDS achieves the optimal distortion
exponent in certain regimes, while S-HDA is suboptimal.
However, as Ls increases, the performance of JDS saturates,
and eventually becomes worse than S-HDA, whose distortion
exponent converges to the upper bound.

We will use the following notation in the rest of the paper.
We denote random variables with upper-case letters, e.g., X ,
their realizations with lower-case letters, e.g., x, and the sets
with calligraphic letters A. We denote EX [·] as the expectation
with respect to X , and EA[·] as the expectation over the
set A. We denote by R+

n the set of positive real numbers,
and by R++

n the set of strictly positive real numbers in the
n-dimensional Euclidean space Rn, respectively. We define
(x)+ = max{0, x}. Given two functions f(x) and g(x),
we use f(x)

.
= g(x) to denote the exponential equality

limx→∞
log f(x)
log g(x) = 1, while

.
≥ and

.
≤ are defined similarly.

The rest of the paper is organized as follows: in Section II
we introduce the system model. In Section III we review some
of the related previous results, and characterize the optimal
performance for a static channel. In Section IV we propose
upper and lower bounds on the performance. In Section
V we prove the optimality of uncoded transmission under
certain side information fading distributions. In Section VI we
provide numerical results for the finite SNR regime, while in
Section VII we consider a high SNR analysis, and characterize
the optimal distortion exponent. Finally, in Section VIII we
conclude the paper.

II. SYSTEM MODEL

We consider the transmission of a random source sequence
Sn of independent and identically distributed (i.i.d.) entries
form a zero mean, unit variance real Gaussian distribution,
i.e., Si ∼ N (0, 1), over a time-varying channel (see Fig. 1).
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An encoder fn : Rn → Rn maps the source sequence Sn

to the channel input, Xn ∈ Rn, i.e., xn = fn(sn), while
satisfying an average power constraint: 1

n

∑n
i=1 E[X2

i ] ≤ 1.
The block-fading channel is given by

Y n = HcX
n +Nn, (1)

where Hc ∈ R is the channel fading state with probability
density function (pdf) pHc(hc), and Nn is the additive white
Gaussian noise Ni ∼ N (0, 1), ∀i.

In addition, there is an orthogonal block-fading side infor-
mation channel connecting the source to the destination, which
provides an uncoded noisy version of the source sequence to
the destination. This second channel models the time-varying
correlated side-information at the destination. Similarly to
the communication channel, we model this side information
channel as a memoryless block fading channel given by

Tn = ΓcS
n + Zn, (2)

where Γc ∈ R is the side information fading state with pdf
pΓc(γc), Xn is the uncoded channel input, and Zn is the
additive white Gaussian noise, i.e., Zi ∼ N (0, 1), ∀i.

We define H , H2
c ∈ R+ and Γ , Γ2

c ∈ R+ as
the instantaneous channel gain and the instantaneous side
information gain, with pdfs pH(h) and pΓ(γ), respectively.

We assume a stringent delay constraint that imposes each
source block of n source samples to be transmitted over one
channel block, consisting of n channel uses. Both the channel
and side information states, Hc and Γc, are assumed to be
constant, with values hc and γc, respectively, for the duration
of one channel block, and independent among different blocks.
The channel and side information state realizations hc and γc
are assumed to be known at the receiver, while the encoder is
only aware of their distributions.

The decoder reconstructs the source sequence from the
channel output Y n, the side information sequence Tn, and the
channel and side information states hc and γc, using a mapping
gn :Rn×Rn×R×R→Rn, where Ŝn= gn(Y n, Tn, hc, γc).

For given channel and side information distributions, we are
interested in characterizing the minimum expected distortion,
E[D], where the quadratic distortion between the source
sequence and the reconstruction is given by

D ,
1

n

n∑
i=1

(Xi − X̂i)
2. (3)

The expectation is taken with respect to the source, channel
and side information states, and the noise distributions. The
minimum expected distortion can be expressed as

ED∗ , lim
n→∞

min
fn,gn

E[D]. (4)

III. PRELIMINARY RESULTS

We first review some of the existing results in the literature
for the source coding version of the problem under considera-
tion, in which the fading channel is substituted by an error-free
channel of finite capacity. We then focus on the scenario in
which the channel is noisy but static, i.e., the channel gain is
constant and known both at the encoder and the decoder. We
show that separate source and channel coding is optimal in
this scenario.

A. Background: Lossy Source Coding with Fading Side Infor-
mation

In the source-coding version of our problem the fading
channel is substituted by an error-free channel of rate R and
a time-varying side information sequence Tn is available at
the destination [23]. Here we briefly review the results of [23]
which will be used later in the paper.

Let the distribution pΓ(γ) be discrete with M states γ1 ≤
· · · ≤ γM with probabilities Pr[Γ = γi] = pi. We define
the side information sequence available at the decoder when
the realization of the side information fading gain is γsi as
Tni,1 ,

√
γiS

n + Zn 1. Note that the side information has a
degraded structure, characterized by the Markov chain

T1,j − · · · − TM−1,j − TM,j − Sj , j = 1, ..., n. (5)

This is equivalent to the Heegard-Berger source coding prob-
lem with degraded side information [26], in which an encoder
is connected by an error-free channel of rate R to M receivers,
and receiver i has access to side information Tni,1. It is shown
in [23] that the optimal rate allocation can be obtained as the
solution to a convex optimization problem.

When pΓ(γ) is continuous and quasiconcave2, the optimal
expected distortion is achieved by single-layer rate allocation
targeting a single side information state γ̄ [23]. Then, the
optimal expected distortion is given by

ED∗Q(R)=

∫ γ̄

0

pΓ(γ)

1 + γ
dγ+

∫ ∞
γ̄

pΓ(γ)

(γ̄ + 1)22R + γ − γ̄
dγ, (6)

where γ̄ minimizing (6) is determined as follows: Let a super-
level set be defined as [γl(α), γr(α)] , {γ|pΓ(γ) ≥ α}. Then,
γ̄ is defined as the left endpoint of the super-level set induced
by α∗, i.e., γ̄ = γl(α

∗), where α∗ ∈ [0,max pΓ(γ)] is found
by solving the equation∫ ∞

γl(α∗)

pΓ(γ)− α∗

((1 + γl(α∗))22R + γ − γl(α∗))2
dγ = 0. (7)

If the side information state is Rayleigh distributed, the side
information gain Γ is exponentially distributed. Then it can be
seen that γ̄ = 0 and the optimal expected distortion becomes

ED∗Ray(R) =
1

E[Γ]
e

22R

E[Γ]E1

(
22R

E[Γ]

)
, (8)

where E1(x) ,
∫∞
x
t−1e−tdt is the exponential integral [23].

Results in our paper are valid for discrete, i.e., finite or
countable, number of states γi, as well as continuous quasi-
concave side information distributions. To unify these results,
we define the function ED∗s(R) as the minimum expected
distortion in the source coding problem for these three setups.

B. Static Channel and Fading Side Information

Consider a static noisy channel from Xn to Y n of capacity
C. The side information is still block-fading as in (2) with
distribution pΓ(γ). Note that it is a joint source-channel coding

1To avoid confusion, we use Tn
i,1 , [Ti,1, ..., Ti,n] to denote all the

elements Ti,j , j = 1, ..., n, for the side information sequence in the i-th state.
2A function g(x) is quasiconcave if its supersets {x|g(x) ≥ α} are convex

for all α.
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generalization of the source coding problem in Section III-A.
We denote the minimum expected distortion in the case of a
static channel by ED∗sta. Optimality of separate source and
channel coding in this scenario can be proven for discrete or
continuous quasiconcave side information distributions. This
reduces the problem to the source coding problem of Section
III-A with R = C.

Theorem 1. Assume that the channel is static with capacity
C. When the side information gain Γ has a discrete or a
continuous quasiconcave pdf, pΓ(γ), the minimum expected
distortion, ED∗sta, is achieved by separate source and channel
coding, and is given by

ED∗sta = ED∗s(C). (9)

Proof. See Appendix A for a sketch of the proof.

IV. UPPER AND LOWER BOUNDS

In this section we return to the problem presented in Section
II in which both the channel and the side information gains
are block-fading. We construct two lower bounds on ED∗.
The first one is obtained by informing the encoder with both
the channel and side information states H and Γ. Then, we
construct a tighter lower bound by informing the encoder only
with the channel state H . Next, we obtain upper bounds on
ED∗ based on various achievable schemes. Comparison of
the proposed upper and lower bounds in different regimes of
operation is relegated to later sections.

A. Informed Encoder Lower Bound

A trivial lower bound on ED∗, called the informed encoder
lower bound, is obtained by providing the encoder with the
instantaneous states of the channel and the side information.
At each realization, the problem reduces to the systematic
model considered in [5] (see also [27]), for which separation
holds. For states (h, γ), the optimal distortion is given by
Dinf(h, γ) , (1+h)−1(1+γ)−1. Hence, the informed encoder
lower bound is given by

ED∗inf = EH,Γ[Dinf(H,Γ)]. (10)

B. Partially Informed Encoder Lower Bound

We can obtain a tighter lower bound called the partially
informed encoder lower bound, by providing the encoder only
with the channel realization h. For a given channel realization
h, the setup reduces to the one considered in Section III-B, and
for a discrete or continuous quasiconcave pΓ(γ), separation
applies for each channel realization.

Lemma 1. If pΓ(γ) is discrete or continuous quasiconcave,
the minimum expected distortion is lower bounded by

ED∗pi , EH [ED∗s(C(H))], (11)

where C(h) , 1
2 log(1 + h) is the capacity of the channel for

a given realization h = h2
c .

Providing only the side information state to the encoder
does not lead to a tight computable lower bound, since the

optimality of separate source and channel coding does not hold
in this case. Although the partially informed encoder lower
bound is tighter, we will include the informed encoder bound
in our results, as it provides a benchmark for the performance
when both channel and side information states are available
at the transmitter, and sheds light on the value of the CSI
feedback for this joint source-channel coding problem.

C. Uncoded Transmission

Uncoded transmission is a memoryless zero-delay trans-
mission scheme in which the channel input Xi is generated
by scaling the source signal Si while satisfying the power
constraint. In our model both the source variance and power
constraint of the encoder are 1, and hence, no scaling is
needed, i.e., Xi = Si. The received signal from the channel is
then given by Yi = hcSi+Zi, i = 1, ..., n. The receiver recon-
structs each component with a minimum mean-squared error
(MMSE)3 estimator using both the channel output and the side
information sequence, i.e., Ŝi = E[Si|Yi, Ti], i = 1, ..., n. The
distortion of source component Si for channel and side infor-
mation gains h and γ is given by Du(h, γ) , (1 + h+ γ)−1.
The achievable average distortion with uncoded transmission
is given by

EDu = EH,Γ[Du(H,Γ)]. (12)

D. Separate Source and Channel Coding (SSCC)

In SSCC a single layer Wyner-Ziv source code is followed
by a channel code. Note that due to the lack of state informa-
tion at the transmitter the rates of the source and channel codes
are independent of the channel and side information states.

The quantization codebook consists of 2n(Rc+Rs) length-n
codewords, Wn(i), i = 1, ..., 2n(Rc+Rs), generated through
a ‘test channel’ W = S + Q, where Q ∼ N (0, σ2

Q) is
independent of S. The quantization noise variance is chosen
such that Rs+Rc = I(S;W )+ε, for an arbitrarily small ε > 0,
i.e., σ2

Q = (22(Rs+Rc−ε) − 1)−1. The generated quantization
codewords are then uniformly distributed into 2nRc bins.
Each bin index s is assigned to an independent Gaussian
channel codeword Xn(s), s ∈ [1, ..., 2nRc ], generated i.i.d.
with X ∼ N (0, 1). Given source realization Sn, the encoder
searches for a codeword Wn(i) jointly typical4 with sn, and
transmits the corresponding channel codeword Xn(s), where
s is the bin index of Wn(i).

At reception, the decoder tries to recover the bin index s
using the channel output Y n, and then looks for a quantization
codeword within the estimated bin, that is jointly typical with
the side information sequence Tn. If the quantization code-
word Wn is successfully decoded, then Ŝn is reconstructed
with an optimal MMSE estimator as Ŝi = E[Si|Ti,Wi] for
i = 1, ..., n. An outage is declared whenever, due to the

3 For available data vector A ∼ N (0,Ca), the MMSE in estimating
the Gaussian vector X ∼ N (0,Cx) is achieved with the estimator X̂ =
E[X|A] and is given by DMMSE , (Cx+CH

xaC
−1
a Cxa)−1, where Cxa ,

E[AXH ] [28].
4For definition and properties of typicality and jointly typical random

variables we refer the reader to [29].
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randomness of the channel or the side information, the quan-
tization codebook cannot be correctly decoded. The outage
event is given by

Os , {(h, γ) : Rc ≥ I(X;Y ) or Rc ≤ I(S;W |T )},

where I(S;W |T ) = 1
2 log

(
1 + (22(Rs+Rc+ε) − 1)/(γ + 1)

)
and I(X;Y ) = 1

2 log(1 + h).
For a quantization rate is R, if the quantization codeword

is decoded correctly, and the side information state is γ, the
achieved distortion is

Dd(R, γ) , (γ + 22R)−1, (13)

If an outage occurs, only the side information sequence
is used to estimate the source, and we have Ŝi = E[Si|Ti],
and the achievable distortion is given by Dd(0, γ). Then, the
expected distortion of SSCC is given by

EDs(Rs, Rc) = EOcs [Dd(Rs +Rc,Γ)] + EOs [Dd(0,Γ)],

where Ocs is the complement of the outage event.
Since Rs and Rc are fixed for all channel and side in-

formation states, they are chosen to minimize the expected
distortion. Thus, we have

ED∗s , min
Rc,Rs

EDs(Rs, Rc). (14)

When the side information has a continuous quasiconcave gain
distribution, we can have a closed-form expression for the
optimal source coding rate Rs, as given in the next lemma.

Lemma 2. For given Rc, if pΓ(γ) is continuous and quasicon-
cave, EDs(Rs, Rc) is minimized by setting Rs = 1

2 log(1 +
(1 + γ̄)(22Rc − 1))−Rc + ε where γ̄ is the solution to (7).

Proof. Once Rc is fixed, it follows from the results in
Section III-A that EDs(Rs, Rc) is minimized by compress-
ing the source to a single layer targeted for side informa-
tion state γ̄, i.e., T = γ̄S + Z and Rc = I(S;W |T ) =
1
2 log

(
1 + (22(Rs+Rc−ε) − 1)/(1 + γ̄)

)
, from where Rs is ob-

tained.

When the side information fading distribution is such that
γ̄ = 0, then, from Lemma 2, the optimal source coding rate is
Rs = 0, i.e., the minimum expected distortion is achieved by
ignoring the decoder side information in the encoding process.

Corollary 1. If γ̄ = 0, the optimal SSCC does not utilize
binning, that is, R∗s = 0.

Note that we have considered only a single layer source
coding scheme since for continuous quasiconcave pΓ(γ), the
optimal source code uses a single source code layer. However,
in the case of a discrete side information gain distribution, the
optimal source code employs multiple source layers, one layer
targeting each side information state [23].

E. Joint Decoding Scheme (JDS)

Here, we consider a source-channel coding scheme that does
not involve any explicit binning at the encoder and uses joint
decoding to reduce the outage probability. This coding scheme
is introduced in [9] in the context of broadcasting a common

source to multiple receivers with different side information
qualities, and it is shown to be optimal in the case of lossless
broadcasting over a static channel. The success of the decoding
process depends on the joint quality of the channel and the side
information states.

At the encoder, a codebook of 2nRj length-n quantization
codewords Wn(i), i = 1, ..., 2nRj , are generated through a
‘test channel’ W = S + Q, where Q ∼ N (0, σ2

Q) is inde-
pendent of S. The quantization noise variance is chosen such
that Rj = I(S;W ) + ε, for an arbitrarily small ε > 0. Then,
an independent Gaussian codebook of size 2nRj is generated
with length-n codewords Xn(i) with X ∼ N (0, 1). Given
a source outcome Sn, the transmitter finds the quantization
codeword Wn(i) jointly typical with the source outcome and
transmits the corresponding channel codeword Xn(i) over the
channel. At reception, the decoder looks for an index i for
which both (xn(i), Y n) and (Tn, wn(i)) are jointly typical.
Then the outage event is given by

Oj , {(h, γ) : I(S;W |T ) ≥ I(X;Y )}, (15)

where I(S;W |T ) = 1
2 log

(
1 + (22(Rj−ε) − 1)/(γ + 1)

)
and

I(X;Y ) = 1
2 log(1 + h).

If decoding is successful, Sn is estimated using both the
quantization codeword and the side information sequence,
while if an outage occurs, Sn is reconstructed using only the
side information sequence. The expected distortion for the JDS
scheme is found as

EDj(Rj) = EOcj [Dd(Rj ,Γ)] + EOj [Dd(0,Γ)]. (16)

Similarly to (14), the expected distortion can be optimized
over Rj to obtain the minimum expected distortion achieved
by JDS, that is, ED∗j , minRj EDj(Rj).

In SSCC, the quantization codeword is successfully de-
coded only if both the channel and source codewords are
successfully decoded. On the other hand, JDS decodes the
quantized codeword exploiting the joint quality of the channel
and side information. Hence, a bad channel realization can
be compensated with a sufficiently good side information
realization, or vice versa, reducing the outage probability.
Indeed, the minimum expected distortion of JDS is always
lower than that of SSCC, as stated in the next lemma.

Lemma 3. For any given pH(h) and pΓ(γ), JDS outperforms
SSCC at any SNR, i.e., ED∗s ≥ ED∗j .

Proof. Consider the SSCC scheme as in Section IV-D with
rates Rc and Rs. We will show that the JDS scheme with
rate Rj = Rs + Rc achieves a lower expected distortion,
i.e., EDs(Rc, Rs) ≥ EDj(Rc + Rs). If both schemes are in
outage, or if the quantization codeword is decoded successfully
in both, they achieve the same distortion. Thus, to prove our
claim, it will suffice to show that Os ⊇ Oj .

Let (h, γ) be such that Rc ≥ I(U ;V ) = 1
2 log(1 + h),

i.e., SSCC is in outage. Note that for given (h, γ), Rs and
Rc, I(U ;V ) and I(W ;X|Y ) have the same values for both
schemes. However, if I(W ;X|Y ) < I(U ;V ), JDS is able to
decode the quantization codeword successfully while SSCC
would still be in outage. This condition is satisfied whenever
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1
2 log

(
1 + (22(Rj−ε) − 1)/(γ + 1)

)
< 1

2 log(1+h), or equiva-
lently γ > (22(Rj−ε)−1)/h−1. If this condition does not hold,
both schemes are in outage and have the same performance.
Conversely, if JDS is in outage, i.e., I(W ;X|Y ) ≥ I(U ;V ),
then SSCC is also in outage since either Rc ≥ I(U ;V ) or
Rc ≤ I(U ;V ) ≤ I(W ;X|Y ) holds. Therefore, we have
Os ⊇ Oj , which implies EDs(Rc, Rb) ≥ EDj(Rc + Rb)
and ED∗s ≥ ED∗j . This completes the proof.

F. Superposed Hybrid Digital-Analog Transmission (S-HDA)

Next, we consider hybrid digital-analog transmission, in
which the channel input is generated by a symbol-by-symbol
mapping of the observed source sequence and its compression
codeword, that is, an analog and a digital signal, respectively.
A general HDA scheme is studied in [30] in the absence of side
information for static channels. The necessary conditions on
the achievable distortion are derived based on auxiliary random
variables, by accounting for the correlation in the indexes of
source and channel codebooks. This general hybrid scheme is
detailed next.

Fix a conditional distribution p(w|s), an encoding func-
tion x(s, w) and a reconstruction function ŝ(w, y, t). At the
encoder, generate a codebook of 2nRh length-n codewords
Wn(m), m = 1, ..., 2nRh with i.i.d. components following
p(w). The transmitter finds Wn(m) jointly typical with Sn

and maps (Sn,Wn(m)) symbol-by-symbol to the channel
input sequence Xn with the encoding function x(s, w), i.e.,
xi = x(si, wi(m)), i = 1, ..., n. Upon receiving Y n, the
decoder looks for the codeword Wn that is jointly typical
with Y n and the side information Tn, and reconstructs Ŝn by
mapping symbol-by-symbol the decoded codeword Wn(m̂),
the analog channel output Y n and the side information Tn

using the reconstruction function ŝ(w, y, t). In our setup, the
side information, i.e., Tn = γcS

n + Zn, can be modeled as
a channel output correponding to input Sn. Then, it follows
from [30] that a distortion Dh is achievable if

I(S;W ) < I(W ;Y T ). (17)

holds for some conditional distribution p(x|s), an encoding
function x(s, w) and a reconstruction function ŝ(w, y, t) such
that E[(S − Ŝ)2] ≤ Dh.

In general, it is complicated to characterize the optimal
W and channel mappings x(s, w) minimizing the distortion.
Here, we propose a particular construction for the time-varying
setup, which we denote by superposed hybrid digital-analog
transmission (S-HDA), in which source sequence is quantized,
and the quantization error is superposed on the source se-
quence. The power is allocated among the two layers. The
uncoded component causes an interference correlated with the
source sequence, and acts as side information at the decoder.
On the contrary, if an outage occurs and the quantization
codeword is not successfully decoded, the analog component
provides additional robustness since the channel now contains
a noisy uncoded version of the source sequence useful for
the reconstruction. We consider Wn, generated using a test

channel W , ηS +Q, where Q ∼ N (0, 1) is independent of
S and a channel input mapping x(s, w) such that

Xn =
√
Pd(W

n − ηSn) +
√
PaS

n, (18)

where Pd = 1−Pa is the power allocated to the digital channel
input and Pa ∈ [0, 1] is the power allocated to the uncoded
layer. We set Rh = I(S;W ) + ε, i.e., η2 = Pd(2

2Rh−ε − 1).
An outage will be declared whenever condition (17) does

not hold due to the randomness of the channel and side
information. Hence, the outage event is defined by

Oh , {(h, γ) : I(W ;S) ≥ I(W ;Y, T )}, (19)

and is given by

Oh,{(h, γ) :Pdh(1 + Pdγ) ≤ Pd(h(
√
Pa − η)2) + η2}.(20)

If Wn is successfully decoded, each Si is reconstructed
using an MMSE estimator with all the information available
at the decoder, Ŝi = E[Si|Wi, Yi, Ti]. The corresponding
achievable distortion is given by

Dh(Pd, η) =
Pd

η2 + Pd

(
1 + γ + h

(√
Pa − η

)2) . (21)

If an outage occurs, the receiver estimates Xn from Tn

and Y n with an MMSE estimator, X̂i = E[Xi|Vi, Yi]. The
achieved distortion is found to be

Dout
h (Pd, η) ,

(
1 +

hPa
1 + hPd

+ γ

)−1

. (22)

Finally, the expected distortion for S-HDA is given by

EDshda(Pd, η) , EOch [Dh(Pd, η)] + EOh [Dout
h (Pd, η)].(23)

Optimizing over Pd and η, we obtain ED∗shda ,
minPd,η EDshda(Pd, η). Note that uncoded transmission can
be recovered from EDshda(Pd, η) with Pd = 0. The hybrid
digital analog (HDA) scheme of [12] can be recovered by
letting Pa = 0. We define the minimum expected distortion
achievable with HDA as ED∗hda , minη EDshda(1, η).

Remark 1. Note that JDS can also be derived from the
general hybrid scheme by letting W = (W ′, X ′), where W ′

is the quantization codeword and X ′ is the channel input in
Section IV-E, and using the mapping x(s, w) = x′, i.e., X ′

is used as the channel input. Note that while both can be
derived from the general hybrid scheme, JDS and S-HDA are
operationally different and neither of them is a special case
of the other.

V. OPTIMALITY OF UNCODED TRANSMISSION

In addition to separate source and channel coding, uncoded
transmission is well known to achieve the minimum distortion
in point-to-point static Gaussian channels [7], [8]. In the pres-
ence of channel fading, separate source and channel coding
becomes suboptimal while uncoded transmission still achieves
the optimal performance, due to its robustness to channel
variations. Scenarios in which uncoded transmission achieves
the optimal performance have received a lot of attention in
the literature, such as the transmission of noisy observations
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of a Gaussian source over Gaussian multiple access channels
(MACs) [31] and the transmission of correlated Gaussian
sources over a Gaussian MAC, in which case the uncoded
transmission is shown to be optimal below a certain SNR
threshold [15].

However, even in a point-to-point Gaussian channel, in the
presence of static side information at the decoder, uncoded
transmission becomes suboptimal. In this case, concatenating
a Wyner-Ziv source code with a capacity achieving channel
code [5], or joint source-channel coding through the HDA
scheme of [12] is required to achieve the optimal distortion.
We show below that, in the block fading scenario studied here,
when the side information state Γ follows a continuous and
quasiconcave distribution for which γ̄ = 0 is the solution
to equation (7), uncoded transmission meets the lower bound
ED∗pi in (11) for any channel gain distribution pH(h). Hence,
despite the presence of correlated side information, uncoded
transmission achieves the optimal performance, while both the
separate source and channel coding and HDA schemes are
suboptimal. The optimality of uncoded transmission follows
since, when γ̄ = 0, the side information is ignored in the
encoding even for the partially informed lower bound.

Theorem 2. Let pH(h) be an arbitrary pdf while pΓ(γ) is a
continuous and quasiconcave function satisfying equation (7)
for γ̄ = 0. Then, the minimum expected distortion ED∗ is
achieved by uncoded transmission.

Proof. For any pdf satisfying (7) with γ̄ = 0, the partially
informed encoder lower bound is given by

ED∗pi = EH

[
ED∗Q

(
1

2
log(1 +H)

)]∣∣∣∣
γ̄=0

(a)
=

∫
h

∫ ∞
0

pH(h)pΓ(γ)

2log(1+h) + γ
dγdh

=

∫∫
h,γ

pH(h)pΓ(γ)

1 + h+ γ
dγdh

= EDu,

where (a) is obtained by substituting γ̄ = 0 in (6). This
completes the proof.

The class of continuous quasiconcave functions for which
any non-empty super-level set of fΓ(γ) begins at γ = 0
satisfies γ̄ = 0. It is not hard to see that the class of continuous
monotonically decreasing functions in γ ≥ 0 satisfies this
condition.

Proposition 1. Let pΓ(γ) be a continuous monotonically
decreasing function for γ > 0. Then, (7) holds for γ̄= 0; and
thus, uncoded transmission achieves the optimal performance.

Proof. By definition γ̄ is given by the left endpoint of the
super-level set induced by α∗. For any monotonically decreas-
ing function pΓ(γ), the left endpoint of the super-level set
{γ : pΓ(γ) ≥ α} corresponds to γ = 0, and as a consequence,
we have γ̄ = 0 for any value of α∗.

VI. FINITE SNR RESULTS

In the previous section we have seen the optimality of
uncoded transmission when the side information fading state

5 10 15 20 25

10
−2

10
−1

Fig. 2. Upper and lower bounds on the expected distortion versus the channel
SNR (ρ) for Rayleigh fading channel and side information gain distributions,
i.e., Ls = Lc = 1, with ρ = E[H2

c ] = E[Γ2
c ].

follows a continuous quasiconcave pdf for which γ̄ = 0.
The exponential distribution, and the more general family
of gamma distributions with shape parameter L ≤ 1 are
continuous monotonically decreasing distributions, and hence,
the uncoded transmission is optimal when the side information
gain Γ follows one of these distributions. Gamma distributed
fading gains appear, for example, when the channel state
follows a Nakagami distribution. The gamma distribution with
shape parameter L and scale parameter θ, Γ ∼ Υ(L, θ), is
given as

pΓ(γ) =
1

θL
1

Ψ(L)
γL−1e−

γ
θ , for γ≥ 0, and L, θ > 0,(24)

where Ψ(z) ,
∫∞

0
tz−1e−tdt is the gamma function. The

variance of Γ is σ2
Γ = Lθ2 and its mean is E[Γ] = Lθ.

When L ≤ 1, it is easy to check that pΓ(γ) is continuous
monotonically decreasing, while it is continuous quasiconcave
for L > 1. Note that when L = 1, the gamma distribution
reduces to the exponential distribution.

Parameter L models the side information diversity since
a time-varying side information sequence Y m, with state
distribution pΓ(γ), provides the equivalent information (in
the sense of sufficient statistics) provided by L independent
side information sequences each with i.i.d. Rayleigh block-
fading gains. We note that despite the term “diversity”, the
side information diversity comes from uncoded noisy versions
of the source sequence; hence, the gain it provides is lim-
ited compared to the channel diversity which can be better
exploited through coding.

To illustrate the performance of the achievable schemes and
compare them with the lower bounds, we consider Nakagami
fading channel and side information distributions. We consider
normalized channel and side information gains Hc =

√
ρHc0

and Γc =
√
ρΓc0, such that

Y n =
√
ρHc0X

n +Nn, Tn =
√
ρΓc0S

n + Zn,

where Hc0 and Γc0 satisfy E[H2
c0] = E[Γ2

c0] = 1. Basically,
Hc0 and Γc0 capture the randomness in the channels while ρ
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Fig. 3. Lower and upper bounds on the expected distortion versus the channel
SNR for Ls = 2 and Lc = 1 with ρ = E[H2

c ] = E[Γ2
c ].

is the average SNR. We define the associated instantaneous
gains H0 , H2

c0 and Γ0 , Γ2
c0.

We assume that the channel gain H0 has a gamma dis-
tribution with scale parameter Lc > 0 and θc = L−1

c , i.e.,
H0 ∼ Υ(Lc, L

−1
c ), and similarly, the side information gain

follows a gamma distribution with Ls > 0 and θs = L−1
s ,

i.e., Γ0 ∼ Υ(Ls, L
−1
s ). We have fixed the value of θc and θs,

such that E[H2
c0] = E[H0] = 1 and E[Γ2

c0] = E[Γ0] = 1, and
both channels have the same average SNR ρ for any Lc and
Ls. Note that the variance of Γ is σ2

Γ = Lsθ
2 = 1/Ls. Thus,

the side information gain Γ becomes more deterministic as Ls
increases, and similarly, for Lc and H .

First we consider the case with Ls = Lc = 1, i.e.,
both the channel and the side information gains are Rayleigh
distributed. In Figure 2 we plot the expected distortion with
respect to the channel SNR. As shown in Theorem 2, uncoded
transmission achieves the partially informed encoder lower
bound ED∗pi. The minimum expected distortion is given by

ED∗=EDu=

∫
h0

1

ρ
e

1+ρh0
ρ E1

(
1 + ρh0

ρ

)
pH0

(h0)dh0.(25)

We see from the figure that the informed encoder lower
bound is significantly loose, especially at high SNR. This gap
between the two lower bounds also illustrates the potential
performance improvement that will be achieved by increasing
the feedback resources. If both channel and side information
states can be fed back to the encoder, instead of only CSI feed-
back, a significant improvement can be achieved. In relation
to this observation, a problem that requires further research
is the allocation of feedback resources between channel and
side information states when a limited feedback channel is
available from the decoder to the encoder.

S-HDA (ED∗shda) also achieves the optimal performance
by allocating all available power to the analog component,
reducing it to uncoded transmission. Note that while the HDA
scheme of [12] cannot reach ED∗ in the low SNR regime, its
performance gets very close to ED∗ at high SNR values.
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Fig. 4. Lower and upper bounds on the expected distortion versus the channel
SNR for Ls = 1.5 and Lc = 0.5 with ρ = E[H2

c ] = E[Γ2
c ].

The expected distortion achievable by SSCC is minimized
without any binning, since we have γ̄ = 0 for Rayleigh
fading side information. Hence, R∗s = 0 from Lemma 2.
It is interesting to observe that for Rayleigh fading side
information states, the uncertainty in the side information
renders it useless for the encoder, and the side information is
ignored to avoid outages in source decoding, and it is used only
in the estimation step. As will be seen next, this is not the case
when the side information fading has a different distribution.

We also observe in Fig. 2 that JDS (ED∗j ) outperforms
SSCC by exploiting the joint quality of the channel and side
information, as claimed by Lemma 3. We also see that JDS
cannot achieve the optimal performance in this setting.

Observations above, including the optimality of uncoded
transmission, hold for any Lc value as long as Ls ≤ 1.
This follows from Proposition 1 since pΓ(γ) is monotonically
decreasing if Ls ≤ 1. However, this optimality does not hold
in general. Next, it will be shown that uncoded transmission is
suboptimal for a wide variety of channel distributions, while
S-HDA performs very close to the partially informed encoder
lower bound.

We consider the case with Ls = 2 and Lc = 1 in Fig. 3.
We can see that S-HDA achieves the lowest expected distortion
among the proposed schemes and performs very close to the
lower bound at all SNR values, while uncoded transmission is
suboptimal. Although the performance of uncoded transmis-
sion is very close to ED∗pi in the low SNR regime, the gap
between the two increases with SNR. In addition, both SSCC
and JDS surpass the performance of uncoded transmission as
the SNR increases.

Finally, in Fig 4, we consider the scenario with Lc = 0.5
and Ls = 1.5. Contrary to the previous scenarios, in this
setup JDS outperforms S-HDA for SNR values greater than
SNR w 37dB. As the SNR increases, JDS performs close to
the partially informed lower bound, while S-HDA performance
is further from the lower bound. Similarly to the previous
scenarios, we observe that uncoded transmission performs
close to the lower bound for low SNR values.
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Additional numerical simulations indicate that, as the side
information diversity, Ls, increases, the gap at any SNR
between the informed encoder lower bound and the partially
informed encoder lower bound reduces. The two bounds
converge since for the studied setup σ2

Γc0
= L−1

s , and as Ls
increases, the variance decreases, and therefore, the level of
uncertainty in the side information gain state diminishes. In
fact, the two bounds can be shown to converge at any SNR
value and for any arbitrary side information gain distribution
whose variance decreases with some parameter, namely Ls,
as given in the next lemma.

Lemma 4. Let H be arbitrarily distributed and have a finite
mean, i.e., EH [H] < ∞. Let (ΓL)L≥0 be a sequence of side
information gain random variables such that, for every L,
ΓL follows an arbitrary distribution with variance σ2

L, where
σ2
L → 0 as L→∞. Then, as L→∞, the partially informed

encoder lower bound converges to the informed encoder lower
bound, i.e., the following limit holds:

lim
L→∞

(EDinf − ED∗pi) = 0. (26)

Proof. See Appendix B.

Although the side information available at the decoder
becomes more deterministic with increasing Ls, the channel is
still block-fading. Only S-HDA performs close to the informed
encoder lower bound, i.e., the optimal performance when the
current channel and side information states are known. On
the contrary, the rest of the studied schemes cannot fully
exploit the determinism in the side information fading gain
for Lc ≥ 1, while it seems that for Lc < 1 JDS is the scheme
achieving the lowest expected distortion.

VII. HIGH SNR ANALYSIS

In the previous section we have seen the optimality of
uncoded transmission in certain settings in which the proposed
digital schemes are suboptimal. On the other hand, our numer-
ical results have shown that the S-HDA scheme has a good
performance for a wide variety of channel distributions while
the optimality of uncoded transmission is very sensitive to the
distribution of the side information. We have also observed
that JDS outperforms S-HDA in certain regimes. Although we
have characterized the optimal expected distortion in closed-
form for the Rayleigh fading scenario in (25), a closed-
form expression of the optimal expected distortion for general
channel and side information distributions is elusive. Instead,
we focus on the high SNR regime, and study the exponential
decay rate of the expected distortion with increasing SNR,
defined as the distortion exponent, and denoted by ∆ [32].
We have,

∆ , − lim
ρ→∞

log E[D]

log ρ
. (27)

In this section, we study the distortion exponent for the
model considered in Section VI, i.e., a Nakagami fading
channel and side information gains, i.e., H0 ∼ Υ(Lc, L

−1
c )

and Γ0 ∼ Υ(Ls, L
−1
s ). We are interested in characterizing the

maximum distortion exponent over all encoder and decoder
pairs, denoted by ∆∗(Ls, Lc).

We first provide an upper bound on the distortion exponent
by studying the partially informed encoder lower bound on
the expected distortion in (11). In determining the high SNR
behavior of the partially informed encoder lower bound, it
is challenging to characterize the optimal SNR exponent for
the target side information state γ̄ in (7) for different channel
states. Hence, we further bound the expected distortion by
considering the ergodic channel capacity as the channel rate.

Lemma 5. The optimal distortion exponent is upper bounded
by the exponent of the partially informed encoder lower bound
calculated at the ergodic channel capacity, given by

∆pe(Ls, Lc) = 1 +

(
1− 1

Ls

)+

. (28)

Proof. See Appendix C-A.

We will see that ∆pe(Ls, Lc) is tight only for Lc ≥ 1, and
the ergodic channel relaxation is loose for Lc < 1. In order to
tighten the bound in these regimes, we consider the distortion
exponent of the informed encoder upper bound proposed in
Section IV, which can be proven similarly to Lemma 5.

Lemma 6. The distortion exponent is upper bounded by the
exponent of the informed encoder lower bound, given by

∆inf(Ls, Lc) = min{Lc, 1}+ min{Ls, 1}. (29)

While for Lc ≥ 1, ∆pe(Ls, Lc) is always tighter
than ∆inf(Ls, Lc), for Lc < 1 we have ∆pe(Ls, Lc) ≥
∆inf(Ls, Lc) if Ls ≥ 1

1−Lc . In the next proposition, we
combine the two upper bounds into a single upper bound on
the distortion exponent.

Theorem 3. For a Nakagami fading channel with H0 ∼
Υ(Lc, L

−1
c ), and a Nakagami fading side information with

Γ0 ∼ Υ(Ls, L
−1
s ), the optimal distortion exponent is upper

bounded by

min{∆pe(Ls, Lc),∆inf(Ls, Lc)} (30)

=


min{1, Ls + Lc} if Ls ≤ 1,

2− 1
Ls

if 1 < Ls ≤ 1
(1−Lc)+ ,

1 + Lc if Ls > 1
(1−Lc)+ .

(31)

In Fig. 5 and Fig. 6 we plot the distortion exponent upper
and lower bounds with respect to the parameter Ls of the
Nakagami distribution for Lc = 1 and Lc = 0.5, respectively.
Note that for Lc ≥ 1, as Ls increases, the distortion exponent
upper bound ∆pe(Ls, Lc) converges to the informed encoder
upper bound. This observation is parallel to Lemma 4. How-
ever, this is not the case if Lc < 1. While Lemma 4 applies
to any channel distribution, the partially informed bound with
ergodic channel relaxation is loose in this regime.

Next, we consider the distortion exponent achievable by the
transmission schemes proposed in Section IV. The proofs can
be found in Appendix D. We note that the distortion exponent
achievable by uncoded tranmission is provided without proof
and can be derived similarly to the proofs in Appendix D.

Lemma 7. The distortion exponent achieved by uncoded
transmission is given by

∆u(Ls, Lc) = min{Ls + Lc, 1}. (32)
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Fig. 5. Distortion exponent upper and lower bounds for Nakagami fading
channel and side information with Lc = 1, as a function of Ls.

As expected from Theorem 2, uncoded transmission
achieves the optimal distortion exponent for Ls ≤ 1, and it is
suboptimal for Ls > 1.

Lemma 8. The distortion exponent achievable by SSCC is
given by

∆s(Ls, Lc) =

{
1− (1−Ls)2

Lc+1−Ls if Ls ≤ 1,
Ls(2Lc+1)−Lc−1
Ls(Lc+1)−1 if Ls > 1.

(33)

Note that when Ls = 1, SSCC achieves the optimal
distortion exponent of 1.

Lemma 9. The distortion exponent achievable by JDS is given
by

∆j(Ls, Lc) =


1− (1−Ls)2

Lc+1−Ls if Ls ≤ 1,

2− 1
Ls

if 1 < Ls ≤ 1 + Lc,

1 + Lc
Lc+1 if Ls > Lc + 1.

(34)

JDS achieves the same distortion exponent as SSCC for
Ls ≤ 1. However, interestingly, for 1 ≤ Ls ≤ 1 + Lc, JDS
achieves the optimal distortion exponent and then saturates for
Ls > 1 + Lc. Observe that, as Ls increases, the achievable
distortion exponent with SSCC converges to the performance
of JDS.

Lemma 10. The distortion exponent achievable by S-HDA and
HDA is given by

∆shda(Ls, Lc) = min{1, Ls + Lc}+
min{1, Lc}(Ls − 1)+

Ls − 1 + min{1, Lc}
.(35)

Lemma 10 reveals that the robustness provided by the
uncoded layer in S-HDA is not required in the high SNR
regime to achieve the optimal distortion exponent, and allo-
cating all the available power to the HDA layer of the S-HDA
scheme is sufficient. However, we remark that, in terms of the
expected distortion in the low SNR regime pure HDA is not
sufficient to achieve a performance close to the lower bound,
and the uncoded layer improves the performance in general,
as observed in the previous section.

0 1 2 3 4

0.5

1.0

1.5

Fig. 6. Distortion exponent upper and lower bounds for Nakagami fading
channel and side information with Lc = 0.5, as a function of Ls.

HDA achieves the optimal distortion exponent for Lc ≥ 1
while the rest of the proposed schemes are suboptimal. How-
ever, when Lc < 1, JDS outperforms HDA for 1 ≤ Ls ≤ 2.
Nevertheless, as Ls increases, HDA converges to the distortion
exponent of the informed encoder lower bound, despite the
uncertainty in the channel state.

We can see that in the limit Ls → ∞, with 0 < Lc ≤ 1,
we have

∆∗(∞, Lc) = ∆inf(∞, Lc) = ∆hda(∞, Lc) = 1 + Lc,

whereas

∆s(∞, Lc) = ∆j(∞, Lc) = 1 +
Lc

Lc + 1
< 1 + Lc.

This result suggests that, as the side information fading state
becomes more deterministic, the performance of HDA con-
verges to the informed encoder lower bound, while the rest of
the schemes perform significantly worse than HDA.

Combining the achievable distortion exponents of the JDS
and HDA schemes, we can characterize the optimal distortion
exponent ∆∗(Ls, Lc) in certain regimes, as given next. See
Figure 7 for an illustration of the schemes achieving the
optimal distortion exponent.

Theorem 4. Consider a Nakagami fading channel with H0 ∼
Υ(Lc, L

−1
c ) and a Nakagami fading side information with

Γ0 ∼ Υ(Ls, L
−1
s ). If Lc ≥ 1, the optimal distortion exponent

is achieved by the HDA scheme, and is given by

∆∗(Ls, Lc) = 1 +

(
1− 1

Ls

)+

. (36)

If Lc < 1, and Ls ≤ 1+Lc, the optimal distortion exponent
is given by

∆∗(Ls, Lc) = min{1, Ls + Lc}+

(
1− 1

Ls

)+

, (37)

and is achieved by uncoded transmission and HDA when Ls ≤
1, and by JDS when 1 ≤ Ls ≤ Lc + 1.

These analytical results are in line with the numerical
analysis carried out in Section VI. For Ls = Lc = 1, all the
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Fig. 7. Illustration of the results in Theorem 4. The schemes achieving the
optimal distortion are included in each regime.

schemes achieve the optimal distortion exponent ∆∗(1, 1) = 1,
which is far from the informed encoder upper bound given
by ∆inf(1, 1) = 2, as observed in Fig. 2. For Ls = 2 and
Lc = 1, plotted in Fig. 3, the optimal distortion exponent is
given by ∆∗(2, 1) = 3/2, which is achieved by HDA, while
uncoded transmission is suboptimal since ∆u(2, 1) = 1. In this
case JDS also achieves the optimal distortion exponent, while
SSCC achieves a lower distortion exponent of ∆s(2, 1) = 4/3.
Although a similar behavior is observed for higher values of
Ls, JDS does not achieve the optimal distortion exponent in
general. However, when Lc = 0.5 and Ls = 1.5, plotted
in Fig. 4, JDS achieves the optimal distortion exponent of
∆∗(1.5, 0.5) = 4/3, while HDA achieves a smaller distortion
exponent given by ∆shda(1.5, 0.5) = 5/4.

VIII. CONCLUSIONS

We have studied the joint source-channel coding problem
of transmitting a Gaussian source over a delay-limited block-
fading channel when block-fading side information is available
at the decoder. We have assumed that the receiver has full
knowledge of the channel and side information states while
the transmitter is aware only of their distributions. In the case
of a static channel, we have shown the optimality of separate
source and channel coding when the side information gain
follows a discrete or a continuous quasiconcave distribution.

When both the channel and side information states are
block-fading, the optimal performance is not known in general.
We have proposed achievable schemes based on uncoded
transmission, separate source and channel coding, joint de-
coding and hybrid digital-analog transmission. We have also
derived a lower bound on the expected distortion by providing
the encoder with the actual channel state. We call this the
partially informed encoder lower bound, since the side infor-
mation state remains unknown to the encoder. We have shown

that this lower bound is tight for a certain class of continuous
quasiconcave side information fading distributions, and the
optimal performance is achieved by uncoded transmission.
This, to the best of our knowledge, constitutes the first
communication scenario in which the uncoded transmission
is optimal thanks to the existence of fading, while it would
be suboptimal in the static case. We have also proved that
joint decoding outperforms separate source and channel coding
since the success of decoding at the receiver depends on
the joint quality of the channel and side information states,
rather than being limited by each of them separately. We
have also shown numerically that the proposed superposed
hybrid digital-analog transmission performs very close to the
lower bound for a wide range of channel and side-information
distributions (in particular, we have considered Gamma dis-
tributed channel and side information gains with different
shape parameters). However, it has also been observed that no
unique transmission scheme outperforms others at all cases.

In the high SNR regime, we have obtained closed-form
expressions for the distortion exponent, i.e., the optimal ex-
ponential decay rate of the expected distortion in the high
SNR regime, of the proposed upper and lower bounds for
Nakagami distributed channel and side information states.
Aligned with the numerical results in the finite SNR regime,
we have shown that the superposed hybrid digital-analog
transmission outperforms other schemes in most cases and
achieves the optimal distortion exponent for certain values
of channel and side information diversity, and joint decoding
achieves the optimal distortion exponent for some values of
side information diversity when the channel diversity is less
than one, in which case hybrid digital-analog transmission is
suboptimal.

APPENDIX A
PROOF OF THEOREM 1

The theorem is first proven when Γ has a discrete distri-
bution. For Γ with two states optimality of separation can be
obtained as a special case of the model studied in [27]. This
result can be extended to M receivers (or states). The converse
follows by combining the converses in [27] and [26, Sec.VII]
for M side information states, i.e., Y ni,1, i = 1, ...,M , and the
application of standard arguments. We obtain the single letter
condition,

C , max
p(x)

I(X;Y ) ≥ RHB(D), (38)

where RHB(D) is Heegard-Berger rate-distortion function for
M side information states [26] and D = [D1, ..., DM ] with Di

defined as the achievable distortion at the receiver i. We note
that RHB(D) does not depend on the number of receivers
but only on the sum of the mutual information terms, each
one corresponding to a receiver with side information Yi, as
discussed in [23]. Hence, the converse applies for countably
many receivers as well. The achievability follows from the
concatenation of the optimal Heegard-Berger source code [26,
Sec.VII], followed by an optimal channel code at rate R = C.
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A. Separation for Continuous Quasiconcave Distributions

To prove the optimality of separation when pΓ(γ) is a
continuous quasiconcave distribution, we construct a lower
bound on the expected distortion ED∗sta by discretizing the
continuum of side information states, and let a genie exchange
the current side information realization with the best side in-
formation in each discretization interval. Separation is optimal
for the genie aided system, since it has a discrete number of
side information states. In the limit of finer discretizations, the
genie aided system can be shown to be achievable, similarly
to [23], with a separates source and channel coding scheme.

First, we divide the side information state γ into some
partition s given by [s0, s1), [s1, s2), ..., such that s0 = 0 <
s1 < ... < si < · · · and γ ∈ [si−1, si) if si−1 ≤ γ < si
for some i = 1, 2, .... The length of the partition [si−1, si)
is defined by ∆si, i.e., ∆si , si − si−1. Let us define
γ̄ > 0 as the super-level set γ̄ satisfying (7). The partition is
chosen such that for some index j, we have sj = γ̄. A fading
realization belongs to the interval [si−1, si) with probability
pi =

∫ si
si−1

pΓ(γ)dγ.
We assume that when γ belongs to the interval [si−1, si),

a genie substitutes the current side information sequence
Y = γcX + N with a sequence with gain si, i.e., Ỹ ,√
siX + N . Note that this receiver has a better performance

as noise can be added to Ỹ to recover a sequence equivalent
to the original side information sequence if required. Hence,
the expected distortion for a given partition s, denoted by
ED∗gen(s,C), is a lower bound on the expected distortion
of the continuous fading setup. The genie aided system
now consists of a countable number of receivers. Due to
the optimality of separation under countable number of side
information states, ED∗gen(s,C) is given by the concatenation
of a Heegard-Berger source encoder with side information
states s1, s2, ..., and a capacity achieving channel code, i.e.,
ED∗gen(s,C) = ED∗s (C), where

ED∗s (R) , min
D:RHB(D)≤R

pTD, (39)

where p = [p1, p2, ...] and D = [D1, D2, ...] depend on the
partition s. This optimization problem is studied in detail in
[23].

Next, we consider an upper bound on ED∗sta. With the
channel state hc known at the encoder, we concatenate of a
single layer source encoder for side information state γ̄, with a
channel code at a rate arbitrarily close to the capacity C. This
scheme achieves an expected distortion of ED∗Q(C). Then,

ED∗gen(s,C) ≤ ED∗sta ≤ ED∗Q(C). (40)

As the partition gets finer in the sense that maxi ∆si → 0,
it is shown in [23] (see [23, Proposition 4] and [23, Proposi-
tion 5]) that limmaxi ∆si→0ED

∗
s (R) = ED∗Q(R). Therefore,

limmaxi ∆si→0ED
∗
gen(s,C) = ED∗Q(C), and from inequality

(40) in the limit of finer partitions, ED∗sta = ED∗Q(C). This
completes the proof.

APPENDIX B
PROOF OF LEMMA 4

In order to show the convergence of ED∗pi to EDinf, first,
we construct an upper bound on ED∗pi and we show that this
bound converges to EDinf for large enough L.

The lower bound ED∗pi is achieved by the concatenation of
a capacity achieving channel code with a single-layer source
code targeting the side information state γ̄, the solution to (7),
for each realization of H . Instead, we consider that, for a given
L the source coding is done targeting the state γ̄L , µ − δ,
where µ , E[ΓL] is the mean of ΓL and δ ,

√
σ2
L. The

expected distortion achieved by this scheme is an upper bound
on ED∗pi and is found, similarly to ED∗pi, be given by

EDlay , EH

[
EDQ

(
1

2
log(1 +H)

)]
=

∫ γ̄L

0

pL(γ)

1 + γ
dγ +

∫
h

∫ ∞
γ̄L

pL(γ)pH(h)

(1 + h)(1 + γ̄L) + γ − γ̄L
dγdh,

where EDQ(R) is given as in (6) for γ̄ substituted by γ̄L and
pL(γ) is the pdf of ΓL.

Then, we have the following bound

EDpi∗−EDinf ≤ EDlay − EDinf ≤
σ2
L

δ
+ EH [H] · 2δ,

derived at the top of next page, where (a) follows since
1

(1+γ) ≤ 1 for the first integral, and because we are reducing
the integration region in the third one, (b) follows due to∫

h

∫ ∞
µ+δ

pL(γ)pH(h)

(1 + h)(1 + γ̄L) + γ − γ̄L
dγdh

≤
∫
h

∫ ∞
µ+δ

pL(γ)pH(h)dγdh

= Pr[ΓL ≥ µ+ δ].

Then (c) follows since γ̄L = µ − δ, and subtracting the two
integrals, (d) follows from the following bound,∫

h

∫ µ+δ

µ−δ

h(γ − γ̄L)pL(γ)pH(h)

((1 + h)(1 + γ̄L) + γ − γ̄L)(1 + h)(1 + γ)
dγdh

≤
∫
h

∫ µ+δ

µ−δ
h(γ − γ̄L)pL(γ)pH(h)dγdh

(f)

≤ E[H] · (µ+ δ − γ̄L)

∫ µ+δ

µ−δ
pL(γ)dγ

(g)

≤ E[H] · 2δ

where (f) follows since γ ≤ µ + δ in the integration region;
(g) follows since γ̄L = µ− δ and

∫ µ+δ

µ−δ pL(γ)dγ ≤ 1. Finally,
(e) follows from Chebyshev’s inequality.

By the choice of δ =
√
σ2
L, we have

ED∗pi − EDinf ≤
σ2
L

δ
+ E[H] · 2δ =

√
σ2
L + E[H] · 2

√
σ2
L,

and the difference converges to 0 from the assumption σ2
L → 0

for L→∞. This completes the proof.
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EDlay−EDinf =

∫ γ̄L

0

pL(γ)

1 + γ
dγ +

∫
h

∫ ∞
γ̄L

pL(γ)pH(h)

(1 + h)(1 + γ̄L) + γ − γ̄L
dγdh−

∫
h

∫
γ

pH(h)pL(γ)

(1 + h)(1 + γ)
dγdh

(a)

≤
∫ γ̄L

0

pL(γ)dh+

∫
h

∫ ∞
γ̄L

pL(γ)pH(h)

(1 + h)(1 + γ̄L) + γ − γ̄L
dγdh−

∫
h

∫ µ+δ

µ−δ

pH(h)pL(γ)

(1 + h)(1 + γ)
dγdh

= Pr[ΓL < γ̄L] +

∫
h

∫ µ+δ

γ̄L

pL(γ)pH(h)

(1 + h)(1 + γ̄L) + γ − γ̄L
dγdh

+

∫
h

∫ ∞
µ+δ

pL(γ)pH(h)

(1 + h)(1 + γ̄L) + γ − γ̄L
dγdh−

∫
h

∫ µ+δ

µ−δ

pH(h)pL(γ)

(1 + h)(1 + γ)
dγdh

(b)

≤ Pr[ΓL < γ̄L] +

∫
h

∫ µ+δ

µ−δ

pL(γ)pH(h)

(1 + h)(1 + γ̄L) + γ − γ̄L
dγdh+ Pr[ΓL ≥ µ+ δ]−

∫
h

∫ µ+δ

µ−δ

pH(h)pL(γ)

(1 + h)(1 + γ)
dγdh

(c)
= Pr[|ΓL − µ| ≤ δ] +

∫
h

∫ µ+δ

µ−δ

h(γ − γ̄L)pL(γ)pH(h)

((1 + h)(1 + γ̄L) + γ − γ̄L)(1 + h)(1 + γ)
dγdh

(d)

≤ Pr[|ΓL − µ| ≤ δ] + EH [H] · 2δ
(e)

≤ σ2
L

δ
+ EH [H] · 2δ

APPENDIX C
CONVERSE

A. Partially Informed Encoder Upper Bound

In Section IV-B we have seen that for continuous quasi-
concave pdfs, ED∗pi is obtained by averaging the expected
distortion achievable by the concatenation of a single layer
source code designed for the side information state γ̄(h) and
an optimal channel code for the current channel state h. For
each h, the optimal γ̄(h) is determined by solving (7) with
R = C(h) = 1

2 log(1+h). Note that γ̄(h) is a random variable
dependant on the realization of the channel fading H .

An upper bound on the distortion exponent can be found
by lower bounding ED∗pi. First, we note that ED∗Q(R) in (6)
is a convex function of R. This follows from the time-sharing
arguments and convexity of the Heegard-Berger rate-distortion
function [26]. Then, by Jensen’s inequality, we have

ED∗pi = EH [ED∗Q(C(H))] ≥ ED∗Q(EH [C(H)]), (41)

where

ED∗Q(EH [C(H)]) (42)

=

∫ γ̃

0

pΓ(γ)

1 + γ
dγ +

∫ ∞
γ̃

pΓ(γ)

(γ̃ + 1)22EH [C(H)] + γ − γ̃
dγ,

and γ̃ is the solution to (7) with R = EH [C(H)], that is,
the ergodic capacity of the channel. Note that γ̃ depends
only on the ergodic capacity of the channel and not on the
current channel state realization, and therefore, is not a random
variable, as opposed to γ̄(h).

Now, since C(h) is a concave function of h, applying
Jensen’s inequality again, we have

EH [C(H)] = EH

[
1

2
log(1 +H)

]
≤ 1

2
log(1 + E[H]) =

1

2
log(1 + ρ), (43)

that is, the ergodic capacity of the channel is lower than the
capacity of a static channel with the same average SNR.

We define, for γ̂ ≥ 0,

EDpe(γ̂) ,
∫ γ̂

0

pΓ(γ)

1 + γ
dγ +

∫ ∞
γ̂

pΓ(γ)

(γ̂ + 1)(1 + ρ) + γ − γ̂
dγ.

Then, we have

ED∗pi ≥ ED∗Q(EH [C(H)])

(a)

≥ EDpe(γ̄)

≥ min
γ̂≥0.

EDpe(γ̂) , ED∗pe, (44)

where (a) follows from inequality (43) and (42).
Now, we obtain the exponential behavior of ED∗pe. Consider

a sequence of normalized gamma distributed random variables
H0 ∼ Υ(L, θ) under the change of variables A = − logH0

log ρ .
The pdf for A is found as

pA(α) =

∣∣∣∣∂H0

∂α

∣∣∣∣ pH0
(h0) = ρ−αpH0

(ρ−α) log ρ. (45)

Then, pA(α) is given by

pA(α) = ρ−α
1

θL
1

Ψ(L)
ρ−α(L−1)e−

ρ−α
θ log ρ

=
1

θL
1

Ψ(L)
ρ−Lαe−

ρ−α
θ log ρ, (46)

and the exponential behavior is found as

SA(α) = − lim
ρ→∞

log pA(a)

log ρ
=

{
Lα if α ≥ 0,

+∞ if α < 0.
(47)

For the model considered in Section VI, the SNR exponent
for the Nakagami fading channel, H0 ∼ Υ(Lc, L

−1
c ), is given

by SA(α) = Lcα for α ≥ 0, and for the Nakagami fading
side information, Γ0 ∼ Υ(Ls, L

−1
s ), we have SB(β) = Lsβ

for β ≥ 0.
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Define κ , log γ̂
log ρ , such that γ̂ = ρκ. Applying the change

of variables to (44), in the high SNR regime, we have

EDpe(ρ
κ)

=

∫
Acpe

pB(β)

(ρκ + 1)(1 + ρ) + ρ1−β − ρκ
dβ +

∫
Ape

pB(β)

1 + ρ1−β dβ

.
=

∫
Acpe

ρ−(κ++1)pB(β)dβ +

∫
Ape

ρ−(1−β)+

pB(β)dβ

where we have defined

Ape , {β : γ̂ ≥ ρ1−β} = {β : κ ≥ 1− β},

and we have used the fact that, in the high SNR asymptotic,
and for β ∈ Acpe, we have

[(ρκ + 1)(1 + ρ) + ρ1−β −ρκ]−1
(a).
= [ρκ

++1 + ρ1−β − ρκ]−1

(b).
= ρ−max{κ++1,1−β}

(c)
= ρ−(κ++1),

which (a) and (b) follows since ρx + ρy
.
= ρmax{x,y} for

x, y ≥ 0, and (c) follows since we have 1−β > κ for β ∈ Acpe.
In order to find the exponential behavior of the EDpe(ρ

κ),
we study the exponent of each integral term in (48). For the
first term, we have

∆p1(κ) , − lim
ρ→∞

1

log ρ
log

∫
Ape

ρ−(1−β)+

pB(β)dβ

.
= − lim

ε→0
ε log

∫
Ape

exp

(
1

ε
(−[(1− β)++SB(β)])

)
dβ

= inf
Acpe

κ+ + 1 + SB(β), (48)

where the last equality follows from Varadhan’s Lemma [33],
similar to the proof of Theorem 4 in [34]. Similarly, for the
second integral term in (48), we have,

∆p2(κ) , inf
Acpe

κ+ + 1 + SB(β). (49)

We can lower bound (44) as follows

ED∗pi ≥ min
κ∈R
{EDpe(ρ

κ)}
.
≥ min

κ∈R
{ρ−∆p1(κ) + ρ−∆p2(κ)}

.
= ρ−maxκ∈R min{∆p1(κ),∆p2(κ)}.

Then, the distortion exponent is upper bounded by

− lim
ρ→∞

logED∗pi
log ρ

≤ max
κ∈R

min{∆p1(κ),∆p2(κ)}. (50)

We solve the optimization problem in (50) with SB(β) =
Lsβ, and denote the optimal value by ∆pe(Ls, Lc). We note
that we can restrict the domain of β in (48) and (49) to β ≥ 0
without loss of optimality since SB(β) = +∞ for β < 0.

First, we consider the case κ < 0. In that case, ∆p1(κ) is
minimized by β∗ = 1− κ and we have ∆p1(κ) = Ls(1− κ).
On the other hand, we have

∆p2(κ) = inf
β≥0

1 + Lsβ

s.t. β < 1− κ, (51)

which is minimized by β∗ = 0, and ∆p2(κ) = 1. Then, from
(50), we have ∆pe(Ls, Lc) = maxκ<0 min{Ls(1 − κ), 1},
which is maximized by κ = −∞, and we have ∆pe(Ls, Lc) =
1.

Next, we consider the case κ ≥ 0. Substituting SB(β) =
Lsβ in ∆p1(κ) in (48), we note that we can constrain our
search to 0 ≤ β ≤ 1, since any β > 1 can only increase the
objective function. We have,

∆p1(κ) = inf
0≤β≤1

1 + (Ls − 1)β

s.t. β ≥ 1− κ. (52)

Since for Ls > 1, 1 + (Ls − 1)β is increasing in β, the
minimum is achieved by β∗ = (1 − κ)+ and ∆p1(κ) =
1+(Ls−1)(1−κ)+. On the contrary, for Ls ≤ 1, the objective
function is decreasing in β, and is minimized at β∗ = 1, which
yields ∆p1(κ) = Ls.

Similarly, for ∆p2(κ) in (49), we have

∆p2(κ) = inf
β≥0

κ+ 1 + Lsβ

s.t. β < 1− κ. (53)

This problem is minimized by β∗ = 0, for which ∆p2(κ) =
1 + κ, for 0 ≤ κ < 1, and has no solution for κ ≥ 1, since
there are no feasible β in the optimization set.

Then, substituting in (50), for Ls ≤ 1, we have
∆pe(Ls, Lc) = maxκ≥0 min{Ls, 1 + κ} = Ls, and
∆pe(Ls, Lc) = 1. For Ls > 1, since ∆p1(κ) is decreasing in κ
while ∆p2(κ) is increasing in κ, the maximum ∆pe(Ls, Lc)
in (50) is achieved when the two exponents are equal, i.e.,
1 + κ = 1 + (Ls − 1)(1− κ), from which we find

∆pe(Ls, Lc) = 2− 1

Ls
, for κ∗ =

Ls − 1

Ls
∈ (0, 1). (54)

Now, we find the maximizing κ for each Ls regime to
obtain ∆∗pe(Ls, Lc). For Ls ≤ 1, the distortion exponent
is maximized by κ = −∞ and ∆pe(Ls, Lc) = 1, since
∆pe(Ls, Lc) = Ls for any κ ≥ 0. On the contrary, for
Ls ≥ 1, the distortion exponent is maximized as (54), while
∆pe(Ls, Lc) = 1 if we consider κ < 0.

Note that when Ls ≤ 1, the side information gain dis-
tribution is monotonically decreasing. Then γ̄(h) = 0 for
any h from Proposition 1, and therefore, from Theorem 2,
uncoded transmission achieves the minimum expected distor-
tion, i.e., ED∗pi = EDu. The distortion exponent for uncoded
transmission ∆u(Ls, Lc) is calculated in Appendix ?? as
∆u(Ls, Lc) = min{1, Ls+Lc}. Comparing ∆u(Ls, Lc) with
∆pe(Ls, Lc), we observe that the proposed lower bound on
ED∗pi is in general not tight due to inequality (43).

APPENDIX D
DISTORTION EXPONENT DERIVATIONS

A. Separate Source and Channel Coding (SSCC)

Here we find the distortion exponent of SSCC. Let us define
the events

O1 , {(h, γ) : Rc ≥ I(X;Y )},
O2 , {(h, γ) : Rc < I(X;Y ), Rc ≤ I(S;W |T )}.
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Event O1 corresponds to an outage due to bad quality of
the channel, and O2 corresponds to a correct decoding of
the channel codeword while an outage occurs due to the
bad quality of the side information. It is readily seen that
Os = O1

⋃
O2. Consider the change of variables H0 = ρ−A,

Γ0 = ρ−B , Rs = rs
2 log ρ and Rc = rc

2 log ρ, for rs ≥ 0
and rc > 0. Note that we consider rs = 0 to allow SSCC to
transmit without binning. We have

EDs(Rc, Rs)

=

∫
Ocs

pH(h)pΓ(γ)

22(Rc+Rs−ε) + γ
dhdγ +

∫
Os

pH(h)pΓ(γ)

1 + γ
dhdγ

=

∫
Acs(ρ)

pA(α)pB(β)

ρrc+rs + ρ1−β dαdβ +

∫
As(ρ)

pA(α)pB(β)

1 + ρ1−β dαdβ,

where we have defined As(ρ) , A1(ρ)
⋃
A2(ρ), and A1(ρ)

characterizes O1 in terms of α and β, and is given by

A1(ρ) ,

{
(h, γ) : Rc ≥

1

2
log(1 + h)

}
= {(α, β) : ρrc ≥ 1 + ρ1−α},

and similarly for O2 we have

A2(ρ) ,

{
(h, γ) : Rc <

1

2
log(1 + h), (55)

Rc ≤
1

2
log

(
1 +

22(Rs+Rc−ε) − 1

1 + γ

)}
=

{
(α, β) : ρrc < 1 + ρ1−α, ρrc ≤ 1 +

2−2ερrs+rc

1 + ρ(1−β)

}
.

Using similar bounding techniques to the ones used in
Appendix C-A, it is not hard to show that in the high SNR
regime, we have

EDs(Rc, Rs)
.
=

∫
Ac1∩Ac2

pA(α)pB(β)

ρmax{rc+rs,1−β}
dαdβ

+

∫
A1∪A2

pA(α)pB(β)

ρ(1−β)+ dαdβ,

where the equivalent outage sets in the high SNR are

A1 , {(α, β) : rc ≥ (1− α)+},
A2 , {(α, β) : rc < (1− α)+, rc ≤ (rs + rc − (1− β)+)+}.

Let r , [rc, rs]. Applying Varadhan’s lemma, the distortion
exponent of each integral term are found as

∆s1(r) = inf
R2

max{rc + rs, 1− β}+ SA(α) + SB(β)

s.t. rc < (1− α)+, rc > (rs + rc − (1− β)+)+,

and

∆s2(r) = inf
R2

(1− β)+ + SA(α) + SB(β) (56)

s.t. rc ≥ (1− α)+,

or rc < (1− α)+, rc ≤ (rs + rc − (1− β)+)+.

We can limit the optimization to 0 ≤ α, β ≤ 1 without loss of
optimality. First, we find the distortion exponent for Ls ≥ 1.
We start with ∆s1(r). If rc + rs ≥ 1− β, we have

∆s1(r) = inf
α,β≥0

rs + rc + Lcα+ Lsβ (57)

s.t. α < 1− rc, 1− (rs + rc) ≤ β < 1− rs.

The minimum is achieved by β∗ = (1 − (rs + rc))
+ and

α∗ = 0 and we have ∆s1(r) = rs + rc + Ls(1− (rs + rc))
+

for rc < 1, rs < 1. If 1− β > rc + rs,

∆s1(r) = inf
α,β≥0

1 + Lcα+ (Ls − 1)β (58)

s.t. α < 1− rc, β < 1− (rs + rc).

The minimum is achieved by α∗ = β∗ = 0, and is found to
be ∆1(r) = 1 for rc < 1 and rc + rs < 1. Then, putting all
together, the infimum is given by ∆s1(r) = max{1, rs + rc},
for rs < 1 and rc < 1.

For ∆s2(r), we first consider the case with constraint rc ≥
(1 − α)+. The minimum is easily seen to be given by α∗ =
(1−rc)+ and β∗ = 0. Then ∆s2(r) = 1+Lc(1−rc)+. If rc ≤
(1−α)+, the second constraint is active. If rs+rc < (1−β)+,
∆s2(r) has no solution since this would require rc ≤ 0. If
rs + rc ≥ (1−β)+, the minimum is achieved for α∗ = 0 and
β∗ = (1−rs)+, and is given by ∆s2(r) = 1+(Ls−1)(1−rs)+

for rs > 0 and rc < 1.
The optimal distortion exponent of SSCC can be found by

maximizing over the rates as

∆s(Ls, Lc) = max
rc,rs≥0

min{∆s1(r),∆s2(r)}.

The distortion exponent is maximized when rs+rc > 1, rc <
1 and rs < 1. Then, we have ∆s1(r) = rs + rc, ∆s2(r) =
min{1 +Lc(1− rc)+, 1 + (Ls− 1)(1− rs)+}. The maximum
is achieved by rc and rs for which the left and right terms in
the minimization in ∆s2(r) are equal, i.e., 1 + Lc(1− rc) =
1 + (Ls − 1)(1− rs), and ∆s1(r) = ∆s2(r). Solving this, we
have

r∗s =
(Lc + 1)(Ls − 1)

Ls(Lc + 1)− 1
, r∗c =

LcLs
Ls(Lc + 1)− 1

,

which satisfy rs < 1, rc < 1 and rs + rc > 1. Note that
for Ls = 1, we have rs = 0, i.e., no binning is optimal, as
expected from Lemma 2.

Now we consider the case Ls ≤ 1. In this regime, the
gamma function is monotonically decreasing, and hence, γ̄ =
0 and from Lemma 2 we have R∗s=0, i.e., no binning achieves
the minimum distortion for SSCC. The distortion exponent
achievable without binning follows similarly by observing that
by letting Rs = 0, the outage event A2 is empty.

B. Joint Decoding Scheme (JDS)

Here, we consider the distortion exponent for JDS. Applying
the change of variables, H0 = ρ−A, Γ0 = ρ−B and Rj =
rj
2 log ρ for rh > 0, form (16) we have

EDj(Rj)

=

∫
Ocj

pH(h)pΓ(γ)

22(Rj−ε) + γ
dhdγ+

∫
Oj

pH(h)pΓ(γ)

1 + γ
dhdγ

.
=

∫
Acj

pA(α)pB(β)

ρmax{rj ,(1−β)+} dαdβ +

∫
Aj

pA(α)pB(β)

ρ(1−β)+ dαdβ,

where we define the outage event in the high SNR regime as

Aj ,
{

(α, β) : (rj − (1− β)+)+ ≥ (1− α)+
}
.
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The distortion exponent for each term is found applying
Varadhan’s Lemma as

∆j1(rj) = inf
Acj

max{rj , (1− β)+}+ SA(α) + SB(β),

and

∆j2(rj) = inf
Aj

(1− β)+ + SA(α) + SB(β).

First we note that in both ∆j1(rj) and ∆j2(rj) we can
restrict to 0 ≤ α, β ≤ 1 without loss of optimality since
SA(α) = Lcα and SB(β) = Lsβ. Now we solve ∆j1(rj). If
rj < 1−β, we have Aj = {(α, β) : (1−α)+ ≥ 0, rj < 1−β}
and it is easily seen that α∗ = 0. Then if Ls ≥ 1, we have
β∗ = 0 and ∆j1(rj) = 1 for rj ≤ 1. If Ls < 1, then
β∗ = (1 − rj)+ and ∆j1(rj) = 1 + (Ls − 1)(1 − rj)+ for
rj ≤ 1. If rj ≥ 1− β, we have

∆j1(rj) = inf
0≤α,β≤1

rj + Lcα+ Lsβ

α+ β < 2− rj , β ≥ 1− rj . (59)

The minimum is achieved by α∗ = 0 and β∗ = (1 − rj)+ if
rj ≤ 2 and is given by ∆j1(rj) = rj + Ls(1− rj)+ and has
no feasible solutions if rj ≥ 2. Then, the exponent ∆j1(rj) is
given by the minimum of these solutions, given by

∆j1(rj) =

{
1 + (Ls − 1)+(1− rj) if 0 ≤ rj < 1,

rj if 1 ≤ rj < 2,
(60)

where we have used that for Ls ≤ 1 and 0 ≤ rj ≤ 1, we have
rj +Ls(1− rj)+ = 1 + (1−Ls)+(1− rj)+, and for Ls ≥ 1
and 0 ≤ rj ≤ 1, we have min{rj + Ls(1− rj)+, 1} = 1.

Now, we solve ∆j2(rj). If rj < 1− β, the problem has no
feasible solution due to the constraints. If rj ≥ 1−β, we have

∆j2(rj) = inf
0≤α,β≤1

1 + (Ls − 1)β + Lcα

α+ β ≥ 2− rj , β ≥ 1− rj . (61)

The minimum is achieved by α∗ = (2 − rj − β)+, which
satisfies α∗ ≤ 1 due to β ≥ 1 − rj . Then, if β ≥ 2 − rj
and Ls ≥ 1, we have β∗ = (2 − rj)+ for rj ≥ 1 and the
minimum is given by ∆j2(rj) = 1 + (Ls − 1)(2 − rj)+. If
β ≥ 2 − rj and Ls < 1 we have β∗ = 1 and ∆j2(rj) = Ls
for rj ≥ 1. If β < 2 − rj and Ls ≥ 1 + Lc, the minimum
is achieved by β∗ = (1 − rj)

+ if rj ≤ 2 and ∆j2(rj) =
1 + (Ls− 1−Lc)(1− rj)+ +Lc(2− rj). If Ls < 1 +Lc, the
solution is found as ∆j2(rj) = Ls +Lc(1− rj) if rj ≤ 1 for
β∗ = 1 and by ∆j2(rj) = 1 + (Ls − 1)(2− rj) if rj ≥ 1 for
β = (2− rj)+ − δ, for arbitrarily small δ > 0.

Finally, ∆j2(rj) is found by the minimum of these solutions
in each regime. If 0 ≤ rj ≤ 1, we have

∆j2(rj) =

{
Ls + Lc(1− rj) if Ls < Lc + 1,

1 + Lc + (Ls − 1)(1− rj) if Ls ≥ Lc + 1.

If 1 ≤ rj ≤ 2, we have

∆j2(rj) =

{
Ls if Ls < 1,

1 + min{Lc, Ls − 1}(2− rj)+ if Ls ≥ 1,

where for the case Ls < 1 we have that Ls ≤ Ls+Lc(1−rj),
and in the case Ls ≥ 1, we have that 1 + Lc(2 − rj) ≤

1 + (Ls − 1)(2− rj) for Ls ≥ 1 +Lc. Finally, for rj ≥ 2 we
have ∆j2(rj) = min{1, Ls}.

The distortion exponent can be maximized over rj . If Ls ≤
1, the maximum is found by using a rate 0 ≤ rj ≤ 1 and
equating ∆j1(rj) = 1 + (Ls − 1)(1 − rj) and ∆j2(rj) =
Ls+Lc(1−rj). The optimal rate is found as r∗j = Lc

1+Lc−Ls ≤
1. If 1 < Ls ≤ Lc + 1, the maximum distortion exponent
is found with a rate 1 ≤ rj ≤ 2 such that ∆j1(rj) = rj
and ∆j2(rj) = 1 + (Ls − 1)(2 − rj) are equal, given by
r∗j = 2− 1

Ls
. Finally, if Ls > Lc + 1, the distortion exponent

is maximized when 1 ≤ rj ≤ 2. By equaling ∆j1(rj) = rj
and ∆j2(rj) = 1 + Lc(2 − rj), the distortion exponent is
maximized by r∗j = 1 + Lc

Lc+1 .

C. Superposed Hybrid Digital-Analog Transmission (S-HDA)

The performance of the S-HDA scheme in Section IV-F can
be optimized over Pd, Pa and η2. From the distortion exponent
perspective, we have observed that it suffices to allocate all
the power to the digital component, which reduces S-HDA to
HDA. Therefore, we let Pd = 1, Pa = 0. Then, applying the
change of variables, we have from (21)-(23),

EDshda(1, η) (62)
= EOh [Dout

h (η, 1)] + EOch [Dh(η, 1)]

=

∫
Oh

pH(h)pΓ(γ)

1 + γ
dhdγ +

∫
Och

pH(h)pΓ(γ)

1 + γ + η2(1 + h)
dhdγ

=

∫
Ah(ρ)

pA(α)pB(β)

1 + ρ1−β dαdβ+

∫
Ach(ρ)

pA(α)pB(β)

1 + ρ1−β + η2(1 + ρ1−α)
dαdβ,

where Oh in (20) is found, in terms of α and β as

Ah(ρ) ,

{
(α, β) :

ρ1−α

1 + ρ1−α (1 + ρ1−β) ≤ η2

}
.

In the high SNR regime, we let η2 = ρrh , for rh ∈ R ,and
the outage event Ah(ρ) is equivalent to

Ah ,
{

(α, β) : (1− β)+ − (α− 1)+ ≤ rh
}
. (63)

Then, we have

EDshda(1, ρrh)

.
=

∫
Ah
ρ−(1−β)+

pA(α)pB(β)dαdβ (64)

+

∫
Ach
ρ−max{(1−β)+,(1−α)++rh}pA(α)pB(β)dαdβ.(65)

Using Varadhan’s Lemma, the distortion exponent for the
first integral in (64) is found as

∆h1(rh) , inf
Ah

(1− β)+ + SA(α) + SB(β),

and for the second integral as

∆h2(rh) , inf
Ach

max{(1− β)+, (1− α)+ + rh}+ SA(α) + SB(β).

The distortion exponent for HDA can be optimized over the
parameter rh as

∆hda(Ls, Lc) = max
rh∈R

min{∆h1(rh),∆h2(rh)}. (66)
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First, we obtain the achievable distortion exponent when
rh < 0. To solve ∆h1(rh), note that if 0 ≤ α ≤ 1, there are
no feasible solutions. Then, for α > 1, we have

∆h1(rh) , inf
α>1,β≥0

(1− β)+ + Lcα+ Lsβ

s.t. α ≥ (1− β)+ + 1− rh. (67)

We can constrain the optimization to 0 ≤ β ≤ 1 without loss
of optimality, and the minimum is achieved by α∗ = 2−β−rh.
If Ls ≥ 1 + Lc, the minimum is achieved by β∗ = 0, and is
given by ∆h1(rh) = 1 + Lc(2 − rh). On the other hand, if
Ls < 1+Lc, β∗ = 1, and ∆h1(rh) = Ls+Lc(1−rh). Putting
all together, we have ∆h1(rh) = min{Ls, 1+Lc}+Lc(1−rh).

Now, we solve ∆h2(rh). Without loss of optimality, we can
assume 0 ≤ α, β ≤ 1, as otherwise the feasible grows and
α > 1 or β > 1 can only increase the objective function.
Then, the constraint is always satisfied, since 1− β ≥ rh for
any 0 ≤ β ≤ 1. We have

∆h2(rh) = max
0≤α,β≤1

{1− β, 1− α+ rh}+ Lsβ + Lcα.(68)

If 1−β ≥ 1−α+rh, the minimum is achieved by α∗ = β∗ = 0
when Ls ≥ 1 and ∆h2(rh) = 1. If Ls < 1, β∗ = α − rh if
α − rh ≤ 1, and α∗ = 0 when Ls + Lc ≥ 1 and we have
∆h2(rh) = 1−(Ls−1)rh. When Ls+Lc < 1, we have α∗ =
1+rh and ∆h2(rh) = Ls+Lc(1+rh),−1 ≤ rh < 0 and, when
α > 1+rh, we have β∗ = 1 and ∆h2(rh) = Ls+Lc(1+rh)+.
If 1 − β < 1 − α + rh, we have β∗ = α + δ, which has
to satisfy β∗ ≤ 1, i.e., it is feasible whenever α ≤ 1 + rh.
Then, α∗ = 0 if Ls + Lc ≥ 1 and the minimum is given
by ∆h2(rh) = 1 − rh(Ls − 1). If Ls + Lc < 1, we have
α∗ = 1 + rh and ∆h2(rh) = Ls + Lc(1 + rh), for rh ≥ −1.
Putting all together, we have ∆h2(rh) = 1 when Ls ≥ 1 and
∆h2(rh) = min{1−(Ls−1)rh, Ls+Lc(1+rh)} for Ls < 1.

If Ls ≤ 1, we have ∆h1(rh) ≥ ∆h2(rh), and the distortion
exponent is maximized by letting rh → 0 and we get
∆hda(Ls, Lc) = min{Ls + Lc, 1}. If Ls ≥ 1, we have
∆hda(Ls, Lc) = 1 for any rh < 0.

In the following, we derive the distortion exponent achiev-
able by S-HDA when rh ≥ 0. First, we solve ∆h1(rh). We
can limit the optimization to 0 ≤ β ≤ 1 without loss of
optimality. Then, for 0 ≤ α ≤ 1 the minimum is achieved
by α∗ = 0, and if Ls ≥ 1, the minimum is achieved by
β∗ = (1− rh)+ and ∆h1(rh) = 1 + (Ls−1)(1− rh)+, and if
Ls < 1, β∗ = 1 and ∆h1(rh) = Ls. If α > 1, the constraint
becomes α ≥ 2 − β − rh, and the minimizing α is given by
α∗ = 2− β − rh, which is feasible provided that β < 1− rh.
Then, we have

∆h1(rh) = inf
0≤β≤1

1 + (Ls − 1− Lc)β + Lc(2− rh)

s.t. β < 1− rh. (69)

If Ls ≥ 1+Lc, we have β∗ = 0 and ∆h1(rh) = 1+Lc(2−rh)
for rh ≤ 1, and if Ls < 1 + Lc, we have β∗ = 1 − rh and
∆h1(rh) = 1 + Lc + (Ls − 1)(1 − rh). Putting all together,
∆h1(rh) is found as

∆h1(rh) =

{
Ls if Ls < 1,

1 + (Ls − 1)(1− rh)+ if Ls ≥ 1.
(70)

Next, we solve ∆h2(rh). First, we note that we can constrain
to 0 ≤ β ≤ 1, since the optimization set is empty if β > 1.
Similarly, we assume 0 ≤ α ≤ 1, since any α > 1 achieves a
larger exponent. Then,

∆h2(rh) = inf
0≤α,β≤1

max{1− β, 1− α+ rh}+ Lsβ + Lcα

s.t. β < 1− rh. (71)

If 1−β > 1−α+rh, we have α∗ = β+rh, which satisfies
α∗ ≤ 1 since β < 1− rh. Then, β∗ = 0 if Ls + Lc ≥ 1 and
∆h2(rh) = 1 +Lcrh, and if Ls+Lc < 1, β∗ = 1− rh− ε for
an arbitrarily ε > 0 and the infimum is found as ∆h2(rh) =
1+Lc+(Ls−1)(1−rh) for rh < 1. If 1−β ≤ 1−α+rh, the
infimum is given by β∗ = (α−rh)+. If α ≥ r and Ls+Lc ≥ 1,
the minimum is found as α∗ = rh and ∆h2(rh) = 1 + rhLc,
while α∗ = 1 if Ls + Lc < 1, and ∆h2(rh) = 1 + Lc +
(Ls − 1)(1− rh). If α < rh, we have α∗ = 0 if Lc ≥ 1 and
∆h2(rh) = 1 + rh and if Lc < 1, we have α∗ = rh + ε for an
arbitrarily small ε > 0 and ∆h2(rh) = 1 + rhLc. Putting all
together, we have ∆h2(rh) = 1 + min{1, Lc}rh for rh ≤ 1.

We optimize over rh to solve (66). For Ls ≤ 1, we have
∆h1(rh) < ∆h2(rh) for any rh ≥ 0 and ∆hda(Ls, Lc) =
L. Then, the achievable distortion exponent is maximized,
by using rh < 0 and rh → 0, for which we obtain
∆hda(Ls, Lc) = min{Ls + Lc, 1}. On the contrary, when
Ls ≥ 1, the distortion exponent is maximized for an rh > 0
such that ∆h1(rh) = ∆h2(rh), i.e.,

r∗h =
(Ls − 1)

Ls − 1 + min{1, Lc}
. (72)

Putting all together we obtain the achievable distortion expo-
nent in (35).
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