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Abstract—We consider the distributed stochastic gradient de-
scent problem, where a main node distributes gradient calcula-
tions among n workers from which at most b ≤ n can be utilized
in parallel. By assigning tasks to all the workers and waiting
only for the k fastest ones, the main node can trade-off the
error of the algorithm with its runtime by gradually increasing
k as the algorithm evolves. However, this strategy, referred to
as adaptive k-sync, can incur additional costs since it ignores the
computational efforts of slow workers. We propose a cost-efficient
scheme that assigns tasks only to k workers and gradually
increases k. As the response times of the available workers are
unknown to the main node a priori, we utilize a combinatorial
multi-armed bandit model to learn which workers are the fastest
while assigning gradient calculations, and to minimize the effect
of slow workers. Assuming that the mean response times of
the workers are independent and exponentially distributed with
different means, we give empirical and theoretical guarantees
on the regret of our strategy, i.e., the extra time spent to learn
the mean response times of the workers. Compared to adaptive
k-sync, our scheme achieves significantly lower errors with the
same computational efforts while being inferior in terms of speed.

I. INTRODUCTION

We consider a distributed machine learning setting, in which
a central entity, referred to as the main node, possesses a large
amount of data on which it wants to run a machine learning
algorithm. To speed up the computations, the main node
distributes the computational tasks to several worker machines.
The workers compute smaller tasks in parallel and send back
their results to the main node, which then aggregates the results
to obtain the desired large computation. A naive distribution of
the tasks to the workers suffers from the presence of stragglers,
i.e., slow or even unresponsive workers [1], [2].

The negative effect of the stragglers can be mitigated by
assigning redundant computations to the workers and ignoring
the responses of the slowest ones, e.g., [3], [4]. However, in
gradient descent algorithms, assigning redundant tasks to the
workers can be avoided when a (good) estimate of the gradient
is sufficient. On a high level, gradient descent is an iterative
algorithm requiring the main node to compute the gradient of a
loss function at every iteration. Simply ignoring the stragglers
is equivalent to stochastic gradient descent (SGD) [5], [6],
which advocates computing an estimate of the gradient of
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the loss function at every iteration [2], [7]. As a result, SGD
trades-off the time spent per iteration with the total number of
iterations for convergence, or until a desired result is reached.
The authors of [8] show that for distributed SGD algorithms,
it is faster for the main node to assign tasks to all the workers
but wait for only a small subset of the workers to return
their results. As the algorithm evolves in iterations, in order
to improve the convergence speed, the main node increases
the number of workers it waits for. Despite reducing the run-
time of the algorithm, i.e., the total time needed to reach the
desired result, this strategy requires the main node to occupy
(and pay for) all the available workers while only using the
computations of the fastest ones.

In this work, we take into account the cost of employing
the workers for computations, independently of whether the
results of their computations are used or not. In contrast
to [8], we propose a cost-efficient scheme that distributes tasks
only to the fastest workers and waits for completion of all
their computations. The downside of our scheme is that, in
practice, the main node does not know which workers are the
fastest. To this end, we introduce the use of a stochastic multi-
armed bandit (MAB) framework to learn the speeds of the
workers while efficiently assigning them computational tasks.
Stochastic MABs, introduced in [9], are iterative algorithms
initially designed to maximize the gain of a user gambling
with multiple slot machines, termed “armed bandits”. At
each iteration, the user is allowed to pull one arm from the
available armed bandits. Each arm pull yields a random reward
following a known distribution with unknown mean. The user
wants to design a strategy to learn the expected reward of the
arms while maximizing the accumulated rewards.

Following the literature on distributed computing [3], [10],
we model the response times of the workers by independent
and exponentially distributed random variables. We addition-
ally assume that the workers are heterogeneous, i.e., have
different mean response times. To apply MABs to distributed
computing, we model the rewards by the response times and
aim to minimize the rewards. Under this model, we show that
compared to adaptive k-sync, using a MAB to learn the mean
response times of the workers on the fly cuts the average cost
(reflected by the total number of worker employments) but
comes at the expense of significantly increasing the total run-
time of the algorithm.

A. Related Work
1) Distributed Gradient Descent: Assigning redundant

tasks to the workers and running distributed gradient descent is



known as gradient coding [4], [11]–[15]. Approximate gradient
coding is introduced to reduce the required redundancy and
run SGD in the presence of stragglers [16]–[23]. The schemes
in [14], [15] use redundancy but no coding to avoid encod-
ing/decoding overheads. In contrast, [2], [7], [8] advocate
running distributed SGD without redundant task assignment to
the workers. Assigning redundant computations to the workers
increases the computation time spent per worker and may slow
down the overall computation process. In [7], the convergence
speed of the algorithm is analyzed in terms of the wall-clock
time rather than the number of iterations. It is assumed that
the main node waits for k out of n workers and ignores the
rest. The authors of [8] show that gradually increasing k,
i.e., gradually decreasing the number of tolerated stragglers
as the algorithm evolves, increases the convergence speed of
the algorithm. In this work, we consider a similar analysis
to the one in [8]; however, instead of assigning tasks to all
the workers and ignoring the stragglers, we require the main
node to only employ (assign tasks to) the required amount of
workers. To learn the speeds of the workers and choose the
fastest ones, we use ideas from the literature on MABs.

2) MABs: Since the problem introduction in [9], MABs
have been extensively studied for decision-making under un-
certainty. A MAB strategy is evaluated by its regret defined
as the difference between the actual cumulative reward and
the one that could be achieved should the user know the
expected reward of the arms a priori. The works of [24],
[25] introduced the use of upper confidence bounds (UCBs)
based on previous rewards to decide which arm to pull at
each iteration. Those schemes are said to be asymptotically
optimal since their regret becomes negligible as the number
of iterations goes to infinity. In [26], the regret of a UCB
algorithm is bounded for a finite number of iterations. While
most of the works assume a finite support for the reward,
MABs with unbounded rewards were studied in [27], [28].
In the class of combinatorial MABs (CMABs), the user is
allowed to pull multiple arms at each iteration. The authors of
[29] extended the asymptotically efficient allocation rules of
[24] to a CMAB scenario. General frameworks for the CMAB
with bounded reward functions are investigated in [30]–[32].
The analysis in [33], [34] for linear reward functions with
finite support is an extension of the classical UCB strategy,
and comes closest to our work.

B. Contributions

We employ a MAB model to reduce the cost of dis-
tributed gradient descent. Our cost-efficient policy increases
the number of employed workers as the algorithm evolves.
We show theoretically and through numerical simulations that
the introduced scheme reduces the cost of distributing the
computations at the expense of increasing the overall run-time
of the algorithm.

II. SYSTEM MODEL AND PRELIMINARIES

Notations. Vectors and matrices are denoted in bold lower
and upper case letters, e.g., z and Z, respectively. For integers
κ, τ with κ < τ , the set {κ, κ+ 1, . . . , τ} is denoted by [κ, τ ].
Sub-gamma distributions are expressed by shape α and rate β,

i.e., SubΓ (α, β), and sub-Gaussian distributions by variance
σ2, i.e., SubG

(
σ2
)
. The identity function 1{z} is 1 if z is

true, and 0 otherwise. Throughout the paper, we use the terms
arm and worker interchangeably.

We denote by X ∈ Rm×d a data matrix with m sam-
ples, where each sample xℓ ∈ Rd, ℓ ∈ [1,m], is the ℓ-
th row of X and by y ∈ Rm the vector containing the
labels yℓ for every sample xℓ. The goal is to find a model
w ∈ Rd that minimizes an additively separable loss func-
tion F (X,y,w) :=

∑m
ℓ=1 F (xℓ, yℓ,w), i.e., to find w⋆ =

argminw∈Rd F (X,y,w).
To enable flexible distributed computing schemes that use

at most b workers1 out of n available in parallel, we employ
mini-batch gradient descent. At each iteration j, the main
node employs a set of workers, indexed by A(j), |A(j)| ≤ b.
Every worker i ∈ A(j) computes a partial gradient estimate
∇F (Xi,j ,yi,j ,wj) using a random subset Xi,j (batch) of X
consisting of s = m

b samples, i.e., Xi,j ∈ Rs×d. The data X
and y is stored on a shared memory, and can be accessed by all
n workers. The main node waits for R(j) ⊆ A(j) responsive
workers and updates the model w as

wj+1 = wj −
η

|R(j)| · s
∑

i∈R(j)

∇F (Xi,j ,yi,j ,wj),

where η denotes the learning rate. According to [7], [35],
fixing the value of |R(j)| = k and running j iterations of
gradient descent with a mini-batch size of s · k results in an
expected deviation from the optimal loss F ⋆ bounded as2

E (k, j) = E[F (k,wj)− F ⋆]

≤ ηLσ2

2cks
+ (1− ηc)j

(
F (w0)− F ⋆ − ηLσ2

2cks

)
. (1)

III. POLICY AND MAIN RESULTS

We group the iterations into rounds r ∈ [1, b] such that the
main node employs |A(j)| = r workers and waits for all of
them to respond, i.e., A(j) = R(j). As in [8], we let each
round r run for a predetermined number of iterations. That is,
at a switching point j = Tr, the algorithm advances to round
r+1. We define T0 := 0, i.e., the algorithm starts in round one,
and Tb as the last iteration, i.e., the algorithm ends in round b.
The total budget B is defined as B :=

∑b
r=1 r · (Tr − Tr−1),

which gives the total number of worker employments.
We assume exponentially distributed response times of the

workers Zj
i ∼ exp(λi) with rate λi and mean µi =

1
λi

result-
ing from the sum of communication and computation delays.
The minimum rate of all workers is λmin := mini∈[1,n] λi.
The goal is to assign tasks only to the r fastest workers. We
denote by policy πcmab a decision process that chooses the
r expected fastest workers. The optimal policy π⋆ assumes
knowledge of the µi’s and chooses r workers with the smallest
µi’s. However, in practice the µi’s are typically unknown. Our
objective is two-fold. First, we want to find confident estimates

1For ease of analysis, we assume that b divides m. This can be satisfied
by adding all-zero rows to X and corresponding zero labels to y.

2This holds under the assumptions detailed in [7], [35], i.e., a Lipschitz-
continuous gradient with bounds on the first and second moments of the
objective function characterized by L and σ2, respectively, strong convexity
with parameter c, the stochastic gradient being an unbiased estimate, and a
sufficiently small learning rate η.



µ̂i of the mean response times µi to correctly identify (explore)
the fastest workers, and second, we want to leverage (exploit)
this knowledge to employ the fastest workers. To trade off
this exploration-exploitation dilemma, we utilize the MAB
framework where each arm i ∈ [1, n] corresponds to a different
worker and r arms are pulled at each iteration. A superarm
Ar(j) ⊆ [1, n] with |Ar(j)| = r is the set of indices of
the arms pulled at iteration j and Ar,⋆ is the optimal choice
containing the indices of the r workers with the smallest
means. Let Wr denote the set of all superarms with cardinality
r. For every worker, we maintain a counter Ti (j) for the
number of times this worker has been employed until iteration
j, and a counter Mi (j) for the sum of its response times,
i.e., Mi (j) =

∑j
y=1 1{i ∈ Ar(y)}Zy

i . Motivated by [26], we
describe a policy πcmab such that in iteration j ∈ [Tr−1+1, Tr]
we choose the superarm Ar(j) as the r arms with the lowest
lower confidence bounds (LCBs) calculated as

LCBi(j − 1) :=

{
−∞ if Ti(j − 1) = 0

µ̂i(j − 1)− θi (j − 1) otherwise,

where the confidence radius θi (j) is a parameter of the policy
πcmab and is a function of the iteration j and the counter Ti(j),
and µ̂i(j) := Mi(j)

Ti(j)
. Our choice of θi (j), clarified in the

sequel, affects the performance of the policy. The estimates
µ̂i and the confidence radii are updated after every iteration
according to the responses of the chosen workers. For an
algorithm summarizing the update procedure, we refer the
interested reader to [36, Algorithm 1].

In contrast to most works on MABs, we minimize an
unbounded objective, i.e., the overall response time Zj

Ar(j)
:=

maxi∈Ar(j) Z
j
i in iteration j. This corresponds to waiting for

the slowest worker. The expected response time of a superarm
Ar(j) is then defined as µAr(j) := E[Zj

Ar(j)] and can be
calculated according to Proposition 1.

Proposition 1. The mean of the maximum of r independently
distributed exponential random variables with different means,
indexed by a set I, i.e., Zp ∼ exp (λp), p ∈ I, is given as

E
[
max
p∈I

Zy

]
=

∑
S∈P(I)\∅

(−1)
|S|−1 1∑

ξ∈S λξ
, (2)

with P (I) denoting the power set of I.

The suboptimality gap of a chosen (super-)arm describes the
expected difference in time compared to the optimal choice.

Definition 1. For a superarm Ar(j) and for Ar
worst defined

as the set of indices of the r slowest workers, we define the
following superarm suboptimality gaps

∆Ar(j) := µAr(j) − µAr,⋆ ,

∆Ar,max := µAr
worst

− µAr,⋆ . (3)

For ν ≤ r, Ar
ν(j) and Ar,⋆

ν denote the indices of the ν th fastest
worker in Ar(j) and Ar,⋆, respectively. Then, we define the
suboptimality gap for the employed arms as

δAr
ν(j)

:= µAr
ν(j)

− µAr,⋆
ν

.

We define the minimum suboptimality gap for all the arms as

δmin := min
r∈[1,b],Ar∈Wr

min
ν∈[1,r]:µAr

ν
>µAr,⋆

ν

δAr
ν
. (4)

Definition 2. We define the regret Rπ
j of a policy π run until

iteration j as the expected difference in run-time of the policy
π compared to the optimal policy π⋆, i.e.,

Rπ
j =E

[
j∑

y=1

Zy
Ar(y)

]
−
∑

r∈[1,b]:j>Tr−1

(min {j, Tr} − Tr−1) min
Ar∈Wr

µAr .

Our main results are summarized in Theorem 1 and Theo-
rem 2. The proof of Theorem 1 is given in the sequel. For the
proof of Theorem 2, the reader is referred to [36].

Theorem 1. The regret of the CMAB policy πcmab with gradu-
ally increasing superarm size and arms chosen based on LCBs
with radius θi (j) :=

√
4f(j)
Ti(j)

+ 2f(j)
Ti(j)

where f(j) = 2 log(j),
and assuming3 λmin ≥ 1, is bounded from above as

Rπcmab
j ≤ max

r∈[1,b]:j>Tr−1

∆Ar,max · n ·(
48 log(j)

min{δ2min, δmin}
+ 1 + u · π

2

3

)
, (5)

where u := maxr∈[1,b]:j>Tr−1
r.

Theorem 1 quantifies the overhead in time spent by πcmab to
learn the average speeds of the workers. To provide a guarantee
on the run-time of the algorithm using πcmab, we combine
in Theorem 2 the regret of πcmab with the run-time guarantee
for the optimal policy, with respect to the number of iterations.

Theorem 2. Given a desired confidence ϵ > 0, the time until
policy πcmab reaches iteration j is bounded from above as

tj≤Rπcmab
j +

b∑
r=1

1{j > Tr−1}µAr,⋆(min {j, Tr} − Tr−1)(1 + ϵ)

with probability

Pr(j) ≥
∏

r∈[1,b]:j>Tr−1

(
1− σ2

Ar,⋆

µ2
Ar,⋆ (min {j, Tr} − Tr−1) ϵ2

)
.

IV. PROOF OF THEOREM 1
While we will benefit from the proof strategies in [26] and

[34], our analysis differs in that we consider an unbounded dis-
tribution of the rewards. Also, compared to [26], we deal with
LCBs instead of UCBs as we want to minimize the response
time of a superarm, i.e., the time spent per iteration. This prob-
lem setting was briefly discussed in [34]. While the authors
bound the probability of overestimating an entire suboptimal
superarm in [34], we bound the probability of individual sub-
optimal arm choices. This is justified by independent outcomes
across arms and by the combined outcome of a superarm being
a monotonically non-decreasing function of the individual
arms’ rewards, that is, the workers’ mean response times. A
superarm Ar(j) is considered suboptimal if µAr(j) > µAr,⋆

and a single arm Ar
ν(j) is suboptimal if µAr

ν(j)
> µAr,⋆

ν
.

In addition to the counter Ti (j), we introduce for every arm
i ∈ [1, n] the counter Ci,e (j) ≤ Ti (j). The integer e refers
to the maximum cardinality of all possible superarm choices,
i.e., Ci,e (j) is valid for all rounds r ≤ e. If a suboptimal

3The assumption λmin ≥ 1 is needed for our proof to hold. In practice,
this assumption amounts to choosing the time unit of our theoretical model
such that the average response time of each worker is less than one time unit.



superarm Ar(j) is chosen4, Ci,e (j) is incremented only for
the arm i ∈ Ar(j) that has been pulled the least until this point
in time, i.e., i = argminν∈Ar(j) Tν(j). Hence,

∑n
i=1 Ci,e (j)

equals the number of suboptimal superarm pulls. Let W≤e

be the set of all superarms with a maximum cardinality of e,
i.e., W≤e :=

⋃
r≤e Wr, and TAr(j)(j) the number of times

superarm Ar(j) has been pulled until iteration j. We have∑
U∈W≤e:µU>µA|U|,⋆

E [TU (j)] =

n∑
i=1

E [Ci,e (j)] . (6)

Applying [37, Lemma 4.5] to express the regret in terms of
the suboptimality gaps in iteration j of round r, i.e., Tr−1 <
j ≤ Tr and e = r, we obtain

Rπcmab
j =

∑
U∈W≤e:µU>µA|U|,⋆

∆U E [TU (j)]

≤ max
r∈[1,b]:j>Tr−1

∆Ar,max ·
n∑

i=1

E [Ci,e (j)] . (7)

To conclude the proof of Theorem 1, we need the following
intermediate results.

Claim 3. Let |Ar(y)| ≤ e hold ∀y ∈ [1, j]. For any h ≥ 0,
we can bound the expectation of Ci,e (j), i ∈ [1, n], as

E [Ci,e (j)] ≤ h+

j∑
y=1

j2 ·
|Ar(y)|∑
ν=1

Pr
(
µAr

ν(y)
> µAr,⋆

ν
,

LCBAr
ν(y)

(y) ≤ LCBAr,⋆
ν

(y)
)
.

Lemma 4. The probability of the ν-th fastest arm of Ar(j)

being suboptimal given that TAr
ν(j)

(j) ≥
⌈

48 log(j)
min{δ2min,δmin}

⌉
,

and λmin ≥ 1, is bounded from above as

Pr
(
µAr

ν(j)
> µAr,⋆

ν
,LCBAr

ν(j)
(j) ≤ LCBAr,⋆

ν
(j)
)
≤ 2j−4λmin .

(8)

By applying Claim 3 with h ≥ 0, we have by construction
for a superarm Ar(j) with |Ar(j)| ≤ e, ν ∈ [1, |Ar(j)|] and
i ∈ Ar(j) that TAr

ν(j)
(j) ≥ Ci,e (j) ≥ h.

Thus, using the result of Claim 3 with h = ⌈ 48 log(j)
min{δ2min,δmin}⌉

and Lemma 4, for λmin ≥ 1 we have

E [Ci,e (j)] ≤ h+

j∑
y=1

j2 ·
|Ar(y)|∑
ν=1

Pr
(
µAr

ν(y)
> µAr,⋆

ν
,

LCBAr
ν(y)

(y) ≤ LCBAr,⋆
ν

(y)
)

≤
⌈

48 log(j)

min{δ2min, δmin}

⌉
+

j∑
y=1

j2 ·
e∑

ν=1

2j−4λmin

≤ 48 log(min {j, Tr})
min {δ2min, δmin}

+ 1 + e · π
3
, (9)

where the last step relates to the Basel problem of a p-series5.
Plugging the bound in (9) into (7) concludes the proof.

The proof of Claim 3 uses standard techniques from the
literature on MABs and is omitted for brevity. The proof
of Lemma 4 is given next.

4Although there exists an optimal superarm, it is not necessarily unique,
i.e., there might exist several superarms Ar(j) with µAr(j) = µAr,⋆ .

5We need λmin ≥ 1 so that the p-series converges to a small value.

Proof of Lemma 4. As given in [26], to overestimate the ν-th
fastest arm of Ar(j), i.e., for LCBAr

ν(j)
(j) ≤ LCBAr,⋆

ν
(j) to

hold, at least one of the following events must be satisfied:

µAr,⋆
ν

> µAr
ν(j)

− 2θAr
ν(j)

(j) , (10)
µ̂Ar,⋆

ν
(j) ≥ µAr,⋆

ν
+ θAr,⋆

ν
(j) , (11)

µ̂Ar
ν(j)

(j) ≤ µAr
ν(j)

− θAr
ν(j)

(j) . (12)

Let in the following f(j) := 2 log(j). We first show that the
requirement6 TAr

ν(j)
(j) ≥ ⌈ 24f(j)

min{δ2min,δmin}⌉ = h guarantees
that µAr,⋆

ν
− µAr

ν(j)
+ 2θAr

ν(j)
(j) ≤ 0, for all Ar(j) ∈ Wr

with r ∈ [1, b], ν ∈ [1, r] and µAr
ν(j)

> µAr,⋆
ν

, thus making
the event (10) a zero-probability event. We have

µAr,⋆
ν

− µAr
ν(j)

+ 2

(√
4f(j)

TAr
ν(j)

(j)
+

2f(j)

TAr
ν(j)

(j)

)

≤ µAr,⋆
ν

− µAr
ν(j)

+ 2

(√
4f(j)

h
+

2f(j)

h

)
≤ −δAr

ν(j)
+ δmin ≤ 0.

Claim 5. Given i.i.d. random variables Zj
i ∼ exp(λi),

j = 1, . . . , T , the deviation of the empirical mean from the
true mean µ̂i − µi :=

1
T

∑T
j=1

(
Zj
i − E[Zj

i ]
)

follows a sub-
gamma distribution SubΓ (T, Tλi) on the right tail and a sub-
Gaussian distribution SubG

(
1

Tλ2
i

)
on the left tail.

Applying Claim 5 (which can be proven by moment gen-
erating functions and results from [38]) and taking λmin ≥ 1,
we bound the probability of the event (11) as

Pr
(
µ̂Ar,⋆

ν
(j) ≥ µAr,⋆

ν
+ θAr,⋆

ν
(j)
)

= Pr

(
µ̂Ar,⋆

ν
(j) ≥ µAr,⋆

ν
+

√
4f(j)

TAr,⋆
ν

(j)
+

2f(j)

TAr,⋆
ν

(j)

)

≤ Pr

(
µ̂Ar,⋆

ν
(j) ≥ µAr,⋆

ν
+

√
4f(j)

TAr,⋆
ν

(j)λmin
+

2f(j)

TAr,⋆
ν

(j)

)

≤ Pr

(
µ̂Ar,⋆

ν
(j) ≥ µAr,⋆

ν
+

√
4f(j)λmin

TAr,⋆
ν

(j)λ2
min

+
2f(j)λmin

TAr,⋆
ν

(j)λmin

)
≤ exp−4 log(j)λmin ≤ j−4λmin ,

where in the penultimate step we used the sub-gamma tail
bound in [38, p. 29] with ε = 2 log(j)λmin.

For (12), we have

Pr
(
µ̂Ar

ν(j)
(j) ≤ µAr

ν(j)
− θAr

ν(j)
(j)
)

= Pr

(
µ̂Ar

ν(j)
(j) ≤ µAr

ν(j)
−

√
4f(j)

TAr
ν(j)

(j)
− 2f(j)

TAr
ν(j)

(j)

)

≤ Pr

(
µ̂Ar

ν(j)
(j) ≤ µAr

ν(j)
−

√
4f(j)

TAr
ν(j)

(j)

)
≤ exp−4λ2

Ar
ν(j)

log(j)

≤ j
−4λ2

Ar
ν (j) ≤ j−4λ2

min ≤ j−4λmin ,

where we used the sub-Gaussian tail bound in [37, p. 77].

6The scaling factor γ = 24 is chosen as an approximation of the exact
solution of 2

(√
4
γ
+ 2

γ

)
= 1, which is 4

(
3 + 2

√
2
)
≈ 23.31 ≤ 24.
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Fig. 1: Comparison to adaptive k-sync [8] with limited budget B.

V. NUMERICAL SIMULATIONS

A. Setting

Similarly to [8], we consider n = 50 workers with
exponentially distributed response times whose means are
chosen uniformly at random from {0.1, 0.2, · · · , 0.9} such
that λmin ≥ 1. We limit the budget to b = 20 parallel
computations. We create m = 2000 samples xℓ with d = 100
entries, each drawn uniformly at random from [1, 10] with
labels yℓ ∼ N

(
xT
ℓ w

′, 1
)
, for some w′ drawn uniformly at

random from [1, 100]d. The model w is initialized uniformly
at random as w0 ∈ [1, 100]d and optimized subject to the
least squares loss function F (X,y,w) := 1

2∥Xw− y∥22 with
learning rate η = 1 × 10−4. We assess the performance of
the model by the error function ∥X+y −w∥2 that quantifies
the gap with the analytical solution, so that the analysis is
largely data and problem independent. For all the simulations,
we present the results averaged over at least ten rounds.

B. Switching Points

The switching points Tr, r ∈ [1, b], are the iterations in
which we advance from round r to r+1. In [8], Pflug’s method
[39] is used to determine the Tr’s on the fly. However, this
method is very sensitive to the learning rate [40], [41], and may
result in different Tr’s across different runs. While implicit
model updates [40] or alternative criteria [41] can avoid this
effect, we fix the switching points to ensure comparability
across simulation runs. We empirically determine T1 and
necessary statistics to calculate Tr for r ∈ [2, b] using (1).

C. Simulation Results

In Fig. 1, we analyze the convergence of the CMAB-based
algorithm with two different LCB choices, and compare with
the optimal policy π⋆ and the scheme in [8].

As waiting for the r fastest out of n > r workers is
on average faster than waiting for all out of r workers, the
adaptive k-sync strategy in [8] is faster than the one introduced
here. However, with a total budget of B < 1.3 × 105, the
CMAB-based strategy reaches an error of ≈ 2 × 10−3 (cf.
dotted red line) while adaptive k-sync achieves an error of
only ≈ 6× 101 (cf. dashed brown line). Comparing π⋆ to the
performance of πcmab (cf. blue line), learning the mean worker
speeds slows down the convergence by a factor of almost three.
This is because the chosen confidence radius mostly dominates
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Fig. 3: Comparison of the theoretical and simulated regret.

the mean response time estimates of the workers, which leads
to an emphasis on exploration, i.e., more confident estimates
at the expense of sampling slow workers more often. This
is reflected in Fig. 2, which plots the number of times each
worker is employed, with the workers sorted from fastest to
slowest. Scaling f(j) with µ̂min := mini∈[1,n] µ̂i significantly
improves the convergence speed, but also delays the deter-
mination of the fastest workers. While with f(j) = 2 log(j)
the policy correctly determined all b fastest workers in ten
simulation runs, with f(j) = 2 log(j)µ̂min in one out of
ten simulations the algorithm commits to a worker with a
suboptimality gap of 0.1. This reflects the trade-off between
the competing objectives of best arm identification and regret
minimization discussed in [42]. However, since the fastest
workers have been determined eventually with an accuracy
of 99.5%, the proposed adapted confidence bound seems
reasonable to improve the convergence rate. Fig. 3 compares
the theoretical regret guarantee to practical results for both
choices of f(j). As the theoretical guarantee is a worst case
analysis, the true performance is underestimated.

VI. CONCLUSION

We have introduced a cost-efficient distributed machine
learning scheme that assigns random tasks to workers and
leverages all computations. To speed up the convergence, we
utilized a CMAB model, for which we provided theoretical
regret guarantees and simulation results. While our scheme is
inferior to the adaptive k-sync strategy in [8] in terms of speed,
it achieves significantly lower errors with the same computa-
tional efforts. Deriving tighter regret bounds and improving
the choice of the confidence bound is left for future work.
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