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Abstract—We present DeepWiVe, the first-ever end-to-end
joint source-channel coding (JSCC) video transmission scheme
that leverages the power of deep neural networks (DNNs)
to directly map video signals to channel symbols, combining
video compression, channel coding, and modulation steps into
a single neural transform. Our DNN decoder predicts residuals
without distortion feedback, which improves the video quality
by accounting for occlusion/disocclusion and camera movements.
We simultaneously train different bandwidth allocation networks
for the frames to allow variable bandwidth transmission. Then,
we train a bandwidth allocation network using reinforcement
learning (RL) that optimizes the allocation of limited available
channel bandwidth among video frames to maximize the overall
visual quality. Our results show that Deep WiVe can overcome the
cliff-effect, which is prevalent in conventional separation-based
digital communication schemes, and achieve graceful degradation
with the mismatch between the estimated and actual channel
qualities. DeepWiVe outperforms H.264 video compression fol-
lowed by low-density parity check (LDPC) codes in all channel
conditions by up to 0.0485 in terms of the multi-scale structural
similarity index measure (MS-SSIM), and H.265 + LDPC by
up to 0.0069 on average. We also illustrate the importance of
optimizing bandwidth allocation in JSCC video transmission by
showing that our optimal bandwidth allocation policy is superior
to uniform allocation as well as a heuristic policy benchmark.

Index Terms—Deep learning, joint source-channel coding,
video compression, wireless video transmission.

I. INTRODUCTION

Video content contributes to more than 80% of Internet
traffic and the percentage is only expected to increase [1].
Video compression is widely used to reduce the bandwidth
requirement when transmitting video signals wirelessly. This
follows the modular approach employed in almost all wireless
video transmission systems, where the end-to-end transmis-
sion problem is divided into two: (1) a source encoder that
compresses the video into a sequence of bits of the shortest
possible length such that a reconstruction of the original video
is possible within an allowable distortion; and (2) a channel
encoder that introduces redundancies such that the compressed
bits are protected against channel errors and interference. A
diagram of this modular approach is shown in Fig. 1.

Separate source and channel coding design provides mod-
ularity and allows independent optimization of each compo-
nent. It has been applied successfully in a large variety of
applications from on-demand mobile video streaming to video
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Fig. 1. Diagram of a typical separation-based digital video delivery system
employed by almost all communication systems today.

conferencing and digital TV broadcasting. However, the limits
of the separation-based designs are beginning to rear with
the emergence of more demanding video delivery applica-
tions, such as wireless virtual reality (VR) and drone-based
surveillance systems. These applications impose low latency
requirements, suffer from highly-varying channel conditions,
and need to be implemented on energy-limited mobile devices,
making the separation-based approach highly suboptimal.

In the context of wireless video transmission, separation-
based designs lead to what is known as the cliff-effect. That
is, when the channel condition deteriorates below the level
anticipated by the channel encoder, the source information
becomes irrecoverable. This leads to a cliff edge deterioration
of the system performance. As a result, most current systems
operate at a much more conservative transmission rate than is
suggested by the instantaneous channel capacity, and employ
additional error correction mechanisms through automatic
repeat requests (ARQ).

An alternative to the separation-based architecture is joint
source-channel coding (JSCC). It has been shown theoretically
that under finite delay constraints, that is, in the finite block
length regime, JSCC can achieve lower distortion than separate
source and channel coding [2]-[5]. The most straightforward
JSCC approach continues to employ separate modules for
compression and communication, but jointly optimizes various
parameters of these modules in a cross-layer framework. While
there have been many such proposals over the years [6]-[13],
these techniques typically do not provide sufficient gains to
justify the significant increase in system complexity.

A more fundamental approach is to design the transmission
system from scratch, without considering any digital inter-
face in between. The best example for such an approach
is analog communications, such as AM/FM radio or analog
TV, where the information is directly modulated onto the
carrier waveform without any compression. By doing so,



Fig. 2. Diagram of a typical interpolation structure used in video compression
algorithm.

analog communication can overcome the cliff-effect problem
by showing graceful degradation with the channel parame-
ters, and it is extremely simple, unlike the aforementioned
cross-layer designs. From a fundamental information theoretic
perspective, when transmitting independent Gaussian samples
over an additive white Gaussian noise (AWGN) channel, with
one sample per channel use on average, uncoded transmission,
where each sample is simply scaled and transmitted, meets the
theoretical Shannon bound [4]. With digital transmission, the
same performance can only be achieved by vector-quantizing
an arbitrarily long sequence of source samples, followed by a
capacity achieving channel code. Benefits of analog transmis-
sion has also been shown in various multi-user scenarios [14],
[15]. However, analog modulation cannot exploit the available
bandwidth efficiently, and the optimality of simple uncoded
transmission does not generalize to bandwidth-mismatched
scenarios. Despite this theoretical suboptimality, analog mod-
ulation approaches to image and video transmission have
recently gained popularity [16]-[19], mainly due to their low
computational complexity and the graceful degradation with
channel quality.

Recently, it has been shown in [20], [21] that deep neu-
ral networks (DNNs) can break the complexity barrier in
designing effective JSCC schemes, focusing particularly on
the image transmission problem. The approach there is to
train DNN models in an autoencoder architecture with a non-
trainable channel layer between the encoder and decoder. The
authors showed that this approach not only provides graceful
degradation with channel quality, but can also achieve results
similar to or superior than state-of-the-art separation-based
digital designs. An extension to this work [22] further shows
that JSCC is successively refineable; that is, an image can
be transmitted in stages, and each additional channel block
further refines the quality of the decoded image, with almost
no additional cost.

Herein, we propose a DNN-based JSCC solution for wire-
less video transmission, called DeepWiVe, which is trained
to optimize the reconstructed video quality in an end-to-end
fashion. Although the problem of video compression using
deep learning has received significant attention [23]-[31], no
prior work has considered deep learning aided wireless video
delivery.

The core idea behind video compression algorithms is to
exploit the temporal correlations across video frames. In a

standard video sequence, motion differences between succes-
sive frames is typically very small, and video compression
algorithms can be very efficient by identifying intermittent
key frames, which are compressed and decoded independently,
and conveying only the motion and residual information for
the remaining frames, thereby exploiting temporal redundancy.
Here, the residual information refers to the difference between
the true frame and the motion compensated key frame. Fig. 2
shows a typical interpolation structure in a video compression
algorithm. The residual information is available at the encoder
as the encoder can simply decode the compressed frames and
observe the difference between the source and its reconstruc-
tion. On the other hand, for JSCC, the residual depends on
the reconstructed key frames and motion information, which
in turn depend on the channel condition during transmission.
Therefore, the residual is not known at the encoder. To
overcome this, we propose to use a DNN to predict the
residual, without the need for distortion feedback.

In DeepWiVe we directly map the video sequence into
the channel vector under a channel bandwidth constraint for
the transmission of a group-of-pictures (GoP). Similarly to
[22], we employ variable bandwidth transmission and allocate
the bandwidth dynamically using reinforcement learning (RL)
to train a bandwidth allocation network that optimizes the
bandwidth utilization of each frame. Our results show that
DeepWiVe can meet or beat industry standard video com-
pression codecs, such as H.264, combined with state-of-the-
art channel codes, such as low density parity check (LDPC)
codes, in almost all channel conditions tested, while achieving
graceful degradation of video quality with respect to channel
quality, thereby avoiding the cliff-effect.

The contributions of this paper are summarized as follows:

1) We propose DeepWiVe, a JSCC-based wireless video
transmission scheme leveraging DNNs to jointly com-
press and channel code video frames in an end-to-end
manner to maximize the end video quality.

2) We train our DNN decoder to predict residuals without
the need for distortion feedback.

3) We optimize bandwidth allocation among video frames
by training a bandwidth allocation policy using RL, and
show that it achieves superior performance than naive
uniform allocation and a heuristic policy.

4) We show that it is possible to achieve variable bandwidth
transmission by simply training different bandwidth al-
location networks.

5) Numerical results show that our proposed DeepWiVe
is superior to industry standard H.264 [32] codec with
state-of-the-art LDPC channel codes [33] in all channel
conditions tested and can avoid the cliff-effect. It also
beats H.265 [34] using the same channel codes when
evaluated in terms of the multi-scale structural similarity
index measure (MS-SSIM).

II. RELATED WORK

JSCC for video delivery has consistently received attention
over the years. The earliest work we could find is [10],
which studies the problem of video multicast to heterogeneous



receivers. They approached the problem from the receivers’
perspective, where the source video is encoded in a hierar-
chical manner, with each layer of the hierarchy distributed
on a separate network channel. Each receiver then adapts to
its local channel capacity by adjusting the number of layers
it decodes. In a similar line of work, [35] uses scalable
video coding (SVC), which encodes the source video into
multiple bitstreams, with a base layer that represents the
lowest supported quality and a set of enhancement layers
representing versions of the video at different qualities. Since
the base layer and lower quality layers require more error
protection than higher quality layers, unequal error protection
(UEP) of packets is used. To determine the optimal channel
code rate for each layer such that the average distortion is
minimized, they devised a low complexity search algorithm to
find the optimal choice of channel code rates among a set of
available rates. There is a large body of works that use source
coding schemes similarly to SVC and minimize the end-to-
end distortion by jointly optimizing various parameters of the
source and channel codes [8], [9], [11]-[13], [36]. However,
none of the scheme proposed were able to achieve adequate
performance gains for the increased complexity they introduce
as a result of the optimization of the parameters. Moreover,
with the exception of [10] and [12], which model the channel
as a physical link with a certain error probability, the above
works mainly consider time-varying channels with proposed
schemes aimed at adapting to channel variations.

A completely refreshed approach to JSCC video delivery,
called SoftCast, utilizing low complexity methods to map
videos or images from the pixel domain to channel symbols
directly was first introduced in [16]. Their scheme involves
a hybrid digital and analog design by leveraging frequency
domain sparsity. Since then, various works have improved
upon [16] by optimizing different aspects of the hybrid digital
and analog design. In [16]-[19], frequency domain sparsity
is exploited by utilizing compressed sensing to reduce the
bandwidth requirement. In [37], the power allocation prob-
lem is addressed by optimizing the division of frequency
domain coefficients into chunks. In [38], the proposed scheme
separates a base layer (low frequency coefficients) from the
enhancement layer (high frequency coefficients) and sends
the base layer using a digital separation-based system, while
the enhancement layer is sent using a scheme similar to
SoftCast. This method also improves power allocation since
low frequency coefficients have larger values than high fre-
quency coefficients in natural images so the majority of the
signal energy is sent through the digital system. In [39], a
similar approach is utilized, however, instead of the high
frequency components, they send the gradient of the image
as the enhancement information. In [40], the prior used for
estimation is modified to obtain better reconstruction quality
(SoftCast assumes a Gaussian prior). In [41], the variability of
temporal redundancies between frames is addressed by intro-
ducing adaptive GoP sizes. Although these methods have been
shown to overcome the cliff-effect, they are not competitive to
separation-based schemes when it comes to video quality and
cannot exploit the available bandwidth, or adapt to channel
and network conditions dynamically.

TABLE I
DEFINITION OF NOTATIONS.
Parameter Definition
E[-] Expectation operator
II-1]2 l2 norm operator
P Transmitter power constraint
HW Height and width of video frame

Following the success of DNNs in various image and video
intelligence tasks, there has been a growing interest in employ-
ing them for video compression [23]—[31]. Although some re-
cent works have reported competitive or superior performance
with respect to state-of-the-art video compression standards
H.264/5, none of the works have considered the wireless video
delivery problem, taking into account the channel conditions.
In principle, the works treat the communication layer simply as
a perfect bit pipe. As a result, the shortcomings of separation-
based schemes, such as the cliff-effect, are inherent to those
works if applied in a wireless communication scenario.

The closest prior art to our work are [20]-[22], [42], [43],
which explore the JSCC problem, but they focus on image
transmission. In the context of video transmission, there are
unique challenges that sets it apart from simple image trans-
mission. Namely, exploiting the inter-frame redundancies to
improve coding efficiency and to optimize resource allocation
across the frames. Therefore, extending the problem from
image to video transmission is not a trivial task.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the problem of wireless video transmission in a
constrained bandwidth setting. Table I shows the definition of
notations used herein. Let X = {X"}1_, be a video sequence
made up of T GoPs, where X" = {x7,...,x%}, xI' €
REXWX3 i ¢ [1, N], represents the nth GoP of size N
frames in the video sequence. Each frame x[* is represented as
a 24 bit RGB image. We wish to design an encoding function
E : RTNXHXWx3 y CTF which maps the video sequence X
to a set of complex symbols z = F(X) € CT*, and a decoding
function D : CTF s RTNXHXWX3 "ywhich maps the channel
output y = Y(z), to an approximate reconstruction of the
original video sequence X = D(y). Here, Y(-) is the channel
transfer function.

In this setting, we restrict the number of channel uses to k
per GoP, which can be considered as a bandwidth constraint
and we define the bandwidth compression ratio as

.k
" 3HWN'

We consider the following channel model:

p (1)

y =7T(z) =Hz +n, 2)

where H = diag(h'L, ..., hTT) € CT**T* is a block-wise
diagonal matrix where each block h"I = diag(h”,...,h") €
Ck*F represents the channel gain for the nth GoP. The channel
noise n ~ CN(0,0%I) is an independent and identically
distributed (i.i.d.) additive Gaussian noise with variance o>
and I is the identity matrix.



We impose an average power constraint P at the transmitter:

1

Tk
where the expectation is over the distribution of the encoder
output. We consider two scenarios regarding the channel
variations and the availability of channel state information
(CSI):

1) The channel gain H is static and both the transmitter
and receiver have full knowledge of the channel gain
and the noise variance through channel estimation and
feedback [44].

2) The channel gain h™ for each GoP is i.i.d. and the
transmitter only knows the average SNR, while the
receiver knows the phase of the channel gain arg(h™),
but not the magnitude |h"|, Vn

E. [|lzl3] < P, 3)

We note that in the first scenario, having full knowledge of the
CSI reduces the channel model to an additive white Gaussian
noise (AWGN) channel for each GoP as the transmitter can
perform precoding, such that

Z |H|Z’ 4)
where H* is the element-wise complex conjugate of H and
|H| = diag(|h!|T,...,|hT|I) is the element-wise magnitude
of H. Accordingly, the channel signal-to-noise ratio (SNR)
for the AWGN channel is defined as

| n|2p
SNRAWGN =10 loglo ——— ) dB. (5)
o2

In the second scenario, the model is equivalent to a real
fading channel with double the bandwidth as only the mag-
nitude of the channel gain changes randomly for each GoP
transmission period. This is because the receiver, given the
phase of the channel gain, can perform phase equalization,
such that

y < exp(—jarg(H))y, (6)

where arg(H) = diag(arg(h')L, ..., arg(hT)I) is the
element-wise phase values of the channel gains in H, and
J = v/—1 here exclusively. Accordingly, the average channel
signal-to-noise ratio (SNR) is defined as
E[|n"]2]P
SNRFuging = 101og ([2]) dB. 7
o
We measure the average quality of the reconstructed video
using two metrics: peak signal-to-noise ratio (PSNR) and MS-
SSIM. They are defined as

2552
PSNR(X, X) 1010 dB,
( nz:l; 810 (lPSNR(X X7 ))
(®)
and
1 T N
MS-SSIM(X, X) ﬁggl Ivs-ss (X7, %7), (9)
where

Bandwidth Allocation
Wireless Channel

Fig. 3. DeepWiVe system overview.

and
lMS-SSIM(X?, )A(ZL) =1- MS-SSIM(X?, )A(ZL) (1 1)
MS-SSIM is defined between two frames as
MS-SSIM(x7', x7') (12)
M Vi
= |l (), %M T T ey (7, %] [ (7, %) |, (13)
j=1
where
2pixn fign + €1
a(x],%x7) = L , 14
(i %) 120+ p2, + e (14)
204n0zn + Co
(XM R = N T 15
CJ(XfL 7Xz ) 0')2(7_1 +0_?(n +027 ( )
Oxnxn + €3
T"l SN — 7 7 . 16
Sj (XZ X ) O'X?O'f(? + C3 ( )

Here, Hxp s 0271, Uinx” are the mean and variance of x7', and
the covariance between x;' and X7, respectively. ci, ca, and
c3 are coefficients for numeric stability; oy, B, and y; are
the weights for each of the components. Each ¢;(-) and s;(-)
are computed at a different downsampled scale of (xI',X7").
We use the default parameter values of (ay, 85, ;) provided
by the original paper [45]. MS-SSIM has been shown to be
as good and better at approximating human visual perception
than the more simplistic structural similarity index (SSIM) on
different subjective image and video databases.

The goal is to maximize the reconstructed video quality,
measured by either Eqn. (8) or (9), between the input video
X and its reconstruction X, under the constraints on the
bandwidth ratio p and average power P.

A. Joint Source-Channel Video Coding

In this section, we present our proposed DNN-based joint
source-channel video encoding and decoding scheme. We will
deconstruct the design of the encoder (£) and decoder (D) into
three parts: the key frame encoder/decoder (fg, fg/), parame-
terized by (6,0"), the interpolation encoder/decoder (gg, g/
parameterized by (¢, ¢'), and the bandwidth allocation func-
tion ¢, parameterized by 1. We will represent all these
functions with DNNs, where the parameters of the functions
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Fig. 4. Key frame encoder/decoder (fg, fg:) network architectures.

correspond to the weights of these DNNs. An overview of our
scheme is shown in Fig. 3.

One of the drawbacks of prior works was the need to train
multiple networks, one for each channel condition. To address
this issue, [42] proposed an attention feature (AF) module,
motivated by resource assignment strategies in traditional
JSCC schemes [46]-[48], which allows the network to learn to
assign different weights to different features for a given SNR.
That is, given the SNR and the input tensor of the channel, the
AF module produces an attention mask for each channel of
the input tensor and scales each channel based on the attention
weights. By doing so, the network learns to assign different
importance levels to each feature channel, similarly to unequal
power allocation. To learn the attention mask for each SNR, we
deliberately randomize the channel SNR during training, and
provide the AF modules with the SNR values. The results in
[42] show that a single model whose parameters are adjusted to
the channel SNR with the help of the AF modules perform at
least as well as the models trained for each SNR individually.
We adopt the AF module in DeepWive to obtain a single model
that can work over a range of SNRs.

The encoding and decoding procedures are described herein.
Consider the nth GoP, X" = {x7,...,x%}. The last (x)
frame is called the key frame and is compressed and transmit-
ted using the key frame encoder fg : RT*XWx3 5 CF,

2! = fo(x7,6%), i =N, (17)

where ¢ is the estimated channel noise power at the trans-
mitter. Here, each element of z}', denoted by z{jj, represents
the in-phase (I) and quadrature (Q) components of a complex
channel symbol. We note that, while the channel input/output
values are complex, we employ real-valued DNN architecture.
The mapping between real network outputs and complex chan-
nel inputs (or vice versa) is achieved by pairing consecutive

real values at the output of the encoder DNN.

2

LeakyRelLU

[ Pixel Shuffle, 2] [ Pixel Shuffle, 2

3x3 Conv, 4xC
s2

3x3 Convy, C, s1

[

The values in the complex latent vector are first normalized
according to

P

2= VkP——l—

V(@) Tz

where P is the power constraint, k is the bandwidth constraint,
and H refers to the Hermitian transpose.

These values are then directly sent through the channel as,

j=1,....k, (18)

yit = T(2). (19)

Consequently, the key frame decoder fo : CF s RHXWx3
that maps the channel output §* € C* observed at the receiver
to a reconstructed frame x7 € R7XW>3 ig defined as:

X! = fo(y7,6%), i=N. (20)

The loss between the original frame x;* and the reconstructed
frame X' is computed using Eqn. (10) or (11) depending
on which performance measure is being used. The network
weights (0,0') are then updated via backpropagation with
respect to the gradient of the loss.

The network architectures of the key frame encoder and
decoder are shown in Fig. 4. The Pixel Shuffle module,
first proposed in [49], increases the height and width of the
input tensor dimensions efficiently by exchanging channel
dimensions for height and width dimensions. The GDN layer
refers to generalized divisive normalization, initially proposed
in [50], and has been shown to be effective in density
modeling and compression of images. The Attention layer
refers to the simplified attention module proposed in [51],
which reduces the computation cost of the attention module
originally proposed in [52]. The attention mechanism has
been used in both [51] and [52] to improve the compression
efficiency by focusing the neural network on regions in the
image that require higher bit rate. The network in Fig. 4 is fully
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Fig. 5. Architecture of the SSF estimator network hy,.

convolutional, therefore it can accept input of any height (H)
and width (W), making it versatile to any video resolution.

For the remaining frames, ie., x, 7 = 1,...,N — 1,
we use the interpolation encoder g4(-) to encode the motion
information (97" ,, 4}, ;) and residual information (r}_,, r}, ,)
of x}' with respect to two reference frames (X' ;, X}, ;) that are
t frames away from the current one. These reference frames
are what the encoder expects the corresponding reconstructed
frames x}' ;, X7, to be. This is done via channel emulation
and decoding at the transmitter to obtain an approximation of
what the transmitter expects the receiver to reconstruct.

We follow the same interpolation structure as the one
presented in Fig. 2 for a GoP size N = 4. That is, for
i = 2, t = 2, while for ¢« = 1,3, t = 1. We define
= Xy ~! and assume that the GoPs are encoded and
decoded sequentially, such that the frames from the previous
decoded GoP are available as reference for the current GoP. To
interpolate x{* from x{* ;, and X7, ,, motion information, such
as optical flow [53], is usually used to warp a reference image
by translating the pixels in the reference image according to
the optical flow vectors. These optical flow vectors describe the
horizontal and vertical translations of each pixel in a reference
image in order to transform it into the target image. The
difference between the optical flow transformed image and
the true target image is called the residual, which is used to
capture information that cannot be described by optical flow,
such as occlusion/disocclusion and camera movements.

To estimate the motion information (8;"_,, 4}, ,), instead of
using optical flow, we use scaled space flow (SSF), which was
first proposed by [29] as a more general description of pixel
warping than optical flow. The idea is to blur regions of the
frame where the motion is difficult to model using traditional
pixel warping and instead compensate those regions using the
residual. To that end, in scale-space warping (SSW), a frame
is first transformed into a fixed-resolution volume XZ +t =
X7y Xiye ® G(00), Xy, @ G(200), - - -, z+t®G( Loo)].
where X}, ® G(0g) denotes Gaussian blurring of the frame
X} ; by convolving X}, ; with a Gaussian kernel G(og) with
standard deviation oy and ® is the convolution operation. V'
is the number of levels in the volume. X7, , € RExWx(V+1)
represents a progressively blurred version of x7',,, which can
be sampled at continuous points via trilinear interpolation. The

v
X0

scaled space flow 87, € R*W>3 that warps frame X7, , to
an approximation of x}' denoted by x7',, is then defined as

"o = SSWI(XY, 4, 6il4y)-
s.t. xiH[x, Y]

= X?+t[x + 5?+t[x7 y7 1]7 y + 6?+t[x7 yv Q]a 6'?+t[$7 ya 3“
(2D

To estimate the scaled space flow 8, ,, we use the network
architecture hy, : REXWx6 s REXWX3 proposed in [29],

6?—&-75 = hy (%7, )_(Z‘L-f-t)'

Fig. 5 shows the architecture of the SSF estimator network A,,.
The architecture progressively downsamples the input using
convolutional layers before upsampling it back to the frame
dimensions. The channel dimension of the output SSF &7, ,,
instead of representing the three color channels, represent
the (z,y,z) sampling points in the SSF volume X, ,. This
architecture is similar to U-Net [54], which has been shown to
perform well for image segmentation problems. The intuition
here is that the network can also be used to estimate objects
or segments moving in the same direction in a scene, which
helps to estimate the SSF.

Given the above definition of SSF, the residual r},, is
defined as

(22)

it (23)

RHEXxWx2L s CF defines

n _on =
r, =X —X

The interpolation encoder g :
the mapping

n SN ’r n n ~2
s X Uiy Tiy g 054,004, 0 )s

N —1.

n o__ n g
Z; _g¢(xz7x

i=1,2,..., (24)

The vector z!' € CF is power normalized according to Eqn.
(18) and sent across the channel according to Eqn. (19).

Given the noisy y}', the decoder first estimates the SSF,
the residual, and a mask. That is, the interpolation decoder
gy : CF o REXWX12 defines the mapping

n n
(ai—baz-&-t’ PR )_gtb’(sz )a (25)
where 8.y, € RHXWx3 jn ¢ RHxWx3 45q mr ¢

RHXWXB mt c RHXW

?,C

’ ,¢c = 1,2,3, a 2D matrix in the
third dimension of m}

, satisfies:

3
§ : n

miyc = ].wa.
c=1

That is, for each H and W index of the mask m?, the sum
of values along the channel dimension is equal to 1, which is
achieved by using the softmax activation. The reconstructed
frame is then defined as:

(26)

xj' =(m

")y« SSW(XP ,, 8, )+
(m}) * SSW(x Hné?m + (mf)s * B,

where * refers to element-wise multiplication. The predicted
mask m} acts as a convex set of weights to sum the
two motion compensated predictions and the predicted resid-
val, such that the resultant prediction X} remains within

27
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Fig. 6. Information flow over the interpolation network.

[0,255]. A diagram of the interpolation structure described
herein can be seen in Fig. 6. The architectures of g4 and
ge are functionally the same as fg and fg:, except the
size of the input tensor, which is the concatenation of
(x}, XP_ Xy, 1,1, 67, 07 ) along the channel di-
mension. As in the key frame, the network weights (¢, @', 1)
are updated via backpropagation with respect to the gradient

of the loss between the original and the reconstructed frame.

B. Bandwidth Allocation

In the previous section, we have assumed that each frame
utilizes the full bandwidth of %k channel uses allowed for
each GoP. In order to satisfy the bandwidth constraint defined
in Section III, the encoder must decide how to allocate k
channel uses to the N frames in a GoP. Intuitively, if the
frame in consideration x;' is exactly the same with respect to
the reference frames (X}’ ,, X} ,) that it is interpolated from,
then no information needs to be transmitted. On the other
hand, if there is significant differences with respect to the
reference frames, then more information needs to be sent in
order to accurately interpolate the frame. Since the last frame
of a previous GoP becomes the reference frame of the next
GoP (x% = x{*t1), we formulate the problem of allocating
available bandwidth in each GoP as a Markov decision process
(MDP) and solve the optimal bandwidth allocation policy
using reinforcement learning.

An MDP is defined by the tuple (S, A, P, 1), where S is the
set of states, 4 is the action set, P is the probability transition
kernel that defines the probability of one state transitioning to
another state given an action, and r : S x A — R is the reward
function. At each time step n, an agent observes state s € S
and takes an action a"™ € A based on its policy 7 : S — A.
The state then transitions to s”*! according to the probability
P(s"Tls", a"), and the agent receives a reward r"(s”, am).
The objective is to maximize the expected sum of rewards
J(7) = Bginw, x[Xoioy 7 Yri(s’, %)), where wgr is the
initial state distribution and v € (0, 1) is the reward discount
factor to ensure convergence.

In the dynamic bandwidth allocation problem, we define
each GoP as one time step, where the state at time step n is
s = {M",R",F" 5%}, with

M" = {x]'}]L,, (28)
R™ = {r]y, }" (29)
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Fig. 7. Tllustration of the bandwidth allocation problem formulated as a MDP.

F* = {67, 5", (30)

and X = %% '. The action set A is the set of all the
different ways the available bandwidth k& can be allocated to
each frame in the GoP. In order for the decoder functions
for and g4 to be able to decode each frame that has been
given different amounts of bandwidth, we use a result in
[22], which showed that joint source-channel encoded images
can be successively refined by sending increasingly more
information. This is achieved by dividing the latent vectors z;’
into U equal sized blocks (i.e., z}' = {z}y,...,2z]y}, 27, €
(C%,u = 1,...,,U), while randomly varying the number
of blocks u;' of the latent code transmitted in each batch
zi' (ui') = {z{,...,2n}, v < U. This training process
leads to the descending ordering of information from z;; to
zj';. As such, each action represents a” = [uf, ..., u};|. We
implement this training process in the algorithm described in
Section III-A by zeroing out the blocks in the latent vector not
transmitted. As such, the action set is all the ways to assign
U blocks to the N frames in the GoP; that is, Zf\il ul = k.
Consequently, it can be shown that the number of ways to
assign U blocks to N sets without replacement is

U+ N —1)!

|A:sz_m

(3D
Since we are concerned with maximizing the visual quality
of the final video, we define the reward function r™ as

r'" = —log;, (l(X",X”)),

where [(-,-) is either lpsng Or Iums.ssiv depending on the
video quality metric used. Note that in the previous section,
we said that the transmitter performs channel emulation in
order to obtain the reference frames (X} ,,X},,). Since the
precise estimate of the reference frames is bootstrapped to the

(32)
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Fig. 8. Architecture of the bandwidth allocation network g,;. The convolu-
tional part of the network for feature extraction is functionally the same as
the key encoder network (fg) but with 21(IN — 1) + 6 input dimensions to
account for all the tensors in state s™.

amount of bandwidth allocated, we initially assume a uniform
bandwidth allocation (i.e., 4] = k/U) when computing the
SSF and residuals; but once the allocation has been done,
the reference frame in the next state (i.e., )‘(8“ € Mnth
is estimated based on the bandwidth allocated.

To solve the MDP described herein and to learn the optimal
allocation policy, we use deep Q-learning [55], where the net-
work gy seeks to approximate the Q-function @) : SxA — R.
The purpose of the Q-function is to map each state and action
pair to a Q value, which represents the total discounted reward
from step n given the state and action pair (s”,a™). That is,

Q(s",a") = E

Z,Yifnri Sn’an], v(sn’an) cSx A

(33)
As is typical in DQN methods, we use replay buffer, target
network, and e-greedy to aid the learning of the Q-function.
The replay buffer R stores experiences (s, a", ", s"*1) and
are sampled uniformly to update the parameters 1». This pre-
vents the states from being correlated, which would break the
assumption in most optimization algorithms that the samples
are independent. We use target parameters 1~ , which are
copies of 1, to compute the DQN loss function:

2
Loox(1) = (7 +ymax {gy- (s"*.a)} —ay(s".a") )
(34)

The parameters 1 are then updated via gradient descent
according to the gradient V., Lpon (). In practice, the DQN
loss is approximated with a batch of samples from the replay
buffer B C R. The target network parameters are updated via

Y TP+ (1-T)Y, (35)

where 0 < 7 < 1. The target networks here stabilize the
updates. Due to Q-learning being bootstrapped, if the same
¢ 1S used to estimate the state-action value of GoP number
n and n+ 1, both values would move at the same time, which
may lead to the updates to never converge. By introducing the
target networks, this effect is reduced due to the much slower
updates of the target network, as shown in Eqn. (35).

To promote exploration, we use e-greedy, which chooses a
random action with probability € at each GoP. That is,

w.p. 1 —e,

a, — {arg max,, ¢y (Sn, a), (36)

a ~ Uniform(A), Ww.p. €,

where a ~ Uniform(.A) denotes an action that is sampled
uniformly from the action set 4. A diagram of the architecture
used for g, is shown in Fig. 8.
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Fig. 9. Convergence of training DeepWiVe for p = 0.031 optimized for the
PSNR metric.

Upon initialization, we send the first frame x} using full

bandwidth k. The first frame can be considered as a GoP on
its own. For all subsequent GoPs, we perform optimal band-
width allocation as described in this section. The bandwidth
allocation problem is illustrated in Fig. 7.

IV. NUMERICAL RESULTS
A. Training Details

We train our models on the UCF101 dataset [56] using
Pytorch [57], with the Adam optimizer [58] at learning rate
le~*. We split the dataset with 8 : 2 ratio between training
and validation. We then test the model using the BVI-DVC
dataset [59]. For the first CSI acquisition scenario, defined in
Sec. III, we will consider a constant channel gain magnitude
|h*| = 1, Vn, while in the second scenario, we consider
h™ ~ CN(0,1), Vn. We train the JISCC (fg, fo', 96> 9o’ > Iny)
networks first, randomizing the latent vector block sizes as
described in Section III-B, until convergence, before we train
the bandwidth allocation network ¢, to find the optimal
bandwidth allocation policy. We also assume that during this
phase, the transmitter and receiver can estimate the channel
SNR accurately 62 = o2. We use a training batch size of
4 when training the JSCC networks and a batch size of 8
when training the bandwidth allocation network. The batch
sizes are relatively small due to memory restrictions of the
available GPU (11GB Nvidia RTX 2080Ti). We use early
stopping based on the validation error with a patience of 8
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Fig. 10. Comparison of DeepWiVe using different SNRg; to H.264 paired
with LDPC codes in the AWGN channel case (p = 0.031).

epochs. We adjust the learning rate based on the number of
bad epochs: if the validation error does not improve for 4
epochs in a row, the learning rate is multiplied by 0.8. The
result of the training is shown in Fig. 9.

We define the SNR estimated by the transmitter and receiver
to be

P
SNRgy = 10logy, ( ) (37)

52

For training the bandwidth allocation network, we choose

DQN hyper-parameters 7 = 0.99, 7 = 0.005, and a replay

buffer size |R| = 1000. The function used for e-greedy
exploration is

eplsode) , (38)

€ = €end + (€0 — €cna) €XP (— \

where A\ controls the decay rate of ¢, and in each episode the
bandwidth allocation network allocates the bandwidth resource
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Fig. 11. Performance comparison of DeepWiVe to H.264 paired with LDPC
codes in the AWGN channel case (p = 0.031).

within one video sequence. We choose ¢y = 0.9, €cpg = 0.05,
and A\ = 1000 for these parameters.

We train our model at different channel SNRs and evaluate
each model at the same range of SNRs. In each batch, the
training SNR is sampled uniformly from the range [—5, 20]
dB. We chose N =4, V =5 and U = 20 to train our models.
Note that although we can choose U = k to achieve very fine
grained bandwidth control, this would lead to a very large
action space, which makes Q-learning difficult. We let P = 1
and compute the necessary o2 to achieve the desired SNR.

B. Simulation Results

We compare the performance of our model with that of the
conventional separation-based schemes. In particular, we use
the H.264 [32] and H.265 [34] video compression codecs for
source coding, LDPC codes [33] for channel coding, and QAM
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Fig. 12. Performance comparison of DeepWiVe to H.265 paired with LDPC
codes in the AWGN channel case (p = 0.031).

modulation. We use the FFMPEG [60] library to perform both
H.264 and H.265 encoding. We use two-pass encoding to
ensure that the bit rate of the video is equal to the number
of channel uses given the modulation order and channel code
rate'. For example, if the number of channel uses per GoP is
1024, modulation order 16QAM and channel code rate 0.5,
then the number of bits that can be used to transmit each GoP
of video is 1024 x 4 x 0.5 = 2048 bits. For the LDPC codes,

'The parameters used for H.264 are
video> -c:v 1libx264 -b:v <file size
1 -an -f null /dev/null &&
—c:v 1libx264 -b:v <file size
—an <output file name>.

For H.265, they are ffmpeg -y -i <input video> -c:v
libx265 -b:v <file size (kbits)> -x265-params -pass
1 -an —-f null /dev/null && ffmpeg -1 <input video>
—c:v 1ibx265 -b:v <file size (kbits)> -x265-params
-pass 2 —-c:a —an <output file name>.

ffmpeg -y —-i <input
(kbits)> -pass
ffmpeg -1 <input video>
(kbits) > -pass 2 -c:a

we use Gallagher codes [33] with block length 960 bits for
rate 1/2 code and block length 1440 bits for rate 3/4 code. We
plot the average video quality across the test dataset using each
of the schemes considered herein and error bars representing
the standard deviation of the video qualities.

In Fig. 10, we show the effect of channel estimation error on
the performance of DeepWiVe in the AWGN channel case. We
specifically compare models using SNRgy where the H.264
codec paired with a specific LDPC code rate and modulation
order experiences the cliff-effect. It is clear that DeepWiVe
is able to overcome the cliff-effect, with the video quality
degrading gracefully as the SNR decreases even as SNRgg
remains the same. This is in contrast to the cliff edge drop
off that separation-based designs suffer from. We can also see
that the variations in the video quality using DeepWiVe is lower
than those produced by the separation scheme as indicated by
the smaller error bars. The error bars represent the standard
deviation of the video quality at the receiver side. This is likely
due to the fact that the H.264 codec does not have a continuous
range of compression rates available but rather a set of discrete
levels it can compress. Depending on the complexity of the
video, a given target distortion may lead to a larger rate than
is allowed by the instantaneous channel condition and it must
reduce the target distortion level. Since the allowed target
distortion levels can be far apart, this may mean the video
is compressed more conservatively than is suggested by the
channel in order to meet the channel condition, leading to a
large variation in the resultant video quality. DeepWiVe, on the
other hand, does not have this issue as we do not define a set of
possible compression rates. Instead, the weights are adjusted
by the AF modules based on the current channel condition to
meet the rate-distortion curve as closely as possible.

We present the comparison of DeepWiVe using the accurate
estimate of the channel SNR (i.e., SNRggz = SNRawgN)
with separation employing H.264 and H.265 in Figs. 11 and
12, respectively. In Fig. 11, we see that at p = 0.031,
DeepWiVe is superior to the separation-based scheme using
H.264 in all the SNRs tested. This shows that DeepWiVe
can indeed learn an end-to-end optimized JSCC scheme that
achieves lower distortion for a given rate than separation-
based schemes, validating the theoretical superiority of JSCC
in finite block length regimes [2]-[5]. We see in Fig. 12a that
H.265 outperforms DeepWiVe in terms of the PSNR metric.
However, when compared with the more perceptually aligned
MS-SSIM metric in Fig. 12b, we see that DeepWiVe can
outperform separation-based transmission with H.265. We also
highlight that, in the very low SNR regime (i.e., SNRawon
< —1 dB), H.265 was unable to meet the compression rate
required, and therefore did not produce results in that range.
DeepWiVe on the other hand, did not have this problem. We
believe that further optimization of the network architecture
can bring DeepWiVe on par or surpass H.265 evaluated using
the PSNR metric for higher SNR values as well. Specifically,
a more flexible GoP interpolation structure and longer skip
connections in the architecture design to improve gradient
flow, may improve the coding efficiency of DeepWiVe.

Fig. 13 shows the visual results of the plots shown in Fig. 10
for a specific video. At SNRawgn = 13 dB, the visual qualities
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of the videos produced by H.264 and DeepWiVe are similar.
However, at SNRawgn = 3 dB, the video produced by H.264
starts to look very pixelated, while DeepWiVe is still able to
retain a smooth looking frame. At SNRawgny = —4 dB, the
capacity of the channel is too low for H.264 to compress the
video sufficiently, therefore the output is simply black, while
DeepWiVe is still able to achieve a reasonable video quality
despite the very low channel SNR. On average, in the AWGN
case and p = 0.031, DeepWiVe outperforms H.264 by 0.46 dB
in PSNR and by 0.0081 in MS-SSIM for SNRawen € [13, 20]
dB, by 3.07 dB in PSNR and by 0.0485 in MS-SSIM for
SNRawon € [3, 6] dB. DeepWiVe falls short of H.265 by 3.22
dB in PSNR, but outperforms it by 0.0006 in MS-SSIM for
SNRawen € [13,20] dB. Similarly, it is 0.61 dB worse than
H.265 in PSNR but outperforms it by 0.0069 in MS-SSIM for
SNRawcn € [3, 6] dB. With respect to complexity, we use the
NVIDIA TensorRT framework to optimize the inference time
of our models and found that the average inference time of
DeepWiVe is approximately 26 ms. On the other hand, only the
encoding time of H.264 took on average 24 ms, using hardware
acceleration on the Intel i19-9900K CPU. H.265 is even slower,
at 92 ms. Therefore, DeepWiVe can be extremely efficient in
practice using optimized hardware and library, more so than
separation-based methods.

Next, we investigate the performance of DeepWiVe in the
fading channel, where the transmitter only knows the average
SNR and the receiver knows the average SNR as well as
the phase of the channel gain arg(h™) but not the magnitude
|[h™], Vn. It is worth noting that, in this scenario, the capacity
of this channel in the Shannon sense is zero, since no positive

rate can be guaranteed for reliable transmission. Fig. 14 shows
the performance of DeepWiVe trained for fading channel com-
pared to H.264 paired with LDPC codes under the same CSI
assumptions. It can be seen that the superiority of DeepWiVe
over H.264 using LDPC codes, as seen in Fig. 11, is replicated
in this case. Moreover, it can be seen that the performance of
separation deteriorates at a much higher average SNR than
in the full CSI knowledge case, showing the impact of not
knowing the channel gain magnitude |h"™| has on the channel
codes. On average, in the fading channel case and p = 0.031,
DeepWiVe outperforms H.264 by 0.64 dB in PSNR and by
0.0166 in MS-SSIM for SNRFading € [14,20] dB.

In Fig. 15, we investigate the variable bandwidth trans-
mission capability of DeepWiVe by decreasing the bandwidth
compression ratio p, thereby increasing the compression of
the video. To change p, we do not require the retraining of
the autoencoder networks (fo, fo', 9¢, go', hn); we only need
to retrain the bandwidth allocator g, with a different action
set. As shown in Fig. 15, we see that DeepWiVe beats H.264
with LDPC coding for all the bandwidth compression ratios
tested in terms of both the PSNR and MS-SSIM metrics.
It also beats H.265 using the MS-SSIM metric as shown in
Fig. 15b, although again, it falls short of H.265 in terms of
the PSNR metric (Fig. 15a). This shows that DeepWiVe can
achieve variable bandwidth transmission using RL to allocate
an arbitrary number of blocks to meet the desired transmission
bandwidth, as outlined in Section III-B.

Lastly, as an ablation study, we evaluate the performance of
our models with and without optimal bandwidth allocation. We
compare the results obtained by using the allocation network
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Fig. 14. Performance comparison of DeepWiVe to H.264 paired with LDPC
codes in the fading channel case (p = 0.031).

¢ with that of uniform allocation (i.e., uj = 5, Vi,n for
p = 0.031) and a heuristic bandwidth allocation policy. For
the latter, we choose to allocate 50% of the bandwidth to the
key frame and then allocate the remaining 50% to interpolated
frames based on the magnitude of their SSF with respect to
the reference frames. That is, let m}* = [|07,,||2 +[|0;_;||2 be
the sum of the magnitudes of the two SSFs of the ith frame
in the nth GoP with respect to the two reference frames x; ,,
xi" ;. Then the bandwidth allocation for the sth frame in the
nth GoP is calculated as

n Ue™™i
ui,heuristic = 3 _
dim1€

(39)

n
mi

rounded to the nearest integer. The intuition behind this
heuristic policy is that the greater the magnitude of the SSF,
the more pixel warping is needed to interpolate the frame from
its reference frames. Therefore, more bandwidth should be
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Fig. 15. Performance comparison of DeepWiVe to H.264 and H.265 paired
with LDPC codes as a function of bandwidth compression ratio p in the
AWGN channel case (SNRawgn = 20dB).

allocated to such frames, and since the reconstruction quality
of the key frame affects the reconstruction quality of the
remaining frames in the GoP, we allocate half of the bandwidth
to it. In Fig. 16, it can be seen that there is a clear and
significant improvement in performance over both uniform
and heuristic allocation when using our allocation network
gy It can also be seen that the heuristic allocation policy
improves upon the uniform allocation policy, emphasizing
the importance of the key frame reconstruction quality for
the performance. Overall, our bandwidth allocation network
improves upon the uniform allocation policy by 0.35 dB in
PSNR and by 0.0025 in MS-SSIM, for p = 0.031. It also
improves upon the heuristic allocation policy by 0.25 dB in
PSNR and by 0.0015 in MS-SSIM, for the same p.
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Fig. 16. Comparison of uniform, heuristic and optimal bandwidth allocation
via auxiliary bandwidth allocation network g, in the AWGN channel case
(p = 0.031).

V. CONCLUSION

We presented the first ever DNN-aided joint source-channel
wireless video transmission scheme in the literature. Our
novel architecture, called DeepWiVe, is capable of dynamic
bandwidth allocation and residual estimation without the need
for distortion feedback. Additionally, it utilizes RL to learn a
bandwidth allocation network that optimizes the allocation of
available bandwidth within a given GoP in a dynamic fashion
with the goal of maximizing the visual quality of the video
under the given bandwidth constraint. Our results show that
DeepWiVe overcomes the cliff-effect that all separation-based
schemes suffer from, and achieves a graceful degradation with
channel quality. In highly bandwidth constrained scenarios,
DeepWiVe produces far superior video quality compared to
both H.264 and H.265. We also show that our bandwidth
allocation strategy is effective, improving upon the naive
uniform allocation by up to 0.35 dB in PSNR and the

heuristic policy by 0.25 dB. Our overall results show that
DeepWiVe is better than the separation-based schemes using
industry standard H.264 codec and LDPC channel codes in all
the channel conditions considered. Although, H.265 performs
better than DeepWiVe in terms of the PSNR metric, DeepWiVe
outperforms H.265 when compared in terms of MS-SSIM,
which is widely accepted as a performance measure that better
represents human perceptual quality.

As part of future work, the coding efficiency of DeepWiVe
may be improved by considering variable GoP sizes. In most
video compression codecs, variable GoP sizes are used as the
entropy of different scenes changes depending on the amount
of motion. The performance of the models should also be
evaluated in practical channels, using, for example, software
defined radios (SDRs).
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