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Abstract— We study the Z-interference channel in which there

is an additional orthogonal link from the interference-free re-
ceiver to the interfered receiver. We call this channel model the
Z-interference channel with unidirectional receiver conferencing.
We find the capacity region when the Z-interference channel
belongs to the class of deterministic Z-interference channels
studied by El Gamal & Costa in 1982. Our results show that in the
presence of unidirectional receiver conferencing, it is still optimal
for the interfering transmitter to use superposition encoding to
control the amount of interference it causes. For the interference-
free receiver, it is optimal to forward part of the decoded message
over the orthogonal cooperation link. We further note that the
same scheme is also optimal for another class of Z-interference
channels studied by Liu & Goldsmith in 2009.

I. INTRODUCTION

The interference channel (IC), introduced in [1], is a simple

network consisting of two pairs of transmitters and receivers.

Each pair wishes to communicate at a certain rate with

negligible probability of error, while the two communications

interfere with each other. The problem of finding the capacity

region of the IC is difficult and remains open except in some

special cases [2]. The Z-interference channel (ZIC) is an IC in

which one of the two transmitter-receiver pairs is interference-

free. Although this is a simpler channel model than the IC, its

capacity region is known only in some special cases [3, Section

IV], [4, Section VI].

The classic IC model is often too simplistic to describe

practical wireless networks. For example, in practical com-

munication scenarios, the two receivers that are geographically

close to each other, may decide to cooperate to enhance their

useful signals and lessen the effect of interference. Thus,

the Gaussian IC with receiver cooperation has been studied

in [5]–[11]. Achievable rate regions and outer bounds have
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been characterized, which are then used to obtain capacity

region approximations as well as degree-of-freedom results.

As for the non-Gaussian case, the sum capacity has been found

for a linear deterministic channel model in [12]. Due to the

difficulty of finding the capacity region for the IC and the

relay channel [13], finding the capacity region of the IC with

receiver cooperation is an extremely difficult problem.

A more tractable channel model is to assume that the re-

ceivers cooperate over links of finite capacity that is orthogonal

to the IC [14]–[19]. An especially simple channel model of

IC with receiver cooperation is the ZIC with an orthogonal

unidirectional link from the interference-free receiver to the

interfered receiver, studied in [14]. We call this channel

model the ZIC with unidirectional receiver conferencing. This

channel model is simple because from the perspective of the

interfered pair, the interference-free receiver acts as a relay that

knows the interference completely but knows nothing about

the message. Hence, it is expected that forwarding part of the

interference to enable better interference cancelation at the

interfered receiver is the optimal scheme for the interference-

free receiver. The Gaussian model for the ZIC with unidirec-

tional receiver conferencing is studied in [14] and the capacity

region is found for the strong interference regime. In the weak

to moderate interference regime, since the capacity region of

the Gaussian ZIC is not known, the capacity region of the

Gaussian ZIC with unidirectional receiver conferencing is also

open.

In this work, rather than focusing on the Gaussian case as

in [14], we focus on a class of discrete ZICs whose capacity

region is fully known. More specifically, we study the class of

deterministic ZICs in [3, Section IV], where it has been shown

that superposition encoding achieves the capacity region. We

generalize this channel model to incorporate receiver cooper-

ation by adding an orthogonal link from the interference-free

receiver to the interfered receiver.

We first establish the capacity region by proving the

achievability and the converse. Our results show that for the

interference-free transmitter, superposition encoding is still

the optimal way to manage interference in the presence of

unidirectional receiver conferencing. For the interference-free
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receiver, it is optimal to forward part of the message it

has decoded over the orthogonal link. The benefit of the

unidirectional receiver conferencing is that it increases the

ability of the interfered receiver to decode the inner codeword

of the interference. Then, we compare the capacity region with

and without the unidirectional conferencing link to illustrate

the benefit of receiver cooperation in reducing the interference,

and hence, in enlarging the capacity region. Finally, we show

that the same scheme is also optimal for another class of ZICs,

whose capacity region was characterized in [4, Section VI].

II. SYSTEM MODEL AND MAIN RESULT

We consider the deterministic ZIC model, illustrated in

Figure 1, which was introduced by El Gamal and Costa in

[3, Section IV]. The ZIC is described by the conditional

distribution p(y1|x1) and the deterministic functions

Y2 = f2(X2, V1), (1)

V1 = g1(X1), (2)

V1 = h2(X2, Y2). (3)

The input and output alphabets are X1, X2, Y1 and Y2. Let

W1 and W2 be two independent messages. Transmitter 1 has

message W1, which is intended for Receiver 1; and Transmitter

2 has message W2, which is intended for Receiver 2. The

difference between the channel model studied in this paper and

that of [3] is that, there is an orthogonal link from Receiver

1 to Receiver 2 characterized by p(ȳ|x̄), where the input and

output alphabets are X̄ and Ȳ , respectively. Let C̄ denote the

capacity of the orthogonal link, i.e.,

C̄
△
= max

p(x̄)
I(X̄ ; Ȳ ).

.

An (M1, M2, n, ǫn) code for this channel model consists of

two encoding functions at Transmitter 1 and Transmitter 2:

f̃k : {1, 2, · · · , Mk} → Xn
k , k = 1, 2,

one encoding function at Receiver 1, whose output at time i

depends on what it has received up to time i − 1:

X̄i = h̃(Y11, Y12, · · · , Y1(i−1)),

and two decoding functions at Receiver 1 and Receiver 2:

g̃1 :Yn
1 → {1, 2, · · · , M1},

g̃2 :Yn
2 × Ȳn → {1, 2, · · · , M2}.

The probability of error is defined as

ǫn =
1

M1M2

∑

w1,w2

Pr [g̃1(Y
n
1 ) 6= w1,

g̃2(Y
n
2 , Ȳ n) 6= w2|W1 = w1, W2 = w2

]

.

A rate pair (R1, R2) is said to be achievable if there exists

a sequence of
(

2nR1 , 2nR2 , n, ǫn

)

codes such that ǫn → 0 as

n → ∞. The capacity region of the deterministic ZIC with

unidirectional receiver conferencing is the closure of the set

of all achievable rate pairs.

Fig. 1. The Deterministic ZIC with Unidirectional Receiver Conferencing.

The main result of the paper is the following theorem.

Theorem 1: The capacity region of the ZIC with an orthog-

onal link of capacity C̄ from the interference-free receiver to

the interfered receiver is
⋃

p(x1)p(x2)

{(R1, R2) : R1 ≤ I(X1; Y1), R2 ≤ H(Y2|V1)

R1 + R2 ≤ H(Y2) + I(X1; Y1|V1) + C̄}

if the ZIC satisfies the conditions in (1)-(3).

III. CONVERSE

In this section, we prove the converse part of Theorem 1.

The proof is generalized from the converse proof in [3, Section

IV].

For any sequence of codes
(

2nR1 , 2nR2 , n, ǫn

)

, we have

nR1 = H(W1)

= I(W1; Y
n
1 ) + H(W1|Y

n
1 )

≤ I(Xn
1 ; Y n

1 ) + nǫn (4)

≤

n
∑

i=1

I(X1i; Y1i) + nǫn (5)

where (4) follows from the data processing inequality using

the Markov chain W1 → Xn
1 → Y n

1 and Fano’s inequality;

and (5) follows from the memoryless nature of the channel

and the fact that conditioning reduces entropy.

We further have

nR2 = H(W2)

= H(W2|Ȳ
n, V n

1 ) (6)

= I(W2; Y
n
2 |Ȳ n, V n

1 ) + H(W2|Y
n
2 , Ȳ n, V n

1 )

≤ I(Xn
2 ; Y n

2 |Ȳ n, V n
1 ) + nǫn (7)

= H(Y n
2 |Ȳ n, V n

1 ) − H(Y n
2 |Xn

2 , Ȳ n, V n
1 ) + nǫn

= H(Y n
2 |Ȳ n, V n

1 ) + nǫn (8)

= H(Y n
2 |V n

1 ) + nǫn (9)

≤

n
∑

i=1

H(Y2i|V1i) + nǫn (10)

where (6) follows because both Ȳ n and V n
1 are functions, pos-

sibly random, of message W1 and therefore are independent

of W2; (7) follows from the data processing inequality using

the Markov chain W2 → (Xn
2 , Ȳ n, V n

1 ) → Y n
2 and Fano’s

inequality; (8) follows from the deterministic condition in (1);
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and finally (9) follows from the Markov chain Ȳ n → V n
1 →

Y n
2 .

We also have

nR1 − nC̄ + nR2

≤ H(W1) − I(X̄n; Ȳ n) + H(W2)

= H(W1) − I(X̄n; Ȳ n) + H(W2|Ȳ
n) (11)

= H(W1|Ȳ
n) + H(W2|Ȳ

n) + I(W1; Ȳ
n) − I(X̄n; Ȳ n)

≤ H(W1|Ȳ
n) + H(W2|Ȳ

n) (12)

= I(W1; Y
n
1 |Ȳ n) + H(W1|Y

n
1 , Ȳ n)

+ I(W2; Y
n
2 |Ȳ n) + H(W2|Y

n
2 , Ȳ n)

≤ I(Xn
1 ; Y n

1 |Ȳ n) + nǫn + I(Xn
2 ; Y n

2 |Ȳ n) + nǫn (13)

= I(Xn
1 ; Y n

1 |Ȳ n) + H(Y n
2 |Ȳ n) − H(Y n

2 |Xn
2 , Ȳ n) + 2nǫn

= I(Xn
1 ; Y n

1 |Ȳ n) + H(Y n
2 |Ȳ n) − H(V n

1 |Xn
2 , Ȳ n) + 2nǫn

(14)

= I(Xn
1 ; Y n

1 |Ȳ n) + H(Y n
2 |Ȳ n) − H(V n

1 |Ȳ n) + 2nǫn

(15)

≤ I(Xn
1 ; V n

1 , Y n
1 |Ȳ n) + H(Y n

2 |Ȳ n) − H(V n
1 |Ȳ n) + 2nǫn

= I(Xn
1 ; V n

1 |Ȳ n) + I(Xn
1 ; Y n

1 |V n
1 , Ȳ n) + H(Y n

2 |Ȳ n)

− H(V n
1 |Ȳ n) + 2nǫn

= H(V n
1 |Ȳ n) − H(V n

1 |Xn
1 , Ȳ n) + I(Xn

1 ; Y n
1 |V n

1 , Ȳ n)

+ H(Y n
2 |Ȳ n) − H(V n

1 |Ȳ n) + 2nǫn

= −H(V n
1 |Xn

1 , Ȳ n) + I(Xn
1 ; Y n

1 |V n
1 , Ȳ n)

+ H(Y n
2 |Ȳ n) + 2nǫn

= I(Xn
1 ; Y n

1 |V n
1 , Ȳ n) + H(Y n

2 |Ȳ n) + 2nǫn (16)

≤ I(Xn
1 ; Y n

1 |V n
1 ) + H(Y n

2 ) + 2nǫn (17)

≤
n

∑

i=1

(I(X1i; Y1i|V1i) + H(Y2i)) + 2nǫn (18)

where (11) follows from the same reasoning as in (6); (12)

follows from the data processing inequality using the Markov

chain W1 → X̄n → Ȳ n; (13) follows from the data processing

inequality using the Markov chains W1 → (Xn
1 , Ȳ n) → Y n

1

and W2 → (Xn
2 , Ȳ n) → Y n

2 and Fano’s inequality; (14)

follows from the deterministic conditions in (1) and (3); (15)

follows from the fact that Xn
2 is independent of (Ȳ n, V n

1 ); (16)

follows from the deterministic condition in (2); (17) follows

from the fact that conditioning reduces entropy and the Markov

chain Ȳ n → (Xn
1 , V n

1 ) → Y n
1 ; and finally (18) follows from

the same reasoning as in (5).

From (5), (10) and (18), for any sequence of codes
(

2nR1 , 2nR2 , n, ǫn

)

that satisfy ǫn → 0 as n → ∞, we have

proved the converse part of Theorem 1. Similar to [3], the time

sharing random variable is omitted as the region in Theorem

1 is convex.

IV. ACHIEVABILITY

In this section, we prove the achievability part of Theorem

1. Let us define R̄1 = min(C̄, R1) and γ is a non-negative

number that satisfies R̄1 + γ ≤ R1. The main idea of the

achievability scheme is for Transmitter 1 to split its message

into three parts, W1s of rate R̄1, W1p of rate γ and W̃1p of rate

R1 − R̄1 − γ. Transmitter 1 encodes W1s and W1p into the

inner codeword and W̃1p into the outer codeword. Receiver

1 upon decoding W1, forwards W1s to Receiver 2 using the

orthogonal conferencing link. Receiver 2, upon receiving W1s

from Receiver 1, decodes W1p and W2 from its received signal

Y n
2 while treating the outer codeword of Transmitter 1 as

noise.

The details of the achievability scheme are as follows: we

collect a block of B − 1 messages, i.e., (W1(1), W2(1)),
(W1(2), W2(2)), · · · (W1(B − 1), W2(B − 1)) and transmit

these over Bn channel uses. Let W1(0) = W1(B) =
W2(B) = 1. Further let δ be an arbitrarily small positive

number.

Random Codebook Generation: Fix a product distribu-

tion p(x1)p(x2). Transmitter 1 generates an inner codebook

of 2n(R̄1+γ−δ) rows in an independent and identically dis-

tributed (i.i.d.) fashion with distribution p(v1). Conditioned

on each inner codeword, it generates an outer codebook of

2n(R1−R̄1−γ+δ) rows in a conditional i.i.d. fashion using

p(x1). Transmitter 2 generates a codebook of 2nR2 rows in

an i.i.d. fashion using p(x2).

Encoding: For j = 1, · · · , B, during channel uses (j −
1)n + 1 to (j − 1)n + n, Transmitter 1 splits message W1(j)
into three independent parts, W1s(j), W1p(j) and W̃1p(j) of

rates nR̄1 − δ, nγ and n(R1 − R̄1 − γ + δ), respectively.

Suppose that W1s(j) = w1s, W1p(j) = w1p, W̃1p(j) = w̃1p

and W2(j) = w2. Transmitter 1 sends the w̃1p-th codeword

from the (w1s2
nγ + w1p)-th outer codebook, and Transmitter

2 transmits the w2-th codeword from its codebook. Receiver

1 transmits the W1s(j − 1) that it has decoded from the

previous block over the conferencing link, encoding against

channel noise using a capacity-achieving code for the single

user channel p(ȳ|x̄).

Decoding: Receiver 1 uses its received signal, i.e., Y1 at

time slots (j − 1)n + 1 to (j − 1)n + n to decode W1(j) by

decoding both the inner and outer codewords, this can be done

as long as

R1 ≤ I(X1; Y1)

R1 − R̄1 − γ + δ ≤ I(X1; Y1|V1)

Receiver 2 first uses its received signal Ȳ at time slots jn+
1 to jn + n to decode W1s(j − 1). This can be done with

negligible probability of error since the rate of W1s(j − 1) is

less than the capacity of the conferencing link.

Now that Receiver 2 knows W1s(j−1), it decodes W1p(j−
1) and W2(j − 1) using its received signal Y2 at time slots

(j − 1)n + 1 to (j − 1)n + n. This can be done as long as

R2 ≤ I(X2; Y2|V1)

R2 + γ ≤ I(X2, V1; Y2)

After Fourier-Motzkin elimination, taking B → ∞ and

letting δ → ∞, we get that a rate pair (R1, R2) is achievable
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if it satisfies

R1 ≤ I(X1; Y1), (19)

R2 ≤ I(X2; Y2|V1), (20)

R1 + R2 ≤ I(X2, V1; Y2) + I(X1; Y1|V1) + R̄1, (21)

for some input distribution p(x1)p(x2). Equivalently, a rate

pair (R1, R2) is achievable if it satisfies (19), (20) and

R1 + R2 ≤ I(X2, V1; Y2) + I(X1; Y1|V1) + C̄, (22)

for some input distribution p(x1)p(x2). This is because for

any rate pair (R1, R2) that satisfies (19) and (20), it is not

possible that it satisfies (22), but not (21).

Evaluating the achievable rate region for the deterministic

ZIC in Figure 1, due to the deterministic condition in (1),

we have H(Y2|X2, V1) = 0. Hence, the achievability part of

Theorem 1 is proved.

V. BENEFITS OF UNIDIRECTIONAL RECEIVER

CONFERENCING

Comparing the capacity results in Theorem 1 with that of [3,

Theorem 2], we see that for the deterministic ZIC, the benefit

of receiver conferencing from the interference-free receiver

to the interfered receiver is that, for a fixed input distribution

p(x1)p(x2), the sum rate constraint is enlarged by the capacity

of the conferencing link C̄ .

For a fixed input distribution p(x1)p(x2), if I(V1; Y2) ≥
I(V1; Y1), the achievable rate region without the conferencing

link is a rectangle. In this case, the conferencing link is useless.

This is because for the deterministic ZIC that satisfies (1)-(3),

the part of the interference that affects Receiver 2 is V n
1 . Since

the orthogonal link from Receiver 1 to Receiver 2 can only

forward interference, it should forward the information about

V n
1 to enable a better decoding of V n

1 at Receiver 2. However,

if Receiver 2 can already decode V n
1 better than Receiver 1,

i.e., I(V1; Y2) ≥ I(V1; Y1), then the conferencing link does

not provide any capacity gain.

If I(V1; Y2) < I(V1; Y1) < H(Y2), the achievable rate

region without the conferencing link is a pentagon as shown

by the solid line in Figure 2. With the existence of the

conferencing link, the region is enlarged to the dashed line

if I(V1; Y2) + C̄ ≤ I(V1; Y1) and to the dotted line if

I(V1; Y2) + C̄ > I(V1; Y1).
Similarly, if I(V1; Y1) ≥ H(Y2), the achievable rate region

without the conferencing link is a trapezoid as shown by the

solid line in Figure 3. With the existence of the conferencing

link, the region is enlarged to the dashed line if C̄ ≤
I(V1; Y1)−H(Y2), to the dotted line if I(V1; Y1)−H(Y2) <

C̄ ≤ I(V1; Y1) − I(V1; Y2), and to the dot-dashed line if

I(V1; Y2) + C̄ > I(V1; Y1).
In summary, the capacity region is enlarged by the existence

of the conferencing link as the ability of Receiver 2 to decode

V n
1 is improved from I(V1; Y2) to I(V1; Y2) + C̄.

As an example, we study the channel model in Figure 4,

which reduces to [3, Figure 3] in the absence of the orthogonal

unidirectional conferencing link, and compare the capacity

Fig. 2. I(V1; Y2) < I(V1; Y1) < H(Y2).

Fig. 3. I(V1; Y2) ≥ H(Y2).

regions with and without the conferencing link from Receiver

1 to Receiver 2. The capacity region with the conferencing

link of capacity C̄ is
⋃

p,q≥0,p+q≤1

{R1 ≤ h(p + ǫ(1 − p − q)) − (1 − p − q)h(ǫ),

R2 ≤ 1,

R1 + R2 ≤ (1 − q)h

(

p + ǫ(1 − p − q)

1 − q

)

− (1 − p − q)h(ǫ) + 1 + C̄}

where h(x)
△
= −x log x − (1 − x) log(1 − x), x ∈ [0, 1]. For

ǫ = 0.4, we plot the capacity region when the capacity of the

conferencing link is equal to 0, 0.2, 0.5 and 0.8 in Figure 5.

The improvement in the capacity region shows the usefulness

of the conferencing link from Receiver 1 to Receiver 2.

VI. DISCUSSIONS

Superposition encoding has been shown to be optimal in

another class of ZICs in [4]. Furthermore, the optimality

has been extended to the scenario of the ZIC with message

side information where the the interfered receiver has side

information about part of the interference it faces [20]. The

ZIC with message side information and the ZIC with unidirec-

tional receiver conferencing is closely related in the following

sense: any achievability scheme of the ZIC with message side

information serves as an achievability scheme for the ZIC with

undirectional receiver conferencing where the interference-free

receiver forwards C̄ bits of the message it has decoded over
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Fig. 4. An example of the class of ZICs with unidirectional receiver
conferencing studied in this paper.
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Fig. 5. Capacity region of the ZIC in Fig. 4 for various capacity values on
the conferencing link.

the orthogonal cooperation link to the interfered receiver. As

for the converse, replacing W1s in the converse of the ZIC

with message side information with Ȳ n, we obtain a converse

for the ZIC with unidirectional receiver conferencing. Hence,

from the capacity region of a class of ZICs with message side

information [20, Lemma 2], we obtain the capacity region

of ZICs with unidirectional receiver conferencing if the ZICs

satisfy Conditions 1 and 2 in [20]: Rate pair (R1, R2) is

achievable if and only if,

R1 ≤ I(X1; Y1),

R2 ≤ I(U, X2; Y2),

R1 + R2 ≤ I(X1; Y1|U) + I(U, X2; Y2) + C̄,

for some p(u)p(x1|u) where the mutual information terms are

evaluated using the joint distribution

p(u, x1, x2, y1, y2) = p(x1, u)p∗(x2)p(y1|x1)p(y2|x1, x2)

We see that in this scenario, similar to the deterministic ZIC,

superposition encoding remains optimal and the benefit of the

orthogonal link is that for a fixed input distribution p(u, x1),
the sum rate constraint is increased by C̄ , the capacity of the

orthogonal link.

VII. CONCLUSIONS

For two classes of Z-interference channels for which su-

perposition encoding is optimal, we show that superposition

encoding remains to be optimal in the presence of an orthog-

onal link from the interference-free receiver to the interfered

receiver. Furthermore, it is shown that the optimal way to use

the orthogonal unidirectional cooperation link is to forward

part of the interference to the interfered receiver such that its

ability to decode the inner codeword of the other transmitter

is increased. In the capacity region expressions, for each fixed

input distribution, the sum rate constraint is increased by the

capacity of the orthogonal link.
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