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Abstract—Centralized coded caching problem is studied for
the two-user scenario, considering heterogeneous cache capacities
at the users and private channels from the server to the
users, in addition to a shared channel. Optimal caching and
delivery strategies that minimize the worst-case delivery latency
are presented for an arbitrary number of files. The converse
proof follows from the sufficiency of file-index-symmetric caching
and delivery codes, while the achievability is obtained through
memory-sharing among a number of special memory—capacity
pairs. The optimal scheme is shown to exploit the private
link capacities by transmitting part of the corresponding user‘s
request in an uncoded fashion. When there are no private links,
the results presented here improve upon the two known results
in the literature, namely, i) equal cache capacities and arbitrary
number of files; and ii) unequal cache capacities and two files.
The results are then extended to the caching problem with
heterogeneous distortion requirements.

I. INTRODUCTION

In their seminal paper [1], Maddah-Ali and Niesen propose
a framework for coded caching and delivery to exploit the
cache memories available at user devices to relieve the traffic
burden at peak traffic periods. They consider a server holding
N files of equal size, serving K users, each equipped with
a local cache memory sufficient to store M files. Users’
caches are proactively filled before they reveal their demands,
called the placement phase, over a low-traffic period. In the
ensuing delivery phase, each user requests a single file from
the library, which are delivered simultaneously over an error-
free shared link. The coded caching scheme proposed in [1]
creates multicasting opportunities by jointly designing the
content placement and delivery, resulting in a global caching
gain. The optimal caching and delivery scheme for the general
coded caching problem, in terms of the worst case delivery
latency, remains open despite ongoing research efforts. While
many schemes have been proposed in [2]-[8], and converse
results are presented in [1], [9]-[12], the bounds obtained
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do not match in general except in some special cases, i.e.,
N =K = 2[1], K = 2 and arbitrary N [12], K = 3 and
N = 2 [12]. The optimal caching and delivery strategy is
characterized in [9] when the cache placement is constrained
to be uncoded.

Due to the difficulty of the problem, most of the literature
follows the symmetric setting of [1], in which all the users are
equipped with the same cache size, and the link between the
server and the users is an error-free shared bit-pipe. However,
in practice, owing to the heterogeneous nature of devices, the
equal cache assumption is often not realistic. Furthermore, the
delivery channel quality may be different for different users,
while limiting the model to a single shared link is equivalent
to targeting the user with the worst channel quality. Hetero-
geneous cache sizes with a shared link has been considered
in [13]-[18], heterogeneous link qualities has been considered
in [19]-[21], while a few works have studied heterogeneity in
both the cache sizes and link qualities [22]-[26]. References
[23]-[28] take a more general approach, and consider a
broadcast channel from the server to the users during the
delivery phase. These papers propose cache allocation among
users with different channel qualities, where it is shown that
a general rule of thumb is to assign more cache to users with
weaker links. We note, however, that, the cache capacity, in
practice, cannot be distributed across user devices dynamically,
but rather given as a fixed parameter. For example, a mobile
phone with a weak link to the server is unlikely to have a
larger cache than a laptop with a stronger link. Hence, we
assume that both the cache capacities and the link qualities
are given, and we aim to find the best centralized caching
and delivery strategy that minimizes the worst-case delivery
latency. In centralized caching, we assume that the cache and
link capacities of the users that participate in the delivery phase
are known in advance during the placement phase, although
their particular demands are not known. Therefore, their cache
contents can be coordinated in a centralized manner.

To model the heterogeneous link qualities of K users
we consider orthogonal common and private links from the
server to the users. The multicast rate tuple is specified by
(RD)DQ{LQ,MK}, where Rp is the rate of the common
message that can be reliably transmitted to the subset of users
in D. In practice, this might model a scenario with orthogonal
error-free finite-capacity channels for each subset of users,
either because an orthogonal frequency band is allocated for
every subset of users, or because the underlying physical layer
coding and modulation schemes that dictate these rates are
fixed, and the coded caching scheme is implemented on a
higher layer of the communication network stack. This setting



is also related to the multi-sender index coding problem [29]-
[33], in which the transmitter does not have the freedom to
design the placement phase.

Given the cache capacities (M;, Ms,..., Mkg), and the
multicast rate tuple (Rp)pcyi,2,... .k} for the delivery phase,
we are interested in finding the optimal centralized caching
and delivery scheme that minimizes the delivery latency across
all demand combinations. The optimal strategy will show us
how to best utilize the heterogeneous caches at the users, and
what to transmit over the shared and private links for the most
efficient use of the communication resources.

In this paper, we focus on the special case of K = 2 users,
while the number of files, N, is arbitrary. We reemphasize
that the optimal solution has been open even in this limited
setting. Moreover, the solution presented for this special
case will provide insights into the more general problem.
In particular, we characterize the optimal cache and delivery
strategy for a generic scenario defined with five parameters
(M, My, R, Rpi1, Rp2), where R, is the rate of the common
message that can be transmitted to both users, while R,y is
the rate of the private message to User k, k = 1,2. The main
contributions of this paper can be summarized as:

1) We provide a converse result based on an observation by
Tian [12] that it suffices to consider file-index symmetric
caching schemes in this problem.

2) For K = 2 users with heterogeneous caches and only a
shared common link, we identify the optimal cache and
delivery strategy for an arbitrary number of N > 3 files.
Previously, only the case of M; = My, N > 2 [12], and
My # M, and N = 2 [18] cases were solved.

3) For the general case with one common and two private
links, we find the optimal caching and delivery strategy
for N > 2 files. We show that: i) the private links are
used to transmit part of the requested files in an uncoded
fashion; ii) for the user with the smaller-capacity private
link, part of the request will be transmitted over the
shared common link in an uncoded fashion unless that
part of all the files are cached in the said user’s cache.

4) By identifying the parallels between the coded caching
problem with one common and two private links studied
here, and the coded caching problem with heterogeneous
distortion requirements studied in [18] for the case of
K = 2 users with heterogeneous caches, we prove
the optimal caching and delivery strategy also for that
problem for N > 3 files. In [18], the optimal cache and
delivery strategy is characterized only for N = 2.

A. Notations
Throughout this paper, for n € Z™, [n] denotes the index set

{1,2,...,n}. Entropy H(X) and mutual information /(X;Y)
are defined in the standard way.

II. SYSTEM MODEL

We consider a coded caching problem with one server
connected to K = 2 users. The server has access to a database
of N independent equal-size files, each consisting of F' bits,
denoted by W1, Wy, ..., Wyx. Both users are equipped with

local caches, with capacities of M; F' and M, F bits, respec-
tively. The system operates in two phases. In the placement
phase, the users are given access to the entire database and
fill their caches in an error-free manner. The contents of the
caches after the placement phase are denoted by Z; and Zs,
respectively. In the delivery phase, each user requests a single
file from the server, where d; denotes the index of the file
requested by User k, k = 1, 2. After receiving the demand pair
D2 (d1, ds), the server transmits messages over the available
shared and private channels to the two users to satisfy their
demands.

In [1] and most of the following literature, the delivery
channel is modeled as an error-free shared link of limited
capacity. However, in practice, the channels between the server
and the users are typically of different quality. Thus, we model
the delivery channel as consisting of two private error-free
links with capacities R,/ and R, F' bits per unit time to
User 1 and User 2, respectively, in addition to a shared link
of capacity R.F bits per unit time.

A caching and delivery code for this system consists of

1) two caching functions

o 27N = 2" F), k=1,

which map the database into cache contents of the users,
denoted by 7 = ¢k(W1> Wy, --- ,WN), k=1,2.
2) N2 encoding functions, one for each demand pair,

fD : [2F]N — [27?F] % [27'pD1F] « [2:,-;3217]7

that map the files to the messages transmitted over
the common and private links, denoted as X f’ s
X5 and X[}, respectively, ie., (XP, X5 XD) £

B, wa, W),
3) 2N? decoding functions, one for each demand pair,

gp M) x (27 F] x [k ] 5 [2F) k= 1,2,

which decodes the desired file W, as Wy, at User
k from the cached content at User k, the messages
transmitted over the shared link and the private link to
User k, k =1,2.
The performance of a given caching and delivery code is
measured by the worst-case delivery latency, which is defined
as T = maxp TP, where TP £ max{T”, TR, TS}, and

pl>

D rD .

TP £ % , Tpl?c £ R”"};, k = 1,2. In other words, TP is the
c P

latency, under demand D, it takes for X CD to be received by
both users while Xﬁ is received by User k, k =1, 2.
Following the idea of symmetry in [12, Section 3] [34,
Definitions 3 and 4], we will exploit the symmetry among
the file indexes to simplify the proof of converse. Let 7(-)
be a permutation function on the file index set {1,2,--- , N},
Z a subset of {Z1, Z>}, W a subset of {Wy,Wa, -+ Wy},
and X a subset of {XP, X[ XD : D e [N] x [N]}. The
mapping (W) is denoted by {W,;) : W; € W} and the
mapping 7(X) is denoted by {X((T;(dl)’”(dz)) : X((_Cgl’dz) € X}.
We define the file-index-symmetric codes as follows.
Definition 1: A caching and delivery code is called file-
index-symmetric if for any permutation function 7(-), any




subset of caches Z, any subset of files V, and any subset
of transmitted messages X, the following relation holds:

HOW, 2, X) = H(z(W), Z,7(X)). (1)

Similarly to the argument on the existence of symmetric codes
in [12, Proposition 1], we have the following lemma for the
above problem.

Lemma 1: For any caching and delivery code, there exists a
file-index-symmetric caching and delivery code with an equal
or smaller worst-case delivery latency.

Proof: The proof follows similar steps to the one in [12,
Proposition 1]. Intuitively, if we reorder the files and apply the
same encoding function, the transmissions can also be changed
accordingly to accommodate the requests, and it will lead to a
new code that is equivalent to the original one. The proof can
be completed by using a simple memory-sharing argument for
these new codes. ]

File-index-symmetric caching and delivery codes have the
following property: for any pair of distinct demands (d;, ds),
ie., di # da, (rP,rl}, L)) takes the same value, denoted by
(re, Tpl, ’/‘pg); similarly, for all the cases in which the two users
demand the same file, i.e., di = do, (r?,rﬁ,rl%) takes the

same value, denoted by (70,79, 7%,). We are interested in the

c) ' ply!p2
worst-case performance; hence, for the rest of the paper, we

will assume d; # d». Hence, we have

Te Tpl Tp2
T = max L,p,p}. 2
{Rc Rpl Rp2 @
We will refer to the problem described above by

Q(My, Ms, Re, Rp1, Rp2).

Definition 2: A tuple (M1, M2, R, Rp1, Rp2, T) is said to
be achievable if for large enough F', there exists a file-index-
symmetric caching and delivery code with each user correctly
decoding its requested file for any demand combination, i.e.,
Wy, = Wy, k = 1,2 for all (dy,dy) € [N] x [N]. The
minimum achievable worst-case delivery latency is defined as

T* (M17 MQa RCa Rp17 Rp2)
= inf{T : (M1, Ms, R., Rp1, Rp2, T) is achievable}. (3)

Remark 2.1: We adopt the zero-error decoding criterion in
Definition 2, to simplify the converse proofs. We remark here
that the diminishing-error decoding criterion (see [1]) is also
applicable. More specifically, for the converse, the proofs and
results still hold for the diminishing-error decoding criterion
by using Fano’s inequality (see a similar derivation in [35]);
as for the achievablity, our schemes and the referred schemes
are all zero-error achievability results, and thus, satisfies the
diminishing-error decoding criterion.

The aim of the paper is to seek the minimum
achievable worst-case delivery latency T*(M;, Mo,
R., Ry1, Rp2) across all caching and delivery codes.

Remark 2.2: We have modeled the channel between the
server and the two users as two private links and a shared
common link of certain capacities. In practice, the channel
between the server and the users may be a noisy wireless
broadcast channel, which can be modeled as a broadcast
erasure channel [22]-[25], a Gaussian broadcast channel [26]—
[28], or a linear deterministic broadcast channel in [36]. The

minimum achievable worst-case delivery latency 7 found in
this paper would serve as an achievable worst-case delivery
latency, where separate cache-channel coding is adopted. Joint
cache-channel coding schemes that can provide a smaller
latency can be studied for future work.

Note that for the problem of shared common link only, i.e.,
Q(My, My, R.,0,0), the capacity R, is of no significance as
r. = T'R.. Hence, minimizing 7" for a given R, is equivalent
to minimizing the data rate over the shared common link, i.e.,
r.. As a result, we denote the problem Q(M;, Ms, R.,0,0)
by Q¢(M;y, Ms), and the minimal achievable data rate over
the shared common link is denoted by (M7, Ms).

Since we are interested in the delivery latency, to simplify
the notation in the rest of the paper, we drop the normalization
measure F in the rest of the paper, where the value of H (W;)
is normalized as 1, Vi.

III. SHARED LINK PROBLEM Q¢(M7y, M>)

We start by studying the case with heterogenous cache sizes
and a shared common link only, i.e., the problem Q°(M;, My).
For this problem, we would like to minimize the data rate over
the shared common link, i.e., 75 (M, Ms).

The case of K = N = 2 has been solved in [18], and the
optimal rate is shown to be

M- M.
r:(Ml,Mg):maX{l—;,l—;,
3 My + M-
2—(M1+M2>,2—122}. 4

Note that [18] studied the case with heterogeneous cache
sizes and distortion requirements. Thus, if we consider the
special case of the problem studied in [18], in which the
distortion requirements of the two users are the same, i.e.,
D, = Dy, or equivalently, r; = ry = 1, we obtain the problem
Q¢(M, M>), and [18, Corollary 1] provides the result in (4).

In the case of K = 2 and N > 3, we provide the following
optimal data rate over the shared link, which was previously
unknown.

Theorem 1: In the cache and delivery problem Q¢(My, Ms),
when N > 3, we have

M M.
7“;(M1,M2):1rnax{l—Nl,l—N27
3M My — M 3M. My — M-
9_ 1 My 1o Mz M 2l (s
N N -1 N N -1

Remark 3.1: The special case of My = Ms = M has been
solved in [12], where the achievability follows from [1], while
the converse proof utilizes the symmetry of optimal codes.

Remark 3.2: Compared to the uncoded placement result in
[1], the optimal delivery rate depends on the number of files
N, and not just the normalized cache size My /N. This is
because the coded placement of Points G and F' reduces the
delivery rate.

Remark 3.3: Note that the optimal delivery rate takes
different forms for N = 2 and N > 3. Intuitively this
difference can be explained as follows:

o From the perspective of the converse: for N = 2, the

worst-case demand is unique, in the sense that, there



are two files, and each user requests one of these files.
However, the worst-case demand for N > 3 is not
unique. For example, in the case of N = 3 files in the
server, the worst-case demand can be (di,d2) = (1,2)
or (di,ds) = (1,3) or (dy,d2) = (2,3). The optimal
caching scheme has to balance the need of all possible
worst-case demands, and the converse proof steps need to
reflect this, which is done in Lemma 2 of the following
subsection. As a result, Lemma 2 holds only for N > 3.

o From the perspective of the achievability: comparing the
two subfigures of Figure 1, we note that though the seven
corner points A — G are the same for N = 2 and
N > 3, when performing memory-sharing, the linear
combination of which three corner points leads to the
lowest delivery rate is quite different. For example, for
(My, Mz) = (3,3) and N = 2, the optimal (lowest)
delivery rate is achieved by memory-sharing between
points A, F' and G, while for N > 3, by sharing between
points A, F' and B.

A. The converse proof of Theorem 1

The first two terms of (5) follow from the cut-set bound [1].
The third and fourth terms follow from the following lemma
which will be useful throughout the paper.

Lemma 2: In problem Q°¢(Mj, My) with N > 3, the
common delivery rate r. of any achievable scheme must
satisfy

NM,; + (2N — 3)Mj +N<N — 1)7"0
> QN(N - 1)7 V(l,]) € {(172)’ (27 1)} (6)

The details of the proof of Lemma 2 is given in Appendix
A. In the following we comment on some of the proof ideas.
The proof follows from the proof of Lemma 1 with the help
of two major steps stated in the following two lemmas.

Lemma 3: In problem Q°¢(M;y,Ms), for file-index-
symmetric caching and delivery codes, we have:

H(X2|z;, W)

> 1 L [H(WA) + H(Z:W)],

Lemma 4: For file-index symmetric caching and delivery
codes, we have

Vi=1,2. (7)

NH(Z;|Wy) > (N — )H(Z), Vi=1,2.  (8)

Please note that Lemma 4 holds for any file-index symmetric
caching code, irrespective of the problem, i.e., it holds for the
more general problem of Q(My, Ms, R, Rp1, Rp2).

As it can be seen, Lemma 3 allow us
to lower bound complicated terms, such as
H(Xc(l’Q)\Zl,Wl), with simpler ones, such as H(Z;|W7),
while Lemma 4 further lower bounds terms, such as
H(Z,|Wy), with even simpler ones, such as H(Z7), which is
equal to the size of the cache of User 1, i.e., M;. Hence, the
main aim of the two lemmas is to provide a lower bound that
depends only on the placement scheme, and is independent
of the delivery scheme. The same idea appeared in [35,

M.
NeE M ¢
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Fig. 1. The optimal tradeoff between r (M7, M2) and (M1, M>2).

Lemma 1]. The proofs of Lemmas 3 and 4 are provided in
Appendices B and C, respectively.
The converse of Theorem 1 is completed with Lemma 2.

B. The achievability proof for Theorem 1

In Figure 1(a), we show the 2-dimensional plane of possible
(My, My) pairs. For the following points on this figure, the
minimum data rate on the shared common link, 7%, is known:

1) Point A: (M7, My, r%) = (0,0,2). This is the case with
no caches at the users.

2) Point B: (M, M, r}) = (&, 4, 1). This is the sym-
metric cache capacity scenario with the achievability
proposed in [1], and its converse proved in [12]. The
corresponding caching-delivery scheme is the following:
each file is split into two parts of equal size (W}, W?2),
i=1,2,---, N. In the placement phase, User k caches
{Wk i = 1,2,--- N}, k = 1,2. The delivery
scheme upon receiving request (dy,ds) is to transmit
(W3 & W)},

3) Point C: (M;, Ms,r*) = (N, N,0). This is the case
in which the cache at each user is large enough to
cache the entire library, and as such, nothing needs to
be transmitted via the shared common link.



4) Point D: (M;, Ma,r*) = (N,0,1). This is the case in
which User 1 has a cache that is large enough to store
the entire library, and User 2 has no cache. Thus, it is
optimal to transmit only the requested file of User 2 via
the shared common link.

We now add the achievability scheme for Point F', i.e.,
(My, Ma,r*) = (N —1,0,1). Note that the achievability for
the points symmetric with respect to the AC' line, i.e., points
E and G, follow directly.

+ Placement phase: User 1 fills its cache with the module

sum of every two label-adjacent files, i.e. Z; = {W; @
Wo, Wo & W3, ,Wn_1 D Wn}

« Delivery phase: The server transmits X "% = {Wa, }.
Therefore, User 2 can directly get Wy,, while user 1 can
decode W, with the help of its own cache by successive
cancellation. For example if (dq,d2) = (1,4), User 1 can
firstly recover W35 from (W3 ® Wy, XC(IA) = Wy,), it then
goes on to obtain Wy from (W5, Wy @ W3), and finally
it decodes the requested file Wy from (Wa, W7 @ Wa).

By performing memory-sharing [1], [18], [37] among the
seven points, i.e., Point A to Point G, we can obtain the
following achievable data rate on the shared common link:

re(My, M)
2 -2 - MR (M, Ma) € My

_ )2 MR (Mo, My) € M ©)
1— A (M1, M) € M3, M5
1_% (Ml,M2)€M47M6

For completeness, we present the placement and delivery
schemes for (My, M) pairs in the regions ABG and BEG
to illuminate (9). When the cache size falls into the region of
ABG, the cache and delivery scheme is as follows: each file
is divided into four subfiles W; 4, W; g1, Wi g2 and W, ¢
with sizes 1 —2M; /N — (Ms— M,)/(N —1), My/N, M, /N
and (My — M;)/(N — 1), respectively.

o Placement phase: User 1 caches {W; g1 : i € [N]};
while User 2 caches {W; g2 : ¢ € [N]} and {W,¢c &
Witi,c:J €[N —1]}

o Delivery phase: The server transmits X71:92
{WdhAa Wa,, 4, Wai,B2 © Waa B1, Wdl,G}'

It is easy to check that each user can recover its file of interest,
and the scheme achieves a delivery rate of 2 — 3M; /N —
(My— My)/(N —1). The placement and delivery schemes for
(My, My) pairs in the regions BEG follow similarly.

The explicit caching schemes above show that the opti-
mal schemes fully take advantage of coded cache placement
schemes, i.e., Point G. More specifically, for My > My,
only when M, is sufficiently large, the optimal scheme will
apply the weak uncoded cache placement scheme, i.e., Point
E where weak means that, compared to Point GG, Point F
achieves the same delivery rate with a larger cache size.

The achievability part of Theorem 1 is complete. Note that
without loss of generality, we may consider only the case
My < My, and the My > M5 case follows by symmetry. But,
since we need to reuse the points A-G in the achievability
proof of Theorem 2 in the next section, we presented the
achievability proof of Theorem 1 for all (M7, M) pairs.

fe

LHC
Scheme

optimal
Scheme

~ /\/g//

0 N-1 N M,

Fig. 2. The comparison between our scheme and the LHC scheme for the
problem Q¢(0, Ms)

C. Comparison and analysis

As we mentioned before, the problem Q¢(Mj, M) with
N = 2 has been solved in [18]. But for N > 3, the best
known achievability schemes [18, Section III-C], [37], which
will be denoted as the LHC scheme here, perform memory
sharing between the five points of Fig. 1(a), i.e., Point A to
Point E, and thus obtain an achievable data rate on the shared
common link as

2 - 2 — M (My, My) € My, M3
Te(My, M) = 2- % - % (My, Mz) € Mo, My ’
7 1 % (MlaMQ) S M5
1 % (MlyMQ) S MG

We see that the optimal delivery rate is lower than the rate
achieved by the LHC scheme, in which the delivery phase
is divided into layers of unicast and multicast. We improve
the delivery rate from (M;, Ms,r.) = (0, N,1) to (0, N —
1,1) with the help of coded placement. In particular, for the
problem Q°¢(0, M), i.e., M7 = 0, the improvement of our
scheme is plotted in Fig. 2. As for the converse, when N > 3,
the best known converse to date is given by [18, Lemma 1],
which is the minimum of the five terms

M,y M, My + M,
My, Ms) > 1-—1-—2— —F—
Tc( 1 2)_max{ N’ N’ |_N/2J ;
§_M1—|—M2 _M1—|—M2 (10)
2 2(Nj2] 0T 23 (0

where the first two terms follow from the cut-set bound,
the third and fourth terms follow from the straightforward
generalization of the proof of the same problem for the
case N = 2. In this proof, the step [18, Eqn. (40c)] may
be loose because the content of two caches may not be
independent even conditioned on the knowledge of some files.
We transform terms like H (X ;, Zy|W;) into H(X; ;| Zx, W;)
and H(Z;|W;), and then bound these two terms via Lemmas
3 and 4 to obtain a tighter converse. It has been argued in
[18] that (10) is tight when N is an integer multiple of 3
and M; = Ms. Indeed, comparing (10) and (5), we see that
when N = 3, the two bounds are the same, which means
that the bound in (10) is tight for N = 3 and arbitrary
(My, Ms3). When N = 4,5 and 6, we plot the two bounds
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Fig. 3. The comparison between our lower bound and the one in [18] (see (10)) for the problem Q¢(1.5, M), for N = 4,5, 6.

in Fig. 3 to illustrate that (5) improves upon the best known
converse bound (10). Moreover, Theorem 1 proves that (5) is
the minimum achievable data rate over the shared common
link.

IV. GENERAL PROBLEM Q (M1, M2, R;, Rp1, Rp2)

In this section, we study the general problem
Q(My, My, Rc,Rp1, Ry2), ie., the problem with one
shared common link and two private links, one for
each user. We characterize the optimal delivery latency
T*(M1, M2, R, Rp1, Rp2) in the following theorem.
Theorem 2: For problem Q(Mji, My, R., Rp1, Rp2) with

N = 2, we have:

. - 1= 2-M - My
T" = max , , ,
RC+R]71 Rc+Rp2 Rc+Rp1 +Rp2

3—M; — M, 3— M; — M,y (11
Q(Rc +Rp2) + Rpl, Q(Rc +Rp1) +Rp2 ’

while if N > 3, we have:

_ My 1_% 2f3M27M1*M2
T* = max N , N , N N—-1 ’
Rc + Rpl Rc + Rp2 Rc + Rpl + Rp2
2 3 Ma=Mi noN 1) (N — 1)M, — NM,

RC—I—Rpl +Rp2 ’ NQ(RC—FRZ,Q)—I—N(N— 1)Rp1 ’
N(QN — 1) — Q(N— 1)M2 — NM;
N2(Ro + Rpp) + N(N — 1) Ry

(12)

Theorem 2 also takes on different forms for N = 2and N > 3,
which can be argued similarly to 3.3.

We note here that, while the proof ideas for both the
converse and the achievability of Theorem 2 can be extended
to the multiple users case, the results become highly complex
with more than two users. Furthermore, they are not tight,
which is unsurprising as the optimal performance of N > 2
users is open even for the original coded caching problem
in [1]. Hence, due to the complexity and looseness of the
achievability and converse results, we do not present the
general results for multiple users.

A. Converse proof of Theorem 2

We define S as the set of all possible caching and delivering
codes. Then, we have

. Te Tpl Tp2
T—mslnmax{ b P2

R." R,1’ Ry
. e+ T'p1
> 13
YS"R.+ R,y (13)
1—M,/N
, 14
=Rt Ry (14)

where (13) follows from the fact that for positive numbers

a,b,c,d, o, we have max {¢, &} > #£2¢ and (14) is from

the cut-set bound for User 1. Similarly, we also have
T> 1— My/N

- RC+RPQ.

Note that any achievable scheme for problem
Q(Mq, My, R., Rp1, Rp2) can be transformed to be achievable
for problem Q¢(M;, M>), because we may transmit all three
signals Xc(dl’d2) with rate 7, Xﬁl’d” with rate r,;, and

X90%) with rate 19, of Q(My, Ma, Re, Ry1, Ry2) over the
shared common link of the problem Q°(M, M), resulting
in a common rate of 7. + 7,1 + 7p2. Hence, re + rp1 + 1o

must satisfy Lemma 2, i.e., when N > 3,

NMZ-I- (2N—3)MJ +N(N— 1)[7’C+Tp1 +7"p2]

15)

Therefore, we have
T = 1 T
min e, 1T
. Te + Tp1 + T'p2

>min ————— 17

- S R0+Rp1+Rp2 a7)
e {2 = fs — Mpotle 5 34 Mt}

> , (18)

- R, + Rp1 + Rpg
where (17) follows by applying twice the reasoning used for
(13), and (18) follows from (16).

Note that any achievable scheme for problem
Q(Mq, My, Rc, Rp1, Rp2) can be transformed to be achievable



for Q(M, Ms, R, Rp1,0), because we can transmit both
signal nghd?) with rate 7. and X;;ih(b) with rate rpy for
problem Q(Mi, M, R, Rp1, Rp2) over the shared common
link in problem Q¢(Mi, M, R., R;1,0), resulting in a rate
of r. 4 rp2, while the private rate r,; to User 1 remaining
the same. We can prove the following lemma for the problem
of Q(My,Ms, R, Rp1,0), ie., the problem with one shared
common link and one private link to User 1.

Lemma 5: In problem Q(Mj, M3, R., Rp1,0) with N > 2,
the data rate on the shared common link 7. and the only private
link 7,1, must satisfy:

N%re+ N(N = 1)1
> N(2N —1)—2(N —1)M; — NMs,. (19)
The details of the proof of Lemma 5, which follows simi-
larly to Lemma 2, are relegated to Appendix D. In the proof,
the following lemma, whose proof is provided in Appendix E,
replaces the role of Lemma 3.
Lemma 6: In problem Q(M;, My, R, Rp1,0), for file-
index-symmetric caching and delivery codes, we have

H(xXM, x (3220, Wh)

1
21— 7 H(Zi[Wh) + H(Zz|Wh)), (20)
H(XPV|Zo,W1) + e+ 1p1 + My
N -2 1

>24+ ——H(Zi1|W1) — ——H(Zx|W1). 21

2 2+ 7 H(ZiWh) = = H(Z2[Wh) @21
Again, Lemma 6 provides a way
to lower bound terms, such as

H(Xc(i’j),X,(f"j)|Zl7W1), with simpler ones, such as
H(Z|W7), and then, we again use Lemma 4 to lower
bound terms, such as H(Z;|W;), with simpler ones,
such as H(Z;), to obtain Lemma 5. Thus, for problem
Q(Mq, My, Rc, Rp1, Rp2) with N > 2, we have

N2[re 4+ rpe] + N(N — 1)rp

> N(2N —1) —2(N — 1)M; — N M. (22)
We can obtain
Tomn g,
N2(re+1p2) + N(N — 1)1y
> min < P P 23
o NQ(R0+Rp2)+N(N_1)Rp1 ( )
>N(2N—1)—2(N—1)M1—NM2 24)

= N2(R.+Rp)+ N(N—1)Rp;

where (23) follow similarly to (13); and (24) from (22). By
exploring the symmetry between Users 1 and 2, similarly to
(24), we also have

T> N(2N —1)—2(N —1)My — NM,;
~ N2(R.+ Rp1) + N(N —1)Rp
Hence, from (14), (15), (18), (24), (25), the proof of (12) is

completed. Note that the above upper bounds (14), (15), (24),
(25) hold for any N > 2.

(25)

Finally, for the case N = 2, we only need to prove the third
term, i.e.,

T < 2 — My — M, 7
- RC+RP1+Rp2

which follows from the cut-set bound
M+ My+re+1p1 +1rpe > HWi, Wa) = 2,

and (17). Hence, the proof of (11) is also complete.

B. Achievability proof of Theorem 2 for N > 3

The proof of achievability consists of three parts. In the
first part, we find achievable schemes for a set of special
points. More specifically, the achievable scheme we propose
for each special point is a generalization of the achievable
scheme proposed for the special point (M7, Ms) of problem
Q¢(Mi, M>), studied in Section III-B. In the second part, we
perform memory-sharing and time-sharing among the special
points obtained in the first part to construct a set of achievable
schemes for the current problem. In the third part, we show
that there exists an achievable point (My, Ma, 7, rp1, p2)
within the set of achievable points, whose peak delivery
latency meets the converse bound.

Without loss of generality, we assume R;,; > I2,>. Based on
the achievable scheme for problem Q¢(M;, M), we consider
the rate of the message transmitted over the shared common
link, r, for a given (M7, My, rp1,7p2) tuple.

The seven points considered in Section III-B for the
achievability of problem Q°¢(M;y, Ms), ie., points A to
G, correspond to the following seven points in the for-
mat (Ml,Mz,Tpl,Tp27’r’c)Z Py = (0,07070,2), Pg =
(%,5,0,0,3), Po = (N,N,0,0,0), Pp = (N,0,0,0,1),
Pg = (0,N,0,0,1), Pr = (N — 1,0,0,0,1) and Pz =
(0,N —1,0,0,1). We add five new points:

1) Point Py = (0,0,1,1,0). This is the case with no
caches at the users. The server transmits Wy to User 1
and Wy, to User 2 via the corresponding private links,
respectively.

2) Point P; = (0,0,1,0,1). In this case the server trans-
mits Wy to User 1 via its private link and W, to User
2 via the shared common link.

3) Point P; = (0,0,0,1,1). This case is symmetric to
Point P;.

4) Point Px = (0,N,1,0,0). This is the case in which
User 2 can cache the entire library, while User 1 has no
cache. The server transmits Wy, to User 1 via its private

link.
5) Point P;, = (N,0,0,1,0). This case is symmetric to
Point Pg.
These twelve points are achievable for problem

Q(My, Mz, Re, Rp1, Rp2).

By using memory-sharing for the cache capacity values
and time-sharing for the transmitted rates (rp1,7p2), the
convex hull of these twelve points and the corresponding
re value, ie., (My, Ms,7p1,7p2) as the independent vari-
ables and r. as the dependent variable, are also achievable.



Therefore, we obtain a set of achievable tuples for problem
Q(My, Ms, R, Rp1, Ry2), denoted by A.

For a (Ml, Mo, Tpl, ’I“pg) tuple, let f(Ml, Mo, Tpl, Tpg) be
the smallest rate 7. in A, i.e.,

Te = f(My, Ma,mp1,7p2)
= min{r. : (M1, Ma,mp1,7p2,7c) € A}

To obtain f(My, Ms,rp1,7p2) in closed form, we consider
its projection for fixed values of (rp1,7p2), and derive
J(rp1,rpe) (M1, M3) in closed form. Before we delve into the
details, we provide some insights on the achievable scheme
corresponding to f(,. . ;. .)(M1, Mz). Suppose that rates 0 <
ok < 1, k= 1,2, will be transmitted over the private link.

How to use the private links: The private links will be
used to transmit part of the desired messages in an uncoded
fashion. Then the delivery strategy is designed for file sizes
reduced by the rates transmitted over the private links. For
example, for 7,1 > 7,2, we split each file into three parts
We, WP and WP i =1,..., N, with sizes I, la— 11, 1—ls,
respectively, where I; = 1 — 7, and lp & 1 — rpo. In
the delivery phase, the server transmits {Wé’ll,ngu} and
Wé;m to Users 1 and 2, respectively, via their private links.
Thus, we only need to deliver (W3 ,Wg ) among sub-files
{Wg,Wg,--- ,Wg} to Users 1 and 2, and WC’Z; among sub-
files {WP', WP ... WZ'} to User 2 over the shared links.

How to deal with the sub-files from {WP* W¥' ... W&}
requested by one user only: Memory-sharing is performed
among certain special achievable points. In each point,
the achievable scheme is to either transmit Wfi’: un-
coded through the shared common link, or cache all files
(WPt Wt .. WE} (of file size Iy — I1) in the cache of
User 2. The caching and delivery strategy over the common
shared link for files {Wy, W5, --- , W§} (of file size 1;) is
the same as those proposed for problem Q¢(My, Ms).

We obtain the following lemma for the closed-form expres-
sion of f(,,, r,.) (M1, M2).

Lemma 7: For a given (rp1,7p2) pair with rp; > 7,0, by
memory-sharing among the nine points illustrated in Fig. 4(a),
the smallest achievable rate over the shared common link, 7, =
Jrp1rp) (M1, Ma), is given as

(M, M) € Mq(rp1,7p2)
2 — 1y — o — 20— M=y
. (My, My) € Ma(rp1, p2)
e =9Yan-1_ N1 oN-1M, a0 (20)

N TN 'pl T Tp2T T @ N

(Ml, Mg) (S Mg(’l“p1, ’I“pg)
(M, M) € Ma(rp1,mp2)
(M, M) € Ms(rp1,7p2)

Mo
L—rpo = F

My
L=rp = F

where the regions M (rp1,rp2) to Ms(rp1,mp2) are shown
in Fig 4(a).

By symmetry, for a given (7,1, 7p2), where rp; < 7,9, the
smallest achievable rate on the shared common link, 7., is

M,

NI

NI, -1, 5

NI, - NI,/2 G_’]\/l B’

(N - l)ll

N2 M B ! ’
2 .
M,
z F D
AO NiL/2  (N-DI NI, |\/|1

(@) rp1 > rp2, N > 3,

M,

(N_l)]zlG .M

NL/2

A ! F Nl,*le/Z F’ D,

0 NL/2 (N-DL o N-1, N Mg

(b) Tpl S Tp27N Z 3,

Fig. 4. The illustration of possible (M1, M2) pairs for arbitrary 7p1, rp2
when N > 3.

given by

_ _ _ 3My _ Mi—M,
2—rp1 — Tp2 N N—1

(M1, M,) € Ml(Tph?"pz)

_ _ _3My, _ Mp—-M,;
2 rpl ’I“pg N N_1

(M, My) € Mo(rp1,mp2)

2N—-1 N-1 2(N—1)M, M,
N T N 2" TplT Tz~ N

(Ml,MQ) S M3(Tplarp2)
1— Tp2 — % (M17M2) S M4(7ﬂp177np2)
1—rp — 53¢ (My, M) € Ms(rp1,mp2)

, (27)

where the regions M (rp1,rp2) to Ms(rp1,mp2) are shown
in Fig. 4(b).

The proof of Lemma 7 is provided in Appendix F. Note
that (26) and (27) achieve the lower bound of (16), (22)
and the cut-set bound. For an arbitrary (M, Ms) pair, 0 <
M; < N,0< M, < N, the set A, i.e., the three-dimensional
achievable region of (71, 7p2, ), is characterized by (26) and
(27). The remaining task is to find the (M7, Mo, 7p1,7p2,7¢)



tuple within the achievable region A that minimizes T =
max { -, 22 £}
pl p2 c

Lemma 8: For any (M., Ma, R., Rp1, Rp2), there exists an
achievable scheme (M7, M2, 7p1,7p2,7¢) in A with a delivery
latency equal to one of the six terms in (12).

The proof of Lemma 8 is provided in Appendix G.

This completes the achievability part of Theorem 2 for N >
3 and R,; > Rp. Before we proceed to the achievability
for N = 2, we make the following connection between the
achievability scheme proposed here and the one in [18].

Remark: In [18] the authors study the caching problem
in which the users request different quality descriptions of
the files, due to, for example, different processing or display
capabilities. For given distortion targets (D;, D2), assuming
Dy > D, without loss of generality, the authors suggest using
scalable coding [38] of the files in the library at rates (71, 72),
such that the base layer of rate r; allows the first receiver
to obtain an average reconstruction distortion of D;, while
the base layer together with the refinement layer of rate ro
allows an average reconstruction distortion of Dy at the second
receiver. This successive coding scheme is known to be rate-
distortion optimal for Gaussian sources under squared error
distortion.

Once we specify how the private links are used, the (11, l2)
parameters in our problem correspond to (r1,72) in the achiev-
able scheme of [18], where r; corresponds to the number of
bits transmitted over the common link, while ro — r to the
number of bits transmitted over the private link to the user that
request a higher quality description. As such, we may make a
comparison of the achievable scheme proposed here and the
one in [18] for K = 2 users with N > 3 files. The scheme in
[18] is a suboptimal memory-sharing scheme between points
A, B, B', C', D, F’, ignoring the three points G, G’ and F.
We can show that memory-sharing among all the nine points
is optimal for the coded caching with heterogeneous distortion
requirements problem for K = 2, N > 3, and a converse is
provided in Appendix H.

Theorem 3: For the coded caching problem with hetero-
geneous distortion requirements, defining [, = %log g—i,
k = 1,2, the optimal cache capacity-delivery trade-off is given
by

3M; My — My

R*(Ml,MQ) — max {ll + ZQ —

N N-1"
oty S M A
N-l 2(1\7;[21)1\41 _%7
N - 72(N]_V21)M2 —~ J\]{;}

C. The achievability of Theorem 2 for N = 2

Based on the above discussion of the similarity between
the studied problem and that of [18], we can use the optimal
achievability found in [18, Section III.B] and obtain the

0 ] 11, My

1 |

Fig. 5. The illustration of possible r,1,7p2 values that satisfy rp1 > rp2
for N = 2.

smallest achievable rate on the shared common link, r., as
follows:

L+l =M —My=2—1rp —71p2 — My — M
(Ml,MQ) (S Ml(’l“pl,’l"lﬂ)
% +12 N % _ % _ 37rp1727‘p2271V117M2
(Ml,Mz) S MQ(Tpl,Tpg)
- = —Tp2 — % (Ml,MQ) S Mg(’r‘pl,T‘pg)
ll—%zl—rpl—% (Ml,M2)€M4(Tp1,Tp2)

My _

where M (rp1, 7p2) to My(rp1,7p2) are shown in Fig 5.
Similarly to the discussion on the N > 3 case, we find the
Tpl Tp2 T

foL Ze2 & } to coincide with (11).
Thus, the achievability proof of Theorem 2 is complete.

achievable 7' = max

V. CONCLUSIONS

We have studied the problem of centralized coded caching
for two users with different cache capacities, where, in addition
to the shared common link, each user also has a private link
from the server. We have characterized the optimal caching
and delivery strategies for any number of files in the library.
In the case of a shared common link only, we have improved
upon the known results in the literature by proposing a new
achievable scheme for a special (M7, M) pair, and perform-
ing memory-sharing among a total of nine special memory
pairs. In the case of two private links in addition to the shared
common link, we have shown that it is optimal to use all the
capacity available over the private links to transmit the file
requested by the corresponding user in an uncoded fashion.
A connection between the problem of coded caching with a
private link to each user considered here and that of coded
caching with heterogeneous distortion requirements studied in
[18] has also been established, which allowed us extending the
proposed results to improve the state of the art in the latter
problem as well.



APPENDIX
A. Proof of Lemma 2

We will provide the proof for the case (i, j) = (1,2) of (6),
and the other case where (i,5) = (2,1) follows by symmetry.
For any caching-delivery scheme, we have

Tc+M1
> H(XM?) + H(Z) (28)
> H(Zy, X(LQ))
_ H(Zl, Wl) (29)
— H(Wy) + H(Zl|W1) +HXM|Z, W) (0)
> 1+ H(Z|W)y)
1

+ (1= = H(ZW) + H(Z W) (6D

N -2
> 2+ﬁH(Z1|W1)—mH(Z2‘WI)7 (32)

where (28) follows from the problem definition in Section II,
(29) follows from the fact that User 1 can decode W; from
(Z1, X)), (31) is from Lemma 3.

Similarly, by exchanging the indices of 1 and 2, we have

N -2 1
re+ My > 2+ ﬁH(ZﬂWﬂ - 771H(21|W1)~ (33)

N

By cancelling the term H (Z;|W7) in (32) and (33), we obtain
My +re+ (N = 2)[r. + Ms]
> 2(N — 1) + (N — 3)H(ZQ|W])

(N=3)(N-1)
#H(Zz), (34)

where (34) follows from Lemma 4. Hence, following from
(34), we have

NM; + (2N —

>2(N —1)+

3)My + N(N — 1)r, > 2N(N — 1),

which completes the proof of Lemma 2.

B. Proof of Lemma 3

The proof of Lemma 3 is given here for completeness, but
it follows the proof of [12, Lemma 1] very closely. By setting
n = 1 1in [12, Lemma 1] and not using symmetry, i.e., [12,
Eqgn. (13)], to replace Z, with Z;, we would obtain Lemma
3. For completeness, the proof of Lemma 3 is as follows:

In the problem Q(M;, M), we have

(N* DH (X2, W)

= ZH (XD Zzy, W) (35)
> H(X(l 2:ND | z,, W)
> H(XMEND 7, |Wh) — H(Z,|Wh) — H(Zy|Z1, W)
= H(XEND Zy Wi |Wh)
— H(Zy|Wh) — H(Z1|Z2, W) (36)
> (N —1) = [H(Z2|Wh) + H(Z:[Wh)], (37)

where (35) is from Lemma 1, (36) follows because given
(X(1 [2:ND) Z3), User 2 can recover Wiy, and (37) is from

H(X(1 i) ZQ\W[l ~]) = 0. Thus, we have proved (7), and
the rest case follows by symmetry.

C. Proof of Lemma 4
For any i € {1: N — 1}, we have

HWi.i, Z1) — HWi—ay, Z1)
Wi |W1 1i—1]» Zl)

(
( z+1|W2 1] Zl)
(
(

(38)

v

z+1|W1 z Zl)

H
H((W,
H
H(Wiiq1), Z1) —

(W[lzi]a Z1)7

where (38) is from Lemma 1.
Then we have

S

i=1

Wi, Z1) — HWii—a), Z1)]

N-1
W[l z+1]aZl) (W[lz]azl)]
i=1
N-1

H(Wiq, Z1)] = (N = 1)H(Zy)

z=1

ZH Z))] - (N -1)H

& (N - ) (W1, Zy) — (N — 1)H(Z,)

> H(Wii.ny, Z1) — H(Wh, Z1)
& NH(Wy, Z1) — HWiin) > (N —
& NH(Z,|Wy) > (N - 1)H(Z,),

[1:541]> (Wlazl)

DH(Z) (39

where (39) is from H (Z1|W{y.n}) = 0. Thus, we have proved
(8), and the rest case follows from symmetry.

D. Proof of Lemma 5

For User 2, we have

M2 + 7

> H(Z, X3V

= H(Wh) + H(Zo|W1) + H(XEV|Zy,W1)  (40)
N -2
—Tec—Tp1 7M1, (41)

where (40) follows from the same steps as (30), and (41) is
from (21) in Lemma 6.
And similarly to (41), we have

Ml +re+ Tp1
2 H(Z17XC(172)7X1(11’2))
= H(W1) + H(Z,|Wy) + H(X(?, X220, W1)

N -2 1
>24 ——H(Z1|Wy) — ——H(Z>|W;
2 2+ 7 H(Z1Wh) = = H(Z2|Wh),

1 1 (42)

where (42) follows from (20) in Lemma 6.
Therefore, by cancelling the term H(Z2|W7) in (41) and
(42), we obtain (19), which completes the proof.



E. The proof of Lemma 6
In problem Q(Mj, My, R., Rp1,0), substituting X8 in
the proof of (37) with (X{"7, X(1)), we get (20). Similarly,
for (21), we have
(N = 1)H(XV|Zy, W)
N

=> H(XV|Zy, W)
=2
> H(x[ZN1

(43)

c )| Zy, W)
> H(XPND X PN 7 ) -
(N AR 8

- H(X oL
= H(x /BN X([Q ML) s 21, Wigen)[Wh) — H(Z3|Wh)
— H(Z1|Z2,W1) — H(XPND\ 20, 2, w7)
> (N = 1) = [H(Z2|Wh) + H(Z:1|Wh)]

— (N = D)H(XV |21, Zo, Wh), (44)
where (43) follows from Lemma 1, and (44) from
H(XPND XN 7 W.y)) = 0 and Lemma 1.

Finally, we upper bound H(X(2’1)|Z1, Z3, W) as follows:

H(Z5|Wh)

HXSV W, 20, 20) < HXSD, XEVW, 24, Zs)

—H(X(Q D XY 70 7, W) — H(Wy, 24, Zo)
H(XTY, X3, 2,, 2y, Wa) — H(W, Z1, Zo)
H( 15”|W27 X3, 21, 2,)
+ H(Wy, X <21> 7y, Zo) — H(Woy, Z1, Z5) (45)
H(X TV | Wa, X3V, Z,, Zy) + H(XPVD |Wa, Z4, Zo)
( 21)|W X(2 1) Z1)+H( 02’1)\W2,Z1)
H(XpY, XD |\Wa, Z1)

= H(Xﬁ D X3\ 20) — H(Wa) — H(Z1|W2) + H(Z1)

<7t e+ My — 1 — H(Z W), (46)

where (45) and (46) follow from Lemma 1. From (44) and
(46), we obtain (21), which completes the proof.

F. Proof of Lemma 7

We will characterize f(, , r,,) (M1, M) for a given
(rp1,7p2) pair. To do so, we consider the (Mj, M) plane
for a fixed (rp1,7p2) pair, as illustrated in Fig. 4(a). The
achievability follows from performing memory-sharing among
the nine points specified below. These correspond to points
A to G in Fig. 1(a), plus either transmitting Wé’; un-
coded through the shared common link, or caching all files
(WPt WPt ... W'} at User 2, which is also reflected in
the notation used to refer to these points. Recall that all these
points can be achieved from the twelve points P4 to Pr,
described in Section IV-B via memory-sharing. The points
used in memory-sharing and the corresponding fractions for
these nine points are given as follows.

1) Point A: it can be achieved by memory-sharing among

Points P, Py and P; with fractions [y, 1—1 and lo—11,
respectively.

2) Point B: it can be achieved by memory-sharing among
Points Pg, Py and Py with fractions [1,1—[5 and I —11,
respectively.

3) Point B’: it can be achieved by memory-sharing among
Points Pp, Py and Py with fractions [y, 1 — 15 and [y —
1y, respectively.

4) Point C’: it can be achieved by memory-sharing among
Points Po, Py and Pg with fractions [y, 1 — 15 and [5 —
11, respectively.

5) Point D: it can be achieved by memory-sharing among
Points Pp, Py and Pj with fractions 1, 1—[s and lo—11,
respectively.

6) Point E’: it can be achieved by memory-sharing among
Points Pg, Py and Px with fractions /1,1 — 1[5 and [5 —
11, respectively.

7) Point F': it can be achieved by memory-sharing among
Points Pr, Py and P; with fractions [, 1—I5 and lo—1;,
respectively.

8) Point G: it can be achieved by memory-sharing among
Points Pg, Py and Pr with fractions [y, 1—I5 and I3 —11,
respectively.

9) Point G': it can be achieved by memory-sharing among
Points Pg, Py and Py with fractions I1,1—1[5 and Iy —
11, respectively.

Next, we present the coding scheme for Points B and B’
to illustrate our observation that the schemes either transmit
W521 uncoded over the shared common link, or cache all the
files {WP', WE' ... W& at User 2. Similarly for the other
points.

For point B with (M, Ma,re) = (§l, 51,1 — &), we
use the scheme for Point B of Fig. 1(a) for subfiles {Wf,i €
[N]}, and transmit Wé)zl through the common link. In other
words, each subfile W is split into two parts of equal size
(WL WE2), i € [N]. User k caches {WC’“ i € [N}, k=
1,2. In the delivery phase, {W§? & W, W2} is transmitted
over the shared link.

For point B’ with (M7, Ms,r.) = (%ll,le - %ll, %),
we also use the scheme for Point B of Fig. 1(a) for subfiles
{W¢,i € [N]}, ie., each subfile W is split into two parts
of equal size (W, W¢?), i € [N]. Compared with point B,
instead of transmitting ng through the common link, we
cache {WW"' i € [N]} at User 2. In other word, User k caches
{Wek i € [N]}, k = 1,2, and furthermore, User 2 caches
{Wlpl7 Wh', -, W'} .In the delivery phase, {W5> & Wl}
is transmitted over the shared link.

In Fig. 4 (a), for (My, M3) € M;, we perform memory-
sharing among Points A, B, F'; for (M1, Ms) € Ms, among
Points A, B and G; for (M, Ms) € Mjs, among B, B’,
G, G'; for (My,M;) € My, among B, B', F, D, C’;
for (My, Ms) € Ms, among Points C’, B’, G', E’. When
(M, My) € Mg, the caches at both users are large enough,
so we do not need to transmit any data over the shared link.
When (M, M;) € My, we waste the extra cache at User
1 and achieve the same performance as point (Nly, Ms) €
My. Similarly, when (M7, M) € Mg, we waste the extra
cache at User 2 and achieve the same performance as point
(M, Nls) € M5. Hence, we focus on the non-trivial cases of



M UMz -+ |JMs, and the memory-sharing expressions
are given by (26). By symmetry, we can also obtain (27).

G. Proof of Lemma 8

In this proof, we consider another projection of
f(My, Ma,rp1,mp2) where we fix the pair (M, M) and
focus on the function f(as, ar,)(7p1,7p2) for the remaining
parameters (7p1,7p2).

Note that 7. = f(as, a1,)(7p1,7p2) can be found explicitly
from (26) or (27), albeit the expressions may be tedious
to write explicitly. However, we do not need the explicit
expression of f(as, ar,)(+), only its following properties: i)
Since f(M, My, rp1,7p2) is continuous and the closed-form
expression of f. . .y(My, Ma) in (26) and (27) is mono-
tonically decreasing in (71, 7p2), f(ar,,01,)(Tp1, Tp2) is a con-
tinuous and monotonically decreasing function of (rp1,7rp2),
where the monotonicity is defined as f( My o) (Tp1, Tp2) >
Joan mn) (Tp1, Tpa) A Tp1 < g, mpa < pos i) The value of
foaay,a1,)(Tp1, Tp2) can take only one of the five values in (26)
or (27).

For a given and fixed (M, M>) pair, we pick an achievable
(rp1,Tp2,7c) tuple as follows:

Note that, since none of the points with coded cache, i.e., Pr
and Pg, lie on the boundary in this projection, it is sufficient
to only consider the rectangle 0 <y < ]]”\[,i,
since the rate r,; = N s
i = 1,2, to recover the file, respectively.

We have the following cases as shown in Figure 6, which
shows the projection to the space with parameters (rp1, rp2):

o Case 1: {M1 > MQ,O < % < 1} or {Ml <

M27g—”f < N i } i.e., Fig. 6(a) and (b). For this case,

we further have the following two sub-cases:
Rpl 1.
-0< 5 Eu o < % % The achievable (7,1,7p2)
we ple is inside the rectangle, and also lies on line
Rp2
Tp2 = Ry rpl, i.e., it is the line segment of OP in
Fig. 6(a) or Fig. 6(b)
Consider the following function of 7,1:

N Tp1

91(rp1) R R )
for 1) (rp1, Tﬁrpl) + RT]prl
Since f(ar,,am,)(Tp1,Tp2) is continuous and mono-
tonically decreasing, g;(rp1) is continuous and mon-
tonically increasing. At the point O in Fig. 6(a) and
6(b), i.e.,

(rp1,mp2) = (0,0), ¢1(0) = 0. At the point
P in Fig. 6(a) and 6(b), ie., (rpi,rp2) =
1 RP 1 J—

- MW, R,j (1- MW», we have M; = N(1 —
rp1) = Nli, which in region My(rp1,7p2) in (26).
This gives us fiar, ) (Tp1 B2, 1) + Bp2p o =

Ny (M1,M2)\"pls R TP N—§§1p~
1— 37, and as a result, g1 (1 — ) = F=37+- Since

S Rp1 N—M,;
we are considering the case 0 < FotR.a = N-iMy>

we may find a 7, where (fpl, g—;’ffpl lies on the
line segment O P in Fig. 6(a) and 6(b), that satisfies
Ry

1) = RS Ry
c P

and the (rp1,7p2,7c) point we pick to calcu-

late T = max{rp1 ;{27%} is (fp17fp2afc) =

~ R .
(rph Tﬁrm, f(MlyMQ)(rpl, o rpl)). Note that this
point satisfies

f'pl 72p2 72(:
5 =5 =5 (47)
R,y Ry R

. - Ry~
Since (rpl,R—;rpl) can take all values on the

line segment OP for some (R,1,Rp2, R.), then
the pair (M;, M) can appear in these five re-
gions My, - - , M in (26) for some (R,1, Rp2, Re).
Therefore, since the value of fas, s, (Fp1,7p2) can
take only one of the five corresponding values
in (26) combmmg with (47), we see that T' =

o R R [ can only take one of the fol-
P P

lowing values

max

N N—-1 N N-—-1

R.+ Ry +Ry2 ' Re+ Rp1 + Rpo
N(@2N —1) —2(N —1)M; — NM,

N2(R.+ Rp2) + N(N —1)R,; '

1—- M _ My
N_ N Y. 48
R.+ Ry Rc+Rp2} (48)

)

{2_3M2_1v11 —M; o _ 3Mi _ M>—M

Note that, in this sub-case, it is easy to check that
the optimal latency 7™ showed in (12) is equal to the
maximum value of (48). Therefore, we have shown
that T'= T in this sub-case due to the fact that T*
is the lower bound of 7T

7 +’§ - > %_%1' The achievable (rp1,7p2) lies
on the line segment QR in Fig. 6(a) or Fig. 6(b),
ie, rp1 = 1 — % Now, we pick r. within the
three-dimensional achievable region, and this will
determine to which point on line segment QR it
corresponds.

Consider the following function of 7,s:

)& Jo vy (1 — %,sz)
T’pg

g2 (rpZ

Since f(as,,a1,)(Tp1,7p2) is continuous and mono-
tonically decreasing, so is ga(rp2). At point @
in Fig. 6(a) and 6(b), ie., (rp1,7p2) = (1 —
%,O), 92(0) = oo, we have M; = N(1 —
rp1) = Nli. At the point R in Fig. 6(a) and
6(b), ie., (rp1,mp2) = (1 — 22, 1—22) we have
My = N1 —rp), My = N(l — rp2) which is
the point C’ in Fig. 4(a) or 4((b). This gives us

Moy (L= 1 — M2y — g and as a result,
(M1,M>) N N
g2(1 — %) = 0. Hence, we may find a point
(1- %, Tp2) on line segment QR that satisfies
- R,
92(Fp2) = 5,
2(7p2) R

and the (rp1,7p2,7c) point we pick to calculate

— Tpl Tp2 r . N ~ ~ o
T = maX{Rpl,RM,R—Ca is (fp1,Pp2,Te) =




rpz
1M : R
N Mp2 Mp2 )
r.=r AN R 1M.[S P R
N N L g
RN ro=r, /
- P T2 =l p mon s
R ) —p . // f,;:R*H
=22t T o :
pl ! s
O;/ AC} o S Q o / Q
_M, r M M
1 v pl - pl - pl
R _
R E RV CIVLES ~ = CRUESURVE = —E
Fig. 6. For a fixed (M7, M) pair, the achievable (rp1,7p2) region.
(1 - %, Tp2s f(amy Mz (1 — %, fPQ)). Note that Then, similarly to Lemma 3, we have
this point satisfies
1,2
(N = D)H(X?|Zy, 8)
. R . N
Tp2 T Tp1 1.4
2z _ e o Pl (49) :ZH( X19| 2, .8y) 51)
Rp? R. Rpl =2

where the last > follows from 72 + fiar,,ar,)(1 —
M Fe) =1— 22 and o _ﬁ.c > %:7%;

In this sub-case, (Ml,Mg) is always in the line
segment of C'D in Fig. 4 (a) or C'D’ in Fig. 4 (b),
ie., My = N(1 — rp1) = Nly. Therefore, the value
of finry nay)(1— 202, 7o) is 1—7pp — 22 Combining

. _ Tp1 Tp2
with (49), we see that T' = max { R” , R’;z, i } can

only take the following value

1 M
T=—N |
Rc+Rp2

Note that, in this sub-case, it is easy to check that the
optimal latency T showed in (12) is equal to 7.

> H(XEND |z, 8y)
> H(XMEND 7,18)) — H(Z,|8)) — H(Z3|Z1, 51)
= H(Xc(l’ - N])a 23, S[22:N]|Sl)

— H(Z5|51) — H(Z1|Z3, 51) (52)
= ( [2N|Sl +H(X(1 [2:ND) Z2|S[2N] Sl)
— H(Z5|S1) — H(Z1|Z32, 51)
H(S%.n|81) + H(XPND, Z51811.0)

) —

— H(Z5|8,) — H(Z,|S1)

N
= ZH(S?) + H(XMEND, Z5|Sn:ny)
i—2

— H(Z5|S1) — H(Z1|S1) (53)
> (N — l)lz — [H(ZQ‘Sl) + H(Z1|Sl)], 54)

o Case 2: the remaining case in Fig. 6 (c). For this case, we = where (51) follows since we consider source-index-symmetric

N—M>

. . . p2
again consider two sub-cases: 1)0 < 7~ o S N

and 2) "2 > % %2 The proof can be completed
by using a 51m11ar argument in Case 1. Due to the space
limit, we omit the details.

H. Converse proof of Theorem 3

Firstly, we denote S; as the i-th source and S’Zk as the -
th source recovered by the k-th user, in which¢ =1,--- /N
and k£ = 1,2. Due to the independence of the sources and
the constraints of users’ decoding, the Lemmas 1 and 4 apply
to this model, i.e., there must be an optimal source-index-
symmetric caching and delivery code, for which we have:

H(Zi|S1) =z (N —=1)H(Z;), Vi=1,2 (50)

codes; (52) from the recovery of requests from the transmitted
messages and cache contents; (53) from the independence of
sources; and (54) from the definition of the rate distortion
function. Similarly,

(N —1)H(XZY|Zy, 1)
> (N — )ly — [H(Z,|S1) + H(Z2|S1))].

Then, similarly to Lemma 3, we have

re + My

> H(X(M) + H(Zy)

> H(Z, X))

= H(Z,, X2, 8%)

= H(S) + H(Z:|S1) + H(XM?| 21, 51)
> H(S)) + H(Z1|S1) + H(X| 21, 8)
> 1y + H(Z:1]51)



1
+ (l2 — m[H(ZﬂSﬁ + H(Z3|51)]) (55)
N -2 1
Zll+l2+mH(Z1|51)—mH(Z2‘Sl), (56)

where (55) follows from (54) and the definition of the rate
distortion function.
Similarly, by exchanging the indices of 1 and 2, we have

7"C+M2

N -2 1
> B - ,
L+l + N H(Z2|Sl) N lH(Zl\Sl) (57)
By cancelling the term H(Z1]S1) in (56) and (57), we obtain

for N >3

Mi+r.+ (N =2)[r. + Ms]
> (N = 1)(L +12) + (N = 3)H(Zs| 1)
> (V- )+ TN D g s

where (58) is from (50). Hence, following from (58), we have

NM;+(2N—-3)My+N(N—-1)r. > N(N—1)(l1+12). (59)
Symmetrically,
NMy+(2N-3)M1+N(N-1)r. > N(N—1)(l1+12). (60)
Then

M1 + My + 27,

H(Zy, X)) + H(Zo, XPPV)

H(Z, X<1 D SH + H(Zy, X2V 32)

H(SY) + H(Z, |5 + H(X 2|2, 81

+ H(S?) + H(Zo|SF) + H(XPV| 2y, 57)
> H(S}) + H(Z1|S1) + H(X(M?|Zy,S1)

+ H(S%) + H(Z,5|S1)

N -2
>+ 20+ o (H(ZS) + H(ZIS)], 6D
where (61) follows from (54).
Recall that
Te + M1
N -2
>+l + ﬁH(ZﬂSl) — ——H(Z,|51). (62)

Therefore, by cancelling the term H(Z3]S1) in (61) and (62),
we obtain

My + Mo+ 2r. + (N —2)(r. + M)
> (N = 1)l + Nlg + (N — 2)H(Z1]51)
>(N-1)h +N12+%J\EN71)H(21)» (63)

where (63) follows from (50). Hence, we have

2(N —1)M; + NMy + N?r. > N(N — 1)l; + N?%l5. (64)
Similarly, we have

2(N —1)My + NM; + N?r. > N(N — 1)l + N?1;. (65)

Finally, from (59), (60), (64), (65) and the cut-set bound
proved in [18], the converse proof is completed.
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