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Abstract— We consider transmission of two arbitrarily corre-
lated sources over a discrete memoryless asymmetric multiple
access channel, where one of the sources is available at both
transmitters. We want to transmit the common source lossless in
the Shannon sense, while there is a distortion requirement on the
other source. For a given bandwidth ratio between the channel
and source bandwidths and a distortion requirement, we derive
the necessary and sufficient conditions, and show that separation
of source and channel coding is optimal. Finally, we extend our
results to the case where perfect casual feedback is available at
either one or both of the transmitters.

I. INTRODUCTION

The discrete memoryless (DM) asymmetric multiple access
channel (AMAC) with two encoders, introduced by Haroutu-
nian [1], is a multiple access channel with two transmitters
and one receiver, where one of the transmitters has access to
the other’s message in addition to its own private message.
Haroutunian characterized the capacity region of DM AMAC
with independent sources. Later, Prelov [2]-[4] showed that
for a DM AMAC with independent sources, feedback cannot
increase the capacity region. Note that, this model of AMAC
is different from the MAC with cribbing encoders setup of
Willems [5], where the channel inputs of one of the transmit-
ters (not the message itself) is assumed to be available to the
other in a noncausal fashion.

Transmission of correlated sources over a DM multiple
access channel (MAC) was first investigated by Cover et al.
[6] who showed that Shannon’s separation principle, i.e., first
applying distributed source coding and then using channel
codes for the underlying MAC, is not optimal contrary to its
optimality in the point-to-point setting. Sufficient conditions
for reliable transmission of correlated sources over DM MAC
were provided in [6] which were later shown by Dueck [7]
not to be necessary. The problem of finding the necessary and
sufficient conditions in the most general setting remains open
to this day.

In [8], De Bruyn et al. consider lossless transmission of
arbitrarily correlated sources over a DM AMAC and find
necessary and sufficient conditions. Surprisingly, they show
that Shannon’s separation principle is optimal for this setting,
i.e., Slepian-Wolf source coding [9] followed by capacity
achieving channel coding for the DM AMAC is optimal. They
also show that the same necessary and sufficient conditions
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hold when casual perfect feedback is available at either or
both of the transmitters.

In this paper, we extend the results of [8] to the case
where the common source is transmitted losslessly in the
Shannon sense, while we have a distortion constraint on the
other source. We show that, first applying distributed source
compression with one distortion criterion, and then using the
optimal channel code for the given DM AMAC is optimal.
Similar to [8], our results can also be extended to one- or
two-sided perfect feedback cases.

The scenario considered in this paper can model a situation
where two sensors communicate a common information reli-
ably to a destination through a MAC, while some additional
correlated information is transmitted with certain distortion
criterion by only one of the sensors. Another application would
be the cognitive radio channel as modeled in [10], where the
authors derive achievable rates of an interference channel in
which the message of one of the transmitters is known by the
other transmitter non-casually. Although their model focuses
on separate destinations, cognition in the multiple access
setting is also important, and optimality of separate source and
channel coding reinforces modular design for future cognitive
multiple access radio networks.

The paper is organized as follows: in Section II, we intro-
duce the problem, and then state our main results. In Section
III, we present some background and derive results that will be
necessary to prove our main theorems. We prove the separation
theorem for no-feedback case in Section IV, and for two-
sided perfect feedback case in Section V. Then Conclusion
and Appendix follow.

Throughout the paper, we will denote random variables by
capital letters, sample values by the respective lower case
letters, and the alphabets by the respective calligraphic letters.
The random vector (X7, ..., X,,) will be denoted by X", and
we denote the complement of a certain element in a vector by
X2 (X, X1, X1y, X))

II. PROBLEM SETUP AND THE MAIN RESULT

We consider two i.i.d. sources which are arbitrarily corre-
lated according to a joint distribution p(s,t) € P(S x 7T),
that is, {S;,T;}52, are generated i.i.d according to p(s,t)
over a finite alphabet S x 7. We denote this source pair by
(S.p(s,), T).
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Fig. 1. Asymmetric multiple access channel with arbitrarily correlated sources.

We assume that source S is only available to encoder 1,
while source 7' is available to both encoders of a multiple
access channel (see Fig. 1). Encoders transmit these length-
m sequences of the sources over the DM AMAC denoted
by (X1 X Xo,p(y|z1,22),)). Encoder 1 maps its observa-
tion (S™,7™) to a channel codeword of length-n X} =
F(S™, T™) € AT by the encoding function

f:8MxT™— X", (1)

On the other hand, encoder 2 maps7™ to a channel code-
word X¥ = g(T™) € V" by the encoding function
g:Tm — X3 2)

The output of the DM AMAC is Y € V™. The channel is
characterized by the conditional distribution

n

p(y"|xY, zy) = HPY|X1,X2(Z/7:|I1,¢,$2,7:)- 3)
=1

_The decoder maps the channel output Y™ to the estimate
(S™,T™) = h(Y™) by the decoding function

h:Yt — 8™ xT™. 4)

We define the per letter distortion measures for sources S
and T, respectively, as

dy: S xS —[0,00) 6))

di: T xT — {0,1} di(t,t) =1—8,; (6)

Here the distortion function d; is arbitrary. Let

o E
AT =F | — ds(Sk; , 7
" m; (Sk; Sk) @)
and
m o__ _i - N ]
Al'=E m;dek,Tk) : ®)

Then, with A™ defined as
Am = Am(Sm7Tm;Sm7Tm)7
1 & N .
(m ;ds(sk,sw, — ;dek,Tk)) )
we have E[A™] = (AT, AT").

Definition 2.1: We say that the pair (b, D) is achievable
for the source pair (S, p(s,t),T) over the DM AMAC (X} x

1>

Xo, p(y|z1, 22),Y), if for every € > 0, there exist sufficiently
large n and m with b = n/m, and encoders f and g and
decoder h such that

E[A™ < (D +¢,0).

The main problem of this paper is to find the necessary and
sufficient conditions for the achievability of the pair (b, D)
while transmitting the source pair (S, p(s,t),T) over the DM
AMAC (X x Xo, p(y|z1,22),Y). As in [8], we also consider
a DM AMAC with arbitrarily correlated sources and two-sided
casual perfect feedback (see Fig. 2), where the channel output
is casually available to both encoders. Encoder 1, in addition to
the source sequences S™ and 7™, also observes the previous
channel outputs Y~! £ (Y,...,Y;_ 1) before deciding the
i-th channel input X ;. Then the encoding function of encoder
1, f is now defined as an n-sequence of functions as follows.

Xl,l = fl(SmaTm)a (10)

X1 = fi(S™,T™ YY), fori=2,...,n. (11)
Similarly, the encoding function g of encoder 2 is defined as
X2 91(T™), (12)

Xo; = g(T™ YY), fori=2,...,n. (13)

In the case of one-sided casual feedback, only the encoder
function observing the feedback signal needs to be changed
correspondingly. The decoder function, average distortion and
achievability definitions remain unchanged.

We define Rgp(D) as the conditional rate-distortion func-
tion for source S with side-information 7', whose definition
will be given later. Following theorem is the main result of
the paper.

Theorem 2.1: For the source pair (S,p(s,t),7) and the
DM AMAC (X x Xo,p(y|x1,22),Y), (b, D) pair is achiev-
able if,

Rgsr(D)
H(T) + Rsr(D)

< b I(X1;Y[XR),
< b'I(Xl,Xg;Y)7

(14)
s)

where the joint probability distribution on X3 x X5 x Y satisfies

p(r1, 22,y) = p(o1, 22)p(y|ry, 22). (16)

Conversely, if the pair (b, D) is achievable for the source pair
(S,p(s, t)? T) and the DM AMAC (Xl X X27p(y|x17 $2)7 y)’
then there exists a probability distribution p(x1,x2) on Xy X X
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such that (14) and (15) hold with < replaced by <, where the
joint distribution on X7 x A5 x ) is given by (16).

Proof: Proof of the theorem is given in Section IV. M

Similar to the lossless case in [8], this result can also be
extended to the two-sided casual perfect feedback case as
follows.

Theorem 2.2: For the source pair (S,p(s,t),7) and the
DM AMAC (X; x Xa, p(y|x1,x2),Y) with two-sided casual
perfect feedback, the (b, D) pair is achievable if (14) and
(15) hold for a joint probability distribution on X} x Xy x Y
satisfying (16). Conversely, if the pair (b, D) is achievable
for the source pair (S, p(s,t),7) and the DM AMAC (&X; X
Xa, p(y|z1,22),)) with two-sided casual perfect feedback,
then (14) and (15) hold with < replaced by < for joint
distribution on X} x X5 x ) of the form (16).

Proof: Proof of the theorem is given in Section V. W

Remark 2.1: Note that, since the same sufficient condi-
tions are also necessary for both no-feedback and two-sided
feedback cases, we can conclude that, same conditions are
necessary and sufficient for one-sided casual perfect feedback
case as well.

Remark 2.2: Although the proof we provide here is for a
discrete source alphabet S, following the arguments in [15],
the results can be extended to a continuous source alphabet.

Note that, these two theorems state that conditions (14)-
(15) are necessary and sufficient for the achievability of a
(b, D) pair, unless they hold with equality. As it will be clear
from the proof, this can be interpreted as the optimality of
distributed source coding followed by AMAC channel coding.
Intuitively, the reason behind the optimality of separation in
this setting is that, the structure of the message sets already
enables the encoders to achieve all possible joint distributions
for the channel inputs. Hence, there is no further need to
exploit correlation induced by the sources. However, in the
usual MAC scenario, since the channel input distributions are
independent, the correlation among the sources would help
the encoders to achieve certain joint distributions through joint
source-channel coding, which would not be possible to achieve
through separate source and channel coding.

a}/ifl)

Asymmetric multiple access channel with arbitrarily correlated sources and two-sided casual perfect feedback.

III. BACKGROUND

In this section, we provide some background that will be
used in the following section to prove the main result of the
paper. We start with the capacity region of a DM AMAC with
independent messages given in [1]. Consider two independent
messages Wy € {1,2,...,M;} and Wy € {1,2,..., My},
where each pair (wj,ws) occurs with probability 1/M; M.
We assume that /7 is available to encoder 1, while W5
is available to both encoders. While encoder and decoder
functions are similar to the joint source-channel setting with
S™ and T™ replaced by W; and Wa, respectively; the goal of
the receiver is to reconstruct (Wl, Wg). An (M, My,n, P, )-
code for the DM AMAC (X7 x X, p(y|z1,22),Y) with
independent messages is defined as the set of encoding and de-
coding functions with error probability P, £ Pr{(Wy, W) #
(W1, Wa)}.

Definition 3.1: A rate pair (Ry, R») is said to be achievable
for the DM AMAC with independent messages if, for any € >
0 there exists for all sufficiently large n, an (M, My, n, P.)-
code, such that 0 < Ry < log(M;)/n, 0 < Ry < log(Ms)/n,
and P, <e.

Capacity region of a DM AMAC is defined as the closure
of all the achievable rate pairs (R, R2) and is given in [1].

Theorem 3.1: The capacity region of a DM AMAC is given
by

Camac = U

p(z1,22,9)EP

{(R1, Ry) € RE|R, < I(X1;Y|Xa),

Ry + Ry < I(X1,X2;Y)},

where P is the set of all probability distributions in the form
of p(z1,22,y) = p(z1, 22)p(y|T1, 2).

Next, we consider the asymmetric source coding problem
with one distortion criterion, where encoder 1 has access to
both correlated sources S and 7', while encoder 2 has only
access to 1. For the source coding problem, we assume error
free direct links from the encoders to the decoder and define
an (m, My, My, A™ A7) code by two encoders

fli SmXTm—>{]_7,,,,M1},
f22 Tmﬂ{l,...,MQ},



a decoder

g: {1,..., M} x{1,... .My} -8 xT™

with

(S«m’j—vm) — g(f1 (Sm,Tm),fz(Tm)). A7)

and per letter distortion measures and average distortion
E[A,,] defined as in (5),(6) and (9), respectively.

Definition 3.2: For the above source coding problem, a rate
pair (Ry, R2) is said to be D-achievable for the source pair
(S,p(s,t),T), if for any € > 0, and for sufficiently large m,
there exists an (m, My, My, A7*, A7) code such that

My <2rBta AT < D e,
My < 2n(Rate) A" <e.
We define

R(D) = {(R1, Rz) : (R1, Ry) is D-achievable}.

This asymmetric source coding problem with one distortion
criterion is one of the many cases considered by Kaspi and
Berger in [14]. The achievable rate region is fully characterized
in [14], however, for our proof in the next section, we obtain
a slightly different characterization, whose equivalence to the
Kaspi-Berger region is proven in the Appendix.

For our alternative characterization of 2R(D), we need the
following definitions and results. As in [12], we define the
functional £(-) on a joint distribution pgg, as the minimum
possible estimation error of S given Q):

£(S1Q) = min Bld(S. [(Q))) (18)

Now we can write the conditional rate distortion function
Rgp(D), defined in [11], using the functional £(-) with

distortion measure ds(-, -) as
Rgir(D) = i 1(S;U|T 19
sir(D) U:E(SH\II},%“)gD (S;U|T), (19)
over all joint distributions p(uls, t).
Let R*(D) be the set of (R, Ry) pairs satisfying
Ry > Rgyp(D), (20)
Ri+Ry, > H(T)+ Rgr(D). o3}

Theorem 3.2: R(D) = R*(D).
Proof: Proof of the theorem is given in the Appendix.
|

IV. PROOF OF THEOREM 2.1

Proof: We start with the direct part. Assume for some
positive Ry and Rs, we have

1 1
5R5|T(D) < gRl < I(Xl;Y|X2),

1 1

5 [H(T) + R5|T(D)] < Z (Rl + Rg) < I(Xl,XQ;Y)
From Theorem 3.2, we observe that the left hand side

of the above inequalities form the sufficient conditions for

compressing 7" losslessly and S with distortion D, where R;

and R, are the compression rates of encoder 1 and encoder 2,
respectively. On the other hand, from the capacity region of
DM AMAC with independent messages given in Theorem 3.1,
the right hand side form the sufficient conditions to transmit
the compressed sources reliably over the channel.

Next, we prove the converse. We first define the following
random variables for ¢ = 1,...,n:

U; 2 (Y™, 81 TY). (22)
We can obtain the following set of inequalities:
1 1
EI(X{L;Y"IXS) > EI(X{I;Y"IXS,Tm), (23)
1
1
= EI(S"’;Y”,XS\T"‘), (25)
1
> I( m, Y7L|Tm) (26)
n
= ZI (S;Y™|8=1 T, (27)
n =1
1 m
= EZ: (S;; Y™, S L TE|T)
—I(S; 8" TE|T), (28)
1 m
= =) IS Ui|T), 29
nZ (Si; Uil T) (29)
> —ZRW (Si|Ui, T3)),  (30)
> —ZRW (Si|T™,Y™)), 31)

> = ZRS|T

> ERS|T(D+€)7

ds(S:,8:)])), (32)

(33)

where (23) follows since 77" — XT' — Y™ form a Markov chain
given X3'; (24) follows from the data processing inequality
and the fact that " — X' — Y™ form a Markov chain given
(X3, T™); (25) follows from the chain rule and the fact that
S™ —T™ — X3 form a Markov chain; (26) follows from the
chain rule and non-negativity of the mutual information; (27)
and (28) follow from the chain rule; (29) follows from the
memoryless assumption on the sources and the definition of
U;; (30) follows from (19); (31) follows from the monotonicity
of Rg7(-) and the definition of £(-) in (18); (32) follows
from (18) and the fact that Sl is a function of Y"; (33)
follows from the convexity and monotonicity of Rg7(-), and
the assumption we made in the beginning that distortion D is
achievable.

We will find a similar bound for the joint mutual informa-
tion. For this we will need Fano’s inequality which states

HT™ ™) < 14 Almlog(|T]),

£ mé(Af), (34)



where §(z) is a non-negative function that goes to zero as
xz—0

‘We have
CIXEXEYT) 2 SISV, ()
1 m. n
= EI(T Y™
+%I(Sm; Y|, (36)
1 m., n
1
+ERS|T(D + 6)7 (37)
1
= ~[H(T™) = H(I™[Y")]
1
+6RS|T(D +e), (38)
1
> 3 [H(T) + Rgi7(D +¢)]
~ L i (39)
n
1
> 7 [H(T) + Rg|7(D +¢)
—0(A7M)], (40)

where (35) follows since (77, S™) — (X7, X7) — Y™ form a
Markov chain; (36) follows from the chain rule; (37) follows
from (26)-(33); (39) follows from the memoryless source
assumption and the fact that 7™ — Y™ — 7™ form a Markov
chain; and finally (40) follows from Fano’s inequality and the
definition (34).

By choosing a large enough m, we let ¢ — 0 and A" — 0
and using the continuity of Rgy(-), we obtain the following
set of inequalities.

Rsr(D) < LICX5YIXE)
UIXY, XY,

H(T)+ Rgr(D) <

Now, notice that the mutual information expressions on the
right hand side of the above inequalities are concave functions
of the joint probabilities p(z1,;,22,;). Hence, from Jensen’s
inequality, we get

Rer(D) < b-1(X;Z]Y),

for some joint probability distribution of the form (16), com-
pleting the proof of the converse. |

V. PROOF OF THEOREM 2.2

Proof: 'We only prove the converse as the direct part
simply follows form Theorem 2.1. The converse proof also
resembles the converse proof of Theorem 2.1. We can follow
the same steps from (23)-(33) since all the arguments about
the conditional rate distortion function and the facts that 7™ —
X['—Y™ form a Markov chain given X%'; S — X{'—Y ™ form
a Markov chain given (X7,7™); and that S™ — T™ — X7

form a Markov chain still hold. Similarly, the Fano’s inequality
in (34), and the Markov relation (7, 5™) — (X7, X%)—-Y"
continue to hold, which allow us to follow the same steps in
(35-40). Thus we can prove the converse as in the converse
of Theorem 2.1. |

VI. CONCLUSION

We consider transmission of arbitrarily correlated sources
over a discrete memoryless asymmetric multiple access chan-
nel. While we require the common source to be transmitted
losslessly in the Shannon sense, we allow a certain distortion
on the private source. Our results provide a source-channel
separation theorem which states that optimal distributed source
compression followed by optimal channel coding achieves the
optimal overall performance. In order to prove this result,
we gave a new characterization of the achievable rate region
for asymmetric source coding problem with one distortion
criterion.

APPENDIX

In this Appendix we show that the achievable region for
the asymmetric source coding problem with one distortion
criterion given by Kaspi and Berger in [14] is equivalent to
the region R*(D).

Proof: The Kaspi-Berger region, R 5 (D) can be written
as the set of all (Ry, Ry) pairs for which there exist auxiliary
random variables U € U/ and V € V), jointly distributed with
S and T, |U| < oo, |V| < oo, which satisfy

i) S —T —V form a Markov chain;

ii) there exist S(U) such that E[dy(S,S)] < D and

H(T|U) =0;

iy Ry > I(S,T;U|V) and Ry + Ry > I(S,T;U,V).

Using (19), we can express the region R* (D) as the set of
rate pairs (R1, Ry) for which there exists an auxiliary random
variable W € W, |[W)| < oo, jointly distributed with S and T
such that:

i) there exists S(W,T) satisfying E[d,(S,5)] < D;

i) Ry > I(S;W|T) and Ry + Ry > H(T) + I(S; W|T).

We will prove that R*(D) = Rgp(D). We start by
showing that R*(D) C Rk p(D). Assume that (Ry, Rp) €
R*(D). We take V =T and U = (T, W). Then it is easy to
see that conditions i) and and ii) of Kaspi-Berger are satisfied.
We also have

1(S,T;U|V) 1(S,T;T,W|T),
I(S;T,W|T),
I(S;W|T),

R17

IN

and

IS, T;0,V) = I(ST;T,W),
I(S,T;T) + 1(S, T; WIT),
H(T) + 1(S; WIT),

Ri + Ro,

IN



Thus (Ry, Re) € Rk p(D). To show that R (D) C R*(D),
assume that (Rq, R2) € Rip(D) and take W = U. Obvi-
ously, condition i) of 58* (D) is satisfied for this choice of W.
We have

I(S; W|T)

1(S;U|T),

I(S;U|T) 4+ I(T; U|V)

+I(T;V) = (T} V),

I(S;U|T) + I(T;U,V) — I(T; V),
I(S;U|T)+ I(T;U)

+I(T;VIU) — I(T;V),

I(S,T:U) + I(S, T; V|U) — I(T; V),
I(S,T;U,V) = I(8,T; V),
1(S,T;U|V),

Ry,

IN

IAIA

IN

and

H(T) + I(S; W|T)

H(T) + I(S;U|T),

< H(T)— H(T|U,V) + I(S: U, V|T),
= I(T;U,V)+1(S;U,V|T),

= I(S,T;U,V),

< Ri+ Ry,

This concludes the proof of the fact that R (D) C R*(D),
hence we get Rip(D) = R*(D). Since [14] proves that
R s(D) = R(D), we have R*(D) = R(D). n
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