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Learning to Minimize Age of Information over

an Unreliable Channel with Energy Harvesting
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Abstract

The time average expected age of information (AoI) is studied for status updates sent over an

error-prone channel from an energy-harvesting transmitter with a finite-capacity battery. Energy cost

of sensing new status updates is taken into account as well as the transmission energy cost better

capturing practical systems. The optimal scheduling policy is first studied under the hybrid automatic

repeat request (HARQ) protocol when the channel and energy harvesting statistics are known, and

the existence of a threshold-based optimal policy is shown. For the case of unknown environments,

average-cost reinforcement-learning algorithms are proposed that learn the system parameters and the

status update policy in real-time. Value-based, policy-based, and deep reinforcement learning methods

are exploited and the effectiveness of the proposed methods is demonstrated through numerical results.

Index Terms

Age of information, energy harvesting, hybrid automatic repeat request (HARQ), Markov decision

process, reinforcement learning, policy gradient, deep Q-network (DQN).

I. INTRODUCTION

Many status update systems, including wireless sensor networks in Internet of things (IoT)

applications, are powered by scavenging energy from renewable sources (e.g., solar cells [2], wind

turbines [3], piezoelectric generators [4], etc.). Harvesting energy from ambient sources provides
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environmentally-friendly and ubiquitous operation for remote sensing systems. Therefore, there

has been a growing interest in maximizing the timeliness of information in energy harvesting

(EH) communication systems [5]–[17]. In these systems, the staleness of the information at the

receiver is measured by the age of information (AoI), defined as the time elapsed since the

generation time of the most recent status update successfully received at the receiver.

Prior works have investigated online [5], [7], [9], [12], [13] as well as offline [5], [14]

methods for different scenarios in order to optimize the timeliness of information under energy

causality constraints in EH systems. The structure of an optimal policy is derived and heuristic

algorithms are proposed in [7], [9], [11], [12] for a finite-size battery considering only the cost of

transmissions. Earlier literature on AoI assumed that the cost of sensing (monitoring) the status

of a process is negligible compared to the cost of transmitting the status updates. However, in

many practical sensing systems acquiring a new sample of the underlying process of interest

also has a considerable energy cost [18], [19]. The sampling/sensing cost has been taken into

account in [19], [20] and [21], where a status update system with an unlimited energy source is

considered. In [19] and [20], closed form expressions are presented for the energy consumption

and average AoI with known transmission error probability and automatic repeat request (ARQ),

assuming that a packet is re-transmitted until either it is received, or a prescribed maximum

number of transmissions is reached. In our previous work, we studied status-update systems

under a transmission-rate constraint, or equivalently, an average power constraint [22]–[25].

In this paper, we study a status update system considering both the sensing and transmission

energy costs, better capturing practical systems. Moreover, we consider an EH transmitter, which

uses the energy harvested from the environment to power the sensing and communication

operations. Unlike prior work [19]–[21], we consider the intermittent availability of energy

with unknown energy arrivals and a hybrid automatic repeat request (HARQ) protocol, where

the partial information obtained from previous unsuccessful transmission attempts is combined

to increase the probability of successful decoding. When employing HARQ in status update

systems, there is an inherent trade-off between sending a new update after a failed transmission

attempt, which may result in a lower AoI, and retransmitting the failed update, which has a

lower probability of error. Introducing sensing cost to the system model makes this trade-off

even more challenging and interesting, as retransmissions incur no sensing cost.

In most practical scenarios statistical information about either the energy arrival process or

the channel conditions are not available a-priori, or may change over time [26]. Previous works
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on EH communication systems without a-priori information on the random processes governing

the system exploited reinforcement learning (RL) methods in order to maximize information

freshness [12], [13], [16], [17]. [12], [16] and [17] consider deep RL (DRL) algorithms that

can learn the status update policies for multiple source nodes powered by energy harvesting

while [13] uses a tabular Q-learning method to find an optimal policy without information on

the true battery levels of the source nodes. To the best of our knowledge, this is the first work

that considers the HARQ protocol with also distinct sensing and transmission energy costs and

proposes assorted RL algorithms, including both deep RL and tabular value or policy based RL

methods, that can adapt the status-update scheme to the unknown energy arrival process as well

as the channel statistics.

Our goal will be to identify the optimal policy that can judiciously balance the AoI benefits of

transmitting a new status update with its additional sensing cost and lower success probability.

The optimal decisions will depend not only on the current AoI and retransmission count, but also

on the battery and energy harvesting states. We consider a value-based RL algorithm, GR-learning

[27], a policy-based RL algorithm, finite-difference policy gradient (FDPG) [28], and a deep RL

algorithm deep Q-network (DQN), and compare their performances with that of the relative value

iteration (RVI) algorithm which assumes a-priori knowledge on the system characteristics. We

also propose a threshold policy with low computational complexity and demonstrate that a policy

gradient algorithm exploiting the structural characteristics of a threshold policy outperforms the

GR-learning algorithm. This paper is an extended version of work presented at [1]. We extend

our previous work in several directions by showing that the threshold policy is optimal, by

investigating the effect of preemption in different scenarios followed by proposing a novel RL

method, i.e., FDPG with preemption, and also by exploiting a deep reinforcement learning

algorithm.

The main contributions of this paper are outlined as follows:

• The average AoI is studied under energy replenishment constraints, i.e., energy causality

as well as battery capacity constraints, imposed on the transmitter, which limit the energy

consumption in a stochastic manner.

• The optimal policy is shown to be stationary, deterministic, and monotone with respect

to the AoI, while both retransmissions and preemption following a failed transmission are

considered.

• Scheduling algorithms are designed using multiple average-cost RL algorithms; in particular,
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Figure 1. An EH status update system over an error-prone link in the presence of ACK/NACK feedback.

a value-based RL algorithm, GR-learning [27], a policy-based RL algorithm, FDPG [28],

and a deep RL algorithm, (DQN), are used to learn the optimal scheduling decisions when

the transmission success probabilities and energy arrival statistics are unknown.

• Numerical simulations are conducted in order to investigate the effects of the EH process

on the average AoI. In particular, we have found that temporal correlations in EH increase

the average AoI significantly.

• The average AoI with EH is compared with the average AoI under an average transmission

constraint, and it is shown that the average AoI obtained by the EH transmitter is similar

to the one obtained under an average transmission constraint for a battery with unlimited

capacity and zero sampling/sensing cost.

The rest of the paper is organized as follows. The system model is presented in Section II.

The problem of minimizing the average AoI with HARQ under energy replenishment constraints

is formulated as a Markov decision process (MDP) and the structure of the optimal policy is

investigated in Section III. Section IV shows the application of RL algorithms to minimize the

AoI in an unknown environment. Simulation results are presented in Section V, and the paper

is concluded in Section VI.

II. SYSTEM MODEL

We consider a time-slotted status update-system over an error-prone wireless communication

link (see Fig. 1). The transmitter (TX) can sense the underlying time-varying process and generate

a status update in each time slot at a certain energy cost. Status updates are communicated to the

receiver (RX) over a time-varying wireless channel. Each transmission attempt takes constant

time, which is assumed to be equal to the duration of one time slot.
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The AoI measures the timeliness of the status information at the receiver, and is defined at

any time slot t as the number of time slots elapsed since the generation time U(t) of the most

up-to-date packet successfully decoded at the receiver. Although the AoI can be arbitrarily large,

in practice the utility of status updates typically becomes zero beyond a certain AoI, so the

AoI can be assumed bounded by setting an upper bound on the age (which will be denoted by

∆max.). Formally, the AoI at the receiver at time t is defined as ∆rx
t , min(t − U(t),∆max),

where a maximum value ∆max on the AoI is imposed to limit the impact of the AoI on the

performance after some level of staleness is reached.

We assume that the channel changes randomly from one time slot to the next in an independent

and identically distributed (i.i.d.) fashion, and the instantaneous channel state information is

available only at the receiver. We further assume the availability of an error- and delay-free

single-bit feedback from the receiver to the transmitter for each transmission attempt. Successful

reception of the status update at the end of time slot t is acknowledged by an ACK signal

(denoted by Kt = 1), while a NACK signal is sent in case of a failure (denoted by Kt = 0).

There are three possible actions the transmitter can take in each time slot t (the transmitter’s

action is denoted by At). It can either sample and transmit a new status update (At = n), remain

idle (At = i), or retransmit the last failed status update (At = x). If an ACK is received at

the transmitter, we can restrict the action space to {i, n} as retransmitting an already decoded

status update is strictly suboptimal. Also note that, even though the transmitter can just sense

and generate a new update but not transmit it, this would be suboptimal, so we do not consider

such an action separately.

We consider the HARQ protocol: that is, the received signals from previous transmission

attempts for the same packet are combined for decoding. The probability of error using r

retransmissions, denoted by g(r), depends on r and the particular HARQ scheme used for

combining multiple transmission attempts (an empirical method to estimate g(r) is presented in

[29]). As in any reasonable HARQ strategy, we assume that g(r) is non-zero for any r and is

non-increasing in the number of retransmissions r; that is, g(r1) ≥ g(r2) > 0 for all r1 ≤ r2.

We also assume that the transmissions are successful with a positive probability g(r) < 1

for all r. Standard HARQ methods only combine information from a finite maximum number

of retransmissions [30]. Accordingly, we consider a truncated retransmission count of a status

update, denoted by Rt for the status update transmitted at time t, where Rt ∈ {0, . . . , Rmax};

that is, the receiver can combine information from the last Rmax retransmissions at most. We
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set R0 = 0 so that there is no previously transmitted packet at the transmitter at time t = 0.

At the end of each time slot t, a random amount of energy is harvested and stored in a

rechargeable battery at the transmitter, denoted by Et ∈ E , {0, 1, . . . , Emax}, following a

first-order discrete-time Markov model, characterized by the stationary transition probabilities

pE(e1|e2), defined as pE(e1|e2) , Pr(Et+1 = e2|Et = e1), ∀t and ∀e1, e2 ∈ E . It is also assumed

that pE(0|e) > 0, ∀e ∈ E . Harvested energy is first stored in a rechargeable battery with a limited

capacity of Bmax energy units. The energy consumption for status sensing is denoted by Es ∈ Z+,

while the energy consumption for a transmission attempt is denoted by Etx ∈ Z+.

The battery state at the beginning of time slot t, denoted by Bt, can be written as follows:

Bt+1 = min(Bt + Et − (Es + Etx)1[At = n]− Etx
1[At = x], Bmax), (1)

and the energy causality constraints are given as:

(Es + Etx)1[At = n] + Etx
1[At = x] ≤ Bt, (2)

where the indicator function 1[C] is equal to 1 if event C holds, and zero otherwise. (1) implies

that the battery overflows if energy is harvested when the battery is full, while (2) imposes that

the energy consumed by sensing or transmission operations at time slot t is limited by the energy

Bt available in the battery at the beginning of that time slot. We set B0 = 0 so that the battery

is empty at time t = 0.

Let ∆tx
t denote the number of time slots elapsed since the generation of the most recently

sensed status update at the transmitter side, while ∆rx
t denote the AoI of the most recently

received status update at the receiver side. ∆tx
t resets to 1 if a new status update is generated at

time slot t− 1, and increases by one (up to ∆max) otherwise, i.e.,

∆tx
t+1 =

1 if At = n;

min(∆tx
t + 1,∆max) otherwise.

On the other hand, the AoI at the receiver side evolves as follows:

∆rx
t+1 =


1 if At=n and Kt=1;

min(∆tx
t +1,∆max) if At=x and Kt=1;

min(∆rx
t +1,∆max) otherwise .

Note that once the AoI at the receiver is at least as large as at the transmitter, this relationship

holds forever; thus it is enough to consider cases when ∆rx
t ≥ ∆tx

t .
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To determine the success probability of a transmission, we need to keep track of the number of

current retransmissions. The number of retransmissions is zero for a newly sensed and generated

status update and increases up to Rmax as we keep retransmitting the same packet. In practical

systems Rmax is limited to a few retransmissions (e.g., Rmax = 3 for IEEE 802.16 standards [30]

and LTE systems with a maximum allowed retransmissions of 27 while the default is Rmax =

3 [31]). It is easy to see that retransmitting when ∆tx
t+1 = ∆max is suboptimal, therefore we

explicitly exclude this action by setting the retransmission count to 0 in this case. Also, it is

suboptimal to generate a new update and retransmit the old one, thus whenever a new status

update is generated, the previous update at the transmitter is dropped and cannot be retransmitted.

Thus, the evolution of the retransmission count is given as follows:

Rt+1 =



0 if Kt = 1

or ∆tx
t+1 = ∆max;

1 if At=n and Kt=0;

Rt if At=i

and ∆tx
t+1 6= ∆max;

min(Rt+1,Rmax) if At=x, Kt=0

and ∆tx
t+1 6= ∆max.

The state of the system is formed by five components St = (Et, Bt,∆
rx
t ,∆

tx
t , Rt). In each

time slot, the transmitter knows the current state, and takes action from the set A = {i, n, x}.

The goal is to find a policy π which minimizes the expected average AoI at the receiver over

an infinite time horizon, which is given by:

Problem 1.

J∗ , min
π

lim
T→∞

1

T + 1
E

[
T∑
t=0

∆rx
t

]
(3)

subject to (1) and (2).

In [24], we have considered status updates with HARQ under an average power constraint.

In that case, it is possible to show that it is suboptimal to retransmit a failed update after an

idle period. Restricting the actions of the transmitter accordingly, the AoI at the receiver after
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a successful transmission event is equal to the number of retransmissions of the corresponding

update. Therefore in addition to the AoI at the receiver, we only need to track the retransmission

count. However, in the current scenario, retransmissions of a status update can be interrupted

due to energy outages, which means that we also need to keep track of the AoI at the transmitter

side (hence we need to have both ∆rx
t and ∆tx

t in the state of the system).

III. MDP FORMULATION

It is easy to see that Problem 1 can be formulated as an average-cost finite-state MDP: An MDP

is defined by the quadruple
(
S,A, P, c

)
[32]: The finite set of states S is defined as S = {s =

(e, b, δrx, δtx, r) : e ∈ E , b ∈ {0, . . . , Bmax}, δrx, δtx ∈ {1, . . . ,∆max}, r ∈ {0, . . . , Rmax},∆rx ≥

∆tx}, while the finite set of actions A = {i, n, x} is already defined. Note that action x cannot

be taken in states with retransmission count r = 0. P refers to the transition probabilities, where

P (s′|s, a) = Pr(St+1 = s′ | St = s, At = a) is the probability that action a in state s at time t

will lead to state s′ at time t+ 1, which is characterized by the EH statistics and channel error

probabilities. The cost function c : S × A → Z, is the AoI at the receiver, and is defined as

c(s, a) = δrx for any s ∈ S, a ∈ A, independent of the action taken, where δrx is the component

of s describing the AoI at the receiver.

To solve Problem 1, we need to find a policy for the transmitter, determining its actions for

every state s ∈ S, which can minimize the average AoI at the receiver.

It is easy to see that MDP formulated for Problem 1 is a communicating MDP by Proposition

8.3.1 of [32]1 , i.e., for every pair of (s, s′) ∈ S, there exists a deterministic policy under

which s′ is accessible from s. By Theorem 8.3.2 of [32], an optimal stationary policy exists

with constant gain. In particular, there exists a function h : S → R, called the differential cost

function for all s = (e, b, δrx, δtx, r) ∈ S, satisfying the following Bellman optimality equations

for the average-cost finite-state finite-action MDP [32]:

h(s) + J∗ = min
a∈{i,n,x}

(
δrx + E [h(s′)|a]

)
, (4)

1By Proposition 8.3.1 of [32], MDP is communicating since there exists a stationary policy which induces a recurrent Markov

chain, e.g., a state (0, B0,∆max,∆max, R0) is reachable from all other states considering a policy which never transmits

and in a scenario where no energy is harvested. Another example can be given as: from a state with Bt 6= B0 the state

(0, B0,∆max,∆max, R0) is reachable considering a policy which stays idle until energy sufficient for B0 +R0 retransmissions

and then begin transmitting the same update R0 times and then idles in a scenario where every transmission fails and no energy

is harvested.
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where s′ , (e′, b′, δrx′, δtx
′
, r′) is the next state obtained from (e, b, δrx, δtx, r) after taking action

a, and J∗ represents the optimal achievable average AoI under policy π∗. Note that the function

h satisfying (4) is unique up to an additive factor, and with selecting this additive factor properly,

it also satisfies

h(s) = E

[
∞∑
t=0

(∆rx
t − J∗)

∣∣S0 = s

]
.

We also introduce the state-action cost function:

Q((e, b, δrx, δtx, r), a) , δrx + E
[
h(e′, b′, δrx′, δtx

′
, r′)|a

]
. (5)

Then an optimal policy, for any (e, b, δrx, δtx, r) ∈ S , takes the action achieving the minimum

in (5):

π∗(e, b, δrx, δtx, r) ∈ arg min
a∈{i,n,x}

Q((e, b, δrx,δtx,r), a). (6)

An optimal policy solving (4), (5) and (6) defined above can be found by relative value

iteration (RVI) for finite-state finite-action average-cost MDPs from Sections 8.5.5 and 9.5.3

of [32]: Starting with an arbitrary initialization of h0(s), ∀s ∈ S, and setting an arbitrary but

fixed reference state sref , (eref , bref , δrxref , δtx
ref
, rref ), a single iteration of the RVI algorithm

∀(s, a) ∈ S ×A is given as follows:

Qn+1(s, a)← ∆rx
n + E [hn(s′)] , (7)

Vn+1(s)← min
a

(Qn+1(s, a)), (8)

hn+1(s)← Vn+1(s)− Vn+1(s
ref ), (9)

where Qn(s, a), Vn(s) and hn(s) denote the state-action value function, value function and

differential value function at iteration n, respectively. By Theorem 8.5.7 and Section 8.5.5 of

[32], hn converges to h, and π∗n(s) , arg minaQn(s, a) converges to π∗(s).

A. Structure of the Optimal Policy

Next, we present the structure of the optimal policy and show that the solution to Problem 1

is of threshold-type.

Theorem 1. There exits an optimal stationary policy π∗(s) that is monotone with respect to

∆rx
t , that is, π∗(s) is of threshold-type.
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Proof. The proof is given in Appendix A.

Following Theorem 1, we present a threshold-based policy which will be termed as a double-

threshold policy in the rest of this paper.

At =


i if ∆rx

t < Tn(e, b, δtx, r),

n if Tn(e, b, δtx, r) ≤ ∆rx
t < Tx(e, b, δtx, r),

x if ∆rx
t ≥ Tx(e, b, δtx, r),

(10)

for some threshold values denoted by Tn(e, b, δtx, r) and Tx(e, b, δtx, r), where Tn(e, b, δtx, r) ≤

Tx(e, b, δtx, r).

We can simplify the problem by making an assumption on the policy space in order to obtain

a simpler single-threshold policy, which will result in a more efficient learning algorithm: We

assume that a packet is retransmitted until it is successfully decoded, provided that there is

enough energy in the battery, that is, the transmitter is not allowed to preempt an undecoded

packet and transmit a new one.

The solution to the simplified problem is also of threshold-type, that is,

At =


i if ∆rx

t < T (e, b, δtx, r),

n if ∆rx
t ≥ T (e, b, δtx, r), and r = 0

x if ∆rx
t ≥ T (e, b, δtx, r) and r 6= 0,

(11)

for some T (e, b, δtx, r).

In Section IV-B, we present a RL algorithm to find the threshold values defined in this section.

IV. RL APPROACH

In some scenarios, it can be assumed that the channel and energy arrival statistics remain the

same or change very slowly and the same environment is experienced for a sufficiently long

time before the time of deployment. Accordingly, we can assume that the statistics regarding the

error probabilities and energy arrivals are available before the time of transmission. In such

scenarios, RVI algorithm presented in Section III can be used. However, in most practical

scenarios, channel error probabilities for retransmissions and the EH characteristics are not

known at the time of deployment, or may change over time. In this section, we assume that

the transmitter does not know the system characteristics a-priori, and has to learn them. In

our previous works [22]–[24], we have employed learning algorithms for constrained problems
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with countably infinite state spaces such as average-cost SARSA. While these algorithms can

be adopted to the current framework by considering an average transmission constraint of 1,

they do not have convergence guarantees. However, Problem 1 constitutes an unconstrained

MDP with finite state and action spaces, and there exist RL algorithms for unconstrained MDPs

which enjoy convergence guarantees. Moreover, we have shown the optimality of a threshold

type policy for Problem 1, and RL algorithms which exploit this structure can be considered.

Thus, we employ three different RL algorithms, and compare their performances in terms of the

average AoI as well as the convergence speed. First, we employ a value-based RL algorithm,

namely GR-learning, which converges to an optimal policy. Next, we consider a structured

policy search algorithm, namely FDPG, which does not necessarily find the optimal policy but

performs very well in practice, as demonstrated through simulations in Section V. We also note

that GR-learning learns from a single trajectory generated during learning steps while FDPG

uses Monte-Carlo roll-outs for each policy update. Thus, GR-learning is more amenable for

applications in real-time systems. Finally, we employ the DQN algorithm, which implements a

non-linear neural network estimator in order to learn the optimal status update policy.

A. GR-Learning with Softmax

The literature for average-cost RL is quite limited compared to discounted cost problems [33],

[34]. For the average AoI minimization problem in (3), we employ a modified version of the

GR-learning algorithm proposed in [27], as outlined in Algorithm 1, with Boltzmann (softmax)

exploration. The resulting algorithm is called GR-learning with softmax.

Notice that, by only knowing Q(s, a), one can find the optimal policy π∗ using (6) without

knowing the transition probabilities P , characterized by g(r) and pE . Thus, GR-learning with

softmax starts with an initial estimate of Q0(s, a) and finds the optimal policy by estimating

state-action values in a recursive manner. Qn(s, a) and Jn denote the estimates of state-action

value function and the average cost (average AoI) at iteration n, respectively while Sn, and An

denote the state and action at iteration n. Note that since GR-learning is an online algorithm

each iteration of the algorithm corresponds to a single time slot. In the nth iteration, after taking

action An, the transmitter observes the next state Sn+1 and the instantaneous cost value ∆rx
n .

Based on these and the estimate of the average cost Jn, the estimate of Qn+1(s, a) is updated

by a weighted average of the previous estimate Qn(s, a) and the estimated expected value of
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the current policy in the next state Sn+1. Moreover, we update the estimate of the average cost

Jn at every time slot based on the empirical average of AoI.

In each time slot, the learning algorithm

• observes the current state Sn ∈ S,

• selects and performs an action An ∈ A,

• observes the next state Sn+1 ∈ S and the instantaneous cost ∆rx
n ,

• updates its estimate of Q(Sn, An) using the current estimate of Jn by

Qn+1(Sn, An)← Qn(Sn, An) + α(m(Sn, An, n))[∆rx
n − Jn +Qn(Sn+1, An+1)−Qn(Sn, An)],

(12)

where α(m(Sn, An, n)) is the update parameter (learning rate) in the nth iteration, and

depends on the function m(Sn, An, n), which is the number of times the state–action pair

(Sn, An) has been visited till the nth iteration.

• updates its estimate of Jn based on the empirical average as follows:

Jn+1 ← Jn + β(n)

[
nJn + ∆rx

n

n+ 1
− Jn

]
, (13)

where β(n) is the update parameter in the nth iteration.

The transmitter action selection method should balance the exploration of new actions with the

exploitation of actions known to perform well. We use the Boltzmann (softmax) action selection

method, which chooses each action randomly relative to its expected cost as follows:

π(a|Sn) =
exp(−Q(Sn, a)/τn)∑

a′∈A

exp(−Q(Sn, a
′)/τn)

. (14)

Parameter τn in (14) is called the temperature parameter and decays exponentially with decay

parameter γτ ≤ 1 at each iteration. High τn corresponds to more uniform action selection (explo-

ration) whereas low τn is biased toward the best action (exploitation). According to Theorem 2

of [27], if α, β satisfy
∑∞

m=1 α(m),
∑∞

m=1 β(m) → ∞,
∑∞

m=1 α
2(m),

∑∞
m=1 β

2(m) < ∞,

limx→∞
β(m)
α(m)

→ 0, GR-Learning converges to an optimal policy.

B. Finite-Difference Policy Gradient (FDPG)

GR-learning in Section IV-A is a value-based RL method, which learns the state-action value

function for each state-action pair. In practice, ∆max can be large, which might slow down

the convergence of GR-learning due to a prohibitively large state space. Instead, we are going
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Algorithm 1 GR-learning with softmax
1: τ0 ← 1, /* temperature parameter */

2: γ ← 0.95, /* softmax decay coefficient */ .

3: Q0 ← 0, ∀(s, a) /* initialization of Q */

4: J0 ← 0, /* initialization of the gain */

5: for n = 1, 2, . . . do

6: OBSERVE current state Sn

7: for a ∈ A do

π(a|Sn) =
exp(−Q(Sn, a)/τn)∑

a′∈A
exp(−Q(Sn, a

′)/τn)

8: end for

9: SAMPLE and PERFORM An from π(a|Sn)

10: OBSERVE the next state Sn+1 and cost ∆t

11: UPDATE Q(Sn, An) and Jn by

Q(Sn, An)← Q(Sn, An) + α(m(Sn, An, n))[∆t − Jn + min
An+1

Q(Sn+1, An+1)−Q(Sn, An)]

Jn+1 ← Jn + β(n)
[nJn + ∆t

n+ 1
− Jn

]
12: UPDATE step size parameters

τn+1 ← γτn

α(n)← 1/
√
m(Sn, An, n)

β(n)← 1/n

m(Sn, An)← m(Sn, An) + 1

m(s, a)← m(s, a), ∀(s, a) 6= (Sn, An)

13: end for

to propose a learning algorithm that exploits the structure of the optimal policy exposed in

Theorem 1. A monotone policy is shown to be average optimal in the previous section; however,

it is not possible to compute the threshold values directly for Problem 1.

Note that, At = i if Bt < Etx (Bt < Etx + Es) for r ≥ 1 (r = 0); that is, T (e, b, δtx, r) =

∆max + 1 if b < Etx for r ≥ 1 and b < Etx + Es for r = 0. This ensures that energy causality

constraints in (2) hold. Other thresholds will be determined using policy gradient.

In order to employ the policy gradient method, we approximate the policy by a parameterized

smooth function with parameters θ(e, b, δtx, r), and convert the discrete policy search problem
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into estimating the optimal values of these continuous parameters, which can be numerically

solved by stochastic approximation algorithms [35]. Continuous stochastic approximation is much

more efficient than discrete search algorithms in general.

In particular, with a slight abuse of notation, we let πθ(e, b, δrx, δtx, r) denote the probability

of taking action At = n (At = x) if r = 0 (r 6= 0), and consider the parameterized sigmoid

function:

πθ(e, b, δ
rx, δtx, r) ,

1

1 + e−
δrx−θ(e,b,δtx,r)

τ

. (15)

We note that πθ(e, b, δrx, δtx, r)→ {0, 1} and θ(e, b, δtx, r)→ T (e, b, δtx, r) as τ → 0. Therefore,

in order to converge to a deterministic policy π, τ > 0 can be taken as a sufficiently small

constant, or can be decreased gradually to zero. The total number of parameters to be estimated

is |E|×Bmax×∆max×Rmax+1 minus the parameters corresponding to b < Etx (b < Etx +Es)

for r > 0 (r = 0) due to energy causality constraints as stated previously.

With a slight abuse of notation, we map the parameters θ(e, b, δtx, r) to a vector θ of size

d , |E| × Bmax ×∆max × Rmax + 1. Starting with some initial estimates of θ0, the parameters

can be updated at each iteration n using the gradients as follows:

θn+1 = θn − γ(n) ∂J/∂θn, (16)

where the step size parameter γ(n) is a positive decreasing sequence and satisfies the first

two convergence properties given at the end of Section IV-A from the theory of stochastic

approximation [36].

Computing the gradient of the average AoI directly is not possible; however, several methods

exist in the literature to estimate the gradient [35]. In particular, we employ the FDPG [28]

method, where the gradient is estimated by estimating J at slightly perturbed parameter values.

First, a random perturbation vector Dn of size d is generated according to a predefined probability

distribution, e.g., each component of Dn is an independent Bernoulli random variable with

parameter q ∈ (0, 1). The thresholds are perturbed with a small amount σ > 0 in the directions

defined by Dn to obtain θ
±
n (e, b, δtx, r) , θn(e, b, δtx, r) ± σDn. Then, empirical estimates Ĵ±

of the average AoI corresponding to the perturbed parameters θ
±
n , obtained from Monte-Carlo

rollouts, are used to estimate the gradient:

∂J/∂θn ≈ (Dᵀ
nDn)−1Dᵀ

n

(Ĵ+ − Ĵ−)

2σ
, (17)
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Algorithm 2 FDPG
Input: error probabilities g(r) and harvesting probabilities pE are unknown

1: τ0 ← 0.3, /* temperature parameter */

2: ζ ← 0.99, /* decaying coefficient for τ */.

3: θ0 ← 0 /* initialization of θ */

4: for n = {1, 2, . . .} do

5: GENERATE random perturbation vector

Dn = binomial({0, 1}, q = 0.5, d)

6: PERTURB parameters θn

θ
+

n = θn + βDn, θ
−
n = θn − βDn

7: ESTIMATE Ĵ±n from Monte-Carlo rollouts using policies πθ±n :

8: for t ∈ {1, . . . , T} do

9: OBSERVE current state St and USE policy πθ±n
10: end for

11: ESTIMATE Ĵ±n from Monte-Carlo rollouts using policy πθ±n
Ĵ±n = 1

T

∑T
t=1 ∆rx

t

12: COMPUTE the estimate of the gradient ∂J/∂θn

13: UPDATE

θn+1 = θn − γ(n) ∂J/∂θn

τn+1 ← ζτn /* decrease τ */

14: end for

where Dᵀ
n denotes the transpose of vector Dn. The pseudo code of the finite difference policy

gradient algorithm is given in Algorithm 2.

Similar steps can be followed to find the thresholds for the double-threshold policy, where

T (e, b, δtx, r) and θ(e, b, δtx, r) are replaced by Tn(e, b, δtx, r), Tx(e, b, δtx, r) and θn(e, b, δtx, r),

θx(e, b, δ
tx, r), respectively.

C. Deep Q-Network (DQN)

A DQN uses a multi-layered neural network in order to estimate the values Q(s, a) of the

underlying MDP; that is, for a given state s, DQN outputs a vector of state-action values, Qθ(s, a),

where θ denotes the parameters of the network. For the 5-dimensional state space (|S| = 5) and

an action space containing 3 actions (|A| = 3) as in our problem formulation, the neural network

is a function from |S| inputs to |A| outputs, which are the estimates of the Q-function Qθ(s, a).
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We apply the DQN algorithm of [37] to learn a scheduling policy. We create a simple feed-

forward neural network of 3 layers, one of which is the hidden layer with 24 neurons. We use

Huber loss [38] and the Adam algorithm [39] to conduct stochastic gradient descent to update

the weights of the neural network.

We exploit two important features of DQNs as proposed in [37]: experience replay and a

fixed target network, both of which provide algorithm stability. For experience replay, instead of

training the neural network with a single observation < s, a, s′, c(s, a)> at the end of each step,

many experiences (i.e., (state, action, next state, cost) quadruplets) can be stored in the replay

memory for batch training, and a minibatch of observations randomly sampled at each step can

be used. The DQN uses two neural networks: a target network and an online network. The target

network, with parameters θ−, is the same as the online network except that its parameters are

updated with the parameters θ of the online network after every T steps, and θ− is kept fixed

in other time slots. For a minibatch of observations for training, temporal difference estimation

error ε for a single observation can be calculated as

ε(s, a, s′, c)=Qθ(s,a)−(−c(s, a) + γQθ−(s′,arg maxQθ(s
′,a))). (18)

Huber loss is defined by the squared error term for small estimation errors, and a linear error

term for high estimation errors, allowing less dramatic changes in the value functions, further

improving the stability. For a given estimation error ε and loss parameter d, the Huber loss

function, denoted by Ld(ε) is defined as:

Ld(ε(s, a, s′, c)) =

ε(s, a, s
′, c)2 if ε(s, a, s′, c) ≤ d,

d(|ε(s, a, s′, c)| − 1
2
d)) if ε(s, a, s′, c) > d,

and loss over minibatch B is computed as:

LB ,
1

|B|
∑

<s,a,s′,c(s,a)>∈B

Ld(ε(s, a, s′, c)).

We apply the ε-greedy policy to balance exploration and exploitation, i.e., with probability

ε the source randomly selects an action, and with probability 1 − ε it chooses the action with

the minimum Q value. We let ε decay gradually from ε0 to εmin; in other words, the source

explores more at the beginning of training and exploits more at the end. The hyperparameters

of the DQN algorithm are tuned for our problem experimentally, and are presented in Table I.
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Table I

HYPERPARAMETERS OF THE DQN ALGORITHM

Parameter Value Parameter Value

discount factor γ 0.99 optimizer Adam

minibatch size 32 loss function Huber loss

replay memory length 2000 exploration coeff. ε0 1

learning rate α 10−4 ε decay rate β 0.9

episode length T 1000 εmin 0.01

activation function ReLU hidden size 24

V. SIMULATION RESULTS

In this section, we provide numerical results for all the proposed algorithms, and compare the

achieved average AoI. Motivated by previous research on HARQ [40], [29], [30], we assume that

the decoding error reduces exponentially with the number of retransmissions, that is, g(r) , p0λ
r

for some λ ∈ (0, 1), where p0 denotes the error probability of the first transmission and r is the

retransmission count (set to 0 for the first transmission). The exact value of the rate λ depends

on the particular HARQ protocol and the channel model. Following the IEEE 802.16 standard

[30], the maximum number of retransmissions used for decoding is set to Rmax = 3. In the

following experiments, λ and p0 are set to 0.5. Etx and Es are both assumed to be constant and

equal to 1 unit of energy unless otherwise stated. ∆max is set to 40.

We choose the exact step sizes for the learning algorithms by fine-tuning in order to balance

the algorithm stability in the early time steps with nonnegligible step sizes in the later time

steps. In particular, we use step size parameters of α(m), β(m), γ(m) = y/(m + 1)z, where

0.5 < z ≤ 1 and y > 0 (which satisfy the convergence conditions), and choose y and z such

that the oscillations are low and the convergence rate is high. We have observed that a particular

choice of parameters gives similar performance results for scenarios addressed in simulations

results. DQN algorithm in this section is configured as in Table I and trained for 500 episodes.

The average AoI for DQN is obtained after 105 time steps and averaged over 100 runs.

As a baseline, we have also included the performance of a greedy policy, which senses

and transmits a new status update whenever there is sufficient energy. It retransmits the last

transmitted status update when the energy in the battery is sufficient only for transmission, and
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Figure 2. Optimal policy for memoryless EH when Bmax = 5, Rmax = 3, pe = 0.5 and Es = Etx = 1. The decoding error

probabilities are given by g(r) = 2−(r+1).

it remains idle otherwise; that is,

Agreedyt =


i if Bt < Etx,

n if Bt ≥ Etx + Es,

x if Etx ≤ Bt < Etx + Es.

(19)

A. Memoryless EH Process

We first investigate the average AoI with HARQ when the EH process, Et ∈ E = {0, 1}, is

i.i.d. over time with probability distribution pe , Pr(Et = 1), and 1 − pe , Pr(Et = 0) ∀t.

Fig. 2 illustrates the policy obtained by the RVI algorithm in Section III. The resulting policy is

more likely to transmit if the battery level or the AoI is high as expected. Moreover, the policy

tends to retransmit the previous update rather than sensing a new update when the battery level

is low and the AoI is high. We can also observe from the figure that the optimal policy exhibits

a threshold structure as shown in Theorem 1.

The effects of the battery capacity Bmax, energy consumption of sensing Es, and the energy

harvesting probability pe on the average AoI are shown in Fig. 3. As expected, the average AoI

increases with decreasing Bmax, decreasing pe and increasing Es. We note that, when Es = 0

and Bmax = ∞, the problem defined in (3) corresponds to minimizing the average AoI under
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Figure 3. Average AoI for different Bmax, Es and pe values for memoryless EH and Etx = 1.

an average transmission rate constraint pe, studied in [22], [24]. The average AoI under average

transmission rate constraint (Bmax = ∞) is also shown in Fig. 3, and we observe that its

performance can be approximated with a finite battery size of Bmax = 30 at low pe values, while

a battery size of Bmax = 5 is sufficient when pe increases.

Fig. 4 shows the evolution of the average AoI over time when the average-cost RL algo-

rithms are employed. It can be observed that the average AoI achieved by the proposed RL

algorithms converge to values close to the one obtained from the RVI algorithm, which has

a priori knowledge of g(r) and pe, while the AoI of the greedy algorithm is significantly

higher. Although GR-learning enjoys theoretical guaranties to converge to the optimal policy,

the FDPG which benefits from the structural guarantees of a threshold policy (including a

single-threshold policy not allowing preemption of an undecoded status update), performs better

than GR-learning since it tries to learn significantly smaller number of threshold values (i.e.,

∆max×Bmax×Rmax+1) compared to GR-learning, which learns one value for each state-action

pair (i.e., ∆2
max ×Bmax × (Rmax + 1)× |A|). We also observe that, among the FDPG methods,

the one with a single threshold converges faster but the double-threshold policy finally attains

a slightly lower AoI. Therefore, the choice between the two may depend on the stochasticity

of the environment. DQN algorithm performs better than GR-learning but it requires a training

time before running the simulation and does not have convergence guarantees. Moreover, its
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Figure 4. Performance of RL algorithms when Bmax = 5, Es = Etx = 1, and pe = 0.5. FDPG with and without preemption

represent the double-threshold and the single-threshold policies, respectively.

final performance is slightly worse than both of the FDPG algorithms.

B. Temporally Correlated EH

Next, we investigate the performance when the EH process has temporal correlations. A

symmetric two-state Markovian EH process is assumed, such that E = {0, 1} and Pr(Et+1 =

1|Et = 0) = Pr(Et+1 = 0|Et = 1) = 0.3. That is, if the transmitter is in harvesting state, it is

more likely to continue harvesting energy, and vice versa for the non-harvesting state.

Fig. 5 illustrates the policy obtained by RVI. As it can be seen from the figure, the resulting

policy is less likely to transmit if the battery level or the AoI is low. As shown in Theorem 1,

the optimal policy exhibits a threshold structure on ∆rx. Moreover, the policy tends to retransmit

the previous update rather than sensing a new update when the battery level is low and the AoI

is high. When the system is in the non-harvesting state (i.e., Et = 0), the transmitter is more

conservative in transmitting the status updates compared to the case Et = 1, e.g., it might not

transmit even if the battery is full depending on the AoI level.

Fig. 7 shows the evolution of the average AoI over time when the average-cost RL algorithms

are employed in this scenario. It can be observed again that the average AoI achieved by the

FDPG method in Section IV-B performs very close to the one obtained by the RVI algorithm,

which has a priori knowledge of g(r) and pe. GR-learning, on the other hand, outperforms the
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Figure 5. Optimal policy for Bmax = 5, Rmax = 3, pE(1, 1), pE(0, 0) = 0.7, Es = Etx = 1 and ∆tx
t = Rt + 1. The

decoding error probabilities are given by g(r) = 2−(r+1).

greedy policy but converges to the optimal policy much more slowly, and the gap between the

two RL algorithms is larger compared to the i.i.d. case. Tabular methods in RL, like GR-learning,

need to visit each state-action pair infinitely often for RL to converge [33]. GR-learning in the

case of temporally correlated EH does not perform as well as in the i.i.d. case since the state

space becomes larger with the addition of the EH state. We also observe that the gap between
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the final performances of single- and double-threshold FDPG solutions is larger compared to

the memoryless EH scenario, while the single threshold solution still converges faster. DQN

algorithm performs better than GR-learning but it requires a training time before running the

simulation and does not have convergence guarantees. Moreover, it still falls short of the final

performance of double-threshold FDPG.

Fig. 6 illustrates the effect of preemption and the performance improvement of double-

threshold FDPG over single-threshold FDPG for a scenario where preemption is inherently

needed, e.g., g(r) is same for all retransmissions r representing a standard ARQ protocol and

dropping a failed update improves the performance. As it can be seen from Fig. 6, although

single-threshold FDPG converges very close to the RVI without preemption, the average AoI

obtained by single-threshold FDPG is still considerable higher than that of double-threshold

FDPG for standard ARQ protocol.
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Figure 6. The performance of FDPG algorithms when Bmax = 5, Rmax = 3, pE(1, 1), g(r) = 0.5, ∀r, pE(0, 0) = 0.7 and

Es = Etx = 1. FDPG with and without preemption represent the double-threshold and the single-threshold policies, respectively.

Next, we investigate the impact of the burstiness of the EH process, measured by the correlation

coefficient between Et and Et+1. Fig. 8 illustrates the performance of the proposed RL algorithms

for different correlation coefficients, which can be computed easily for the 2-state symmetric

Markov chain; that is, ρ , (2pE(1, 1)−1). Note that ρ = 0 corresponds to memoryless EH with

pe = 1/2. We note that the average AoI is minimized by transmitting new packets successfully at

regular intervals, which has been well investigated in previous works [5], [6], [22]. Intuitively, for
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highly correlated EH, there are either successive transmissions or successive idle time slots, which

increases the average AoI. Hence, the AoI is higher for higher values of ρ. Fig. 8 also shows

that both RL algorithms result in much lower average AoI than the greedy policy and FDPG

outperforms GR-learning since it benefits from the structural characteristics of a threshold policy.

We can also conclude that the single threshold policy can be preferable in practice especially in

highly dynamic environments, as its performance is very close to that of the double threshold

FDPG, but with faster convergence.

VI. CONCLUSIONS

We have considered an EH system with a finite size battery and investigated scheduling policies

transmitting time-sensitive data over a noisy channel with the average AoI as the performance

measure. We have assumed the presence of an ACK/NACK feedback from the receiver, and

allowed retransmissions with an HARQ protocol to increase the probability of correct reception of

status updates. This results in a trade-off between sending new status updates and retransmitting

failed status updates as the former results in a lower AoI at the receiver while the latter is

more likely to succeed. This trade-off is exacerbated in the model considered in this paper by

the introduction of a sensing cost, which increases the cost of new status updates, and requires

judicious decisions at the transmitter due to limited and stochastic availability of energy.
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In addition to identifying a RVI solution for the optimal policy and showing that the optimal

policy is stationary, deterministic, and monotone with respect to the AoI when the system

characteristics are known, efficient RL algorithms are presented for practical applications when

the system characteristics may not be known in advance. The effects of the battery size, EH

characteristics, and the HARQ structure on the average AoI are investigated through numerical

simulations.

We have presented three types of RL algorithms with different levels of complexity and

training requirements and compared their performances for the current problem under a variety

of system setting. We have observed that FDPG policies that exploit the threshold structure

of the optimal policy provide both better performance and convergence behaviour. Moreover, a

simplified single-threshold FDPG alternative is shown to increase the convergence speed with a

negligible increase in the average AoI.

APPENDIX

A. Proof of Theorem 1:

By (5) and (6), Theorem 1 holds if Q((e, b, δrx, δtx, r), a) has a sub-modular structure in

(δrx, a) [41]: that is, when the difference between the Q function is monotone with respect to
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the state-action pair (δrx, a) for any Et = e, Bt = b, ∆tx
t = δtx, and Rt = r. We show the submod-

ularity by verifying the following inequality for 3 action pairs (a1, a2) ∈ {(i, n), (i, x), (n, x)}:

Q((e, b, δrx + 1, δtx, r), a2)−Q((e, b, δrx + 1, δtx, r), a1)

≤ Q((e, b, δrx, δtx, r), a2)−Q((e, b, δrx, δtx, r), a1) (20)

Inequality (20) can be rewritten for (a1, a2) = (i, n) using (5),

Q((e, b, δrx, δtx, r), n) = δrx +
∑

e′∈E pE(e, e′)[g(r)h(e′, b+ e− Es − Etx, δrx + 1, 1, 1)

+(1− g(r))h(e′, b+ e− Es − Etx, 1, 1, 0)] (21)

and

Q((e, b, δrx, δtx, r), i) = δrx +
∑
e′∈E

pE(e, e′)h(e′, b+ e, δrx + 1, δtx + 1, r). (22)

(21) and (22) are inserted into (20), and since the next state Et+1 = e′ is independent of action

(At) and AoIs (∆rx
t , ∆tx

t ), the following is equivalent to (20):

g(0)
[
h(e′, b+ e− Es − Etx, δrx + 2, 1, 1)− h(e′, b+ e− Es − Etx, δrx + 1, 1, 1)

]
−
[
h(e′, b+ e, δrx + 2, δtx + 1, r)− h(e′, b+ e, δrx + 1, δtx + 1, r)

]
≤ 0. (23)

Also we note that ∆rx
t+1 = δrx + 2, ∆tx

t+1 = δtx + 1 and Rt = r are truncated to ∆max, ∆max and

Rmax respectively.

The same steps can be repeated for (a1, a2) ∈ (i, x) and (a1, a2) ∈ (n, x), and we obtain the

following:

g(r)
[
h(e′, b+ e− Etx, δrx + 2, δtx + 1, r + 1)− h(e′, b+ e− Etx, δrx + 1, δtx + 1, r + 1)

]
−
[
h(e′, b+ e, δrx + 2, δtx + 1, r)− h(e′, b+ e, δrx + 1, δtx + 1, r)

]
≤ 0 (24)

g(r)
[
h(e′, b+ e− Etx, δrx + 2, δtx + 1, r + 1)− h(e′, b+ e− Etx, δrx + 1, δtx + 1, r + 1)

]
− g(0)

[
h(e′, b+ e− Es − Etx, δrx + 2, 1, 1)− h(e′, b+ e− Es − Etx, δrx + 1, 1, 1)

]
≤ 0

(25)

Therefore, (23), (24) and (25) are the sufficient conditions for the submodularity of Q function.

First, we note that Eqns. (23), (24) and (25) hold with equality for (δrx+1, δrx) = (∆max,∆max−

1). Then, we show by induction that if (23), (24) and (25) hold for (δrx + 2, δrx + 1) then they

hold for (δrx + 1, δrx).
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First, we check for (a1, a2) = (i, x), and assume that h satisfies (23), (24) and (25). We define

the related Q functions with optimal actions denoted by a∗1, a
∗
2, a

∗
3 and a∗4 such that:

Q((e, b−Etx, δrx + 1, δtx + 1, r + 1), a∗1) , h(e, b−Etx, δrx+1, δtx+1, r + 1)+J∗, (26)

Q((e, b− Etx, δrx, δtx + 1, r + 1), a∗2) , h(e, b− Etx, δrx, δtx + 1, r + 1) + J∗, (27)

Q((e, b, δrx + 1, δtx + 1, r), a∗3) , h(e, b, δrx + 1, δtx + 1, r) + J∗, (28)

Q((e, b, δrx, δtx, r), a∗4) , h(e, b, δrx, δtx, r) + J∗. (29)

We need to show that (24) holds for (δrx + 1, δrx), which can be rewritten using (26), (27),

(28) and (29):

g(r)
[
Q((e, b− Etx, δrx + 1, δtx + 1, r + 1), a∗1)−Q((e, b− Etx, δrx, δtx + 1, r + 1), a∗2)

]
−
[
Q((e, b, δrx + 1, δtx + 1, r), a∗3)−Q((e, b, δrx, δtx, r), a∗4)

]
≤ 0 (30)

We add terms g(r)[−Q((e, b−Etx, δrx+1, δtx+1, r+1), a∗2)+Q((e, b−Etx, δrx+1, δtx+1, r+

1), a∗2)] and [Q((e, b, δrx, δtx, r), a∗3)−Q((e, b, δrx, δtx, r), a∗3)] to the LHS of (30) and obtain:

g(r)
[
Q((e, b− Etx, δrx + 1, δtx + 1, r + 1), a∗1)−Q((e, b− Etx, δrx + 1, δtx + 1, r + 1), a∗2)

+Q((e, b− Etx, δrx + 1, δtx + 1, r + 1), a∗2)−Q((e, b− Etx, δrx, δtx + 1, r + 1), a∗2)
]

−
[
Q((e, b, δrx+1, δtx+1, r), a∗3)−Q((e, b, δrx, δtx, r), a∗3)

+Q((e, b, δrx, δtx, r), a∗3)−Q((e, b, δrx, δtx, r), a∗4)
]
≤ 0 (31)

Q((e, b1, δ+1, r+1), a∗1)−Q((e, b1, δ+1, r+1), a∗2) is less than or equal to 0 from the optimality

of a∗1. Similarly, Q((e, b, δrx, δtx, r), a∗4)−Q((e, b, δrx, δtx, r), a∗3) is less than or equal to 0 from

the optimality of a∗4. Then, we only need to show:

g(r)[Q((e, b− Etx, δrx + 1, δtx + 1, r + 1), a∗2)−Q((e, b− Etx, δrx, δtx + 1, r + 1), a∗2)]

−Q((e, b, δrx + 1, δtx + 1, r), a∗3) +Q((e, b, δrx, δtx, r), a∗3) ≤ 0. (32)

The condition in (32) can be checked for all possible values of (a∗2, a
∗
3) pair: First we investigate

for the pair (a∗2, a
∗
3) = (i, i); that is,

g(r)
[
1 + h(e′, b− Etx + e, δrx + 2, δtx + 1, r + 1)− h(e′, b− Etx + e, δrx + 1, δtx + 1, r + 1)

]
− 1 + h(e′, b+ e, δrx + 1, δtx + 1, r)− h(e′, b+ e, δrx + 2, δtx + 1, r) ≤ 0. (33)
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LHS of (33) is equivalent to LHS of (24) plus the term g(r) − 1, which is smaller than and

equal to 0 since (24) holds and g(r) ≤ 1. For pair (a∗2, a
∗
3) = (x, x); that is,

g(r)
[
1 + g(r + 1)h(e′, b− 2Etx + e, δ + 2, r + 2)− g(r+1)h(e′, b−2Etx+e, δrx+1, δtx+1, r+1)

]
−1− g(r)h(e′, b−Etx+e, δrx + 2, δtx + 1, r + 1) + g(r)h(e′, b− Etx + e, δrx+1, δtx+1, r+1) ≤ 0

(34)

Similarly, g(r)− 1 is less than 0 and (34) holds.

For pair (a∗2, a
∗
3) = (i, x):

g(r)
[
1 + h(e′, b− Etx + e, δrx + 2, δtx + 1, r + 1)− h(e′, b− Etx + e, δrx + 1, δtx + 1, r + 1)

]
−1−g(r)h(e, e′, b−Etx+e, δrx+2, δtx+1, r+ 1) + g(r)h(e′, b−Etx+e, δrx+1, δtx+1, r + 1) ≤ 0,

(35)

which is equal to:

g(r)− 1 ≤ 0. (36)

For pair (a∗2, a
∗
3) = (x, i):

g(r)
[
1 + g(r + 1)h(e′, b− 2Etx + e, δ + 2, r + 2)− g(r+1)h(e′, b−2Etx+e, δrx+1, δtx+1, r+1)

]
−1 + h(e′, b+ e, δrx + 1, δtx + 1, r)− h(e′, b+ e, δrx + 2, δtx + 1, r) ≤ 0.

(37)

which is equal to:

g(r)g(r + 1)
[
h(e′, b− 2Etx, δ + 2, r + 2)− h(e′, b− 2Etx + e, δrx + 1, δtx + 1, r + 1)

]
− h(e′, b+ e, δrx + 2, δtx + 1, r) + h(e′, b+ e, δrx + 1, δtx + 1, r) + g(r)− 1 ≤ 0.

(38)

From (24), −h(e′, b+ e, δrx + 2, δtx + 1, r) + h(e′, b+ e, δrx + 1, δtx + 1, r) ≤ g(r)(−h(e′, b+

e−Etx, δrx + 2, δtx + 1, r+ 1) + h(e′, b+ e−Etx, δ + 1, r+ 1)), and 1− g(r) ≤ 0; thus (38) is

smaller than

g(r)

{
g(r + 1)

[
h(e′, b− 2Etx, δ + 2, r + 2)− h(e′, b− 2Etx + e, δrx + 1, δtx + 1, r + 1)

]
+(−h(e′, b+ e− Etx, δrx + 2, δtx + 1, r + 1) + h(e′, b+ e− Etx, δ + 1, r + 1))

}
, (39)

which is smaller than 0, since the expression inside the braces is equivalent to (24) with r → r+1

and g(r) ≥ 0.
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The same holds for (a∗2, a
∗
3) = (x, n) and (a∗2, a

∗
3) = (n, x). Similar steps could be followed

for other (a1, a2) = (i, n) and (a1, a2) = (n, x)} pairs and are not included in this paper due to

space limitations.

Thus, the condition is satisfied, i.e., Q function is submodular in (δrx, a). From [41], it can

be concluded that the status update policy is of threshold-type.

REFERENCES
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