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Bivariate Polynomial Codes for Secure

Distributed Matrix Multiplication

Burak Hasırcıoğlu, Jesús Gómez-Vilardebó, and Deniz Gündüz

Abstract

We consider the problem of secure distributed matrix multiplication (SDMM). Coded computation

has been shown to be an effective solution in distributed matrix multiplication, both providing privacy

against workers and boosting the computation speed by efficiently mitigating stragglers. In this work,

we present a non-direct secure extension of the recently introduced bivariate polynomial codes. Bivariate

polynomial codes have been shown to be able to further speed up distributed matrix multiplication by

exploiting the partial work done by the stragglers rather than completely ignoring them while reducing

the upload communication cost and/or the workers’ storage’s capacity needs. We show that, especially

for upload communication or storage constrained settings, the proposed approach reduces the average

computation time of SDMM compared to its competitors in the literature.

I. INTRODUCTION

Matrix multiplication is a fundamental building block of many applications in signal processing

and machine learning. For some applications, especially those involving massive matrices and

stringent latency requirements, matrix multiplication in a single computer is infeasible, and

distributed solutions need to be adopted. In such scenarios, the full multiplication task is first

partitioned into smaller sub-tasks, which are then distributed across dedicated workers.

In this work, we address two main challenges in distributed matrix multiplication. The first

one is referred to as the stragglers problem, which refers to unresponsive or slow workers.
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If completing the full task requires the completion of the computations assigned to all the

workers, then straggling workers become a significant bottleneck. To avoid stragglers, additional

redundant computations can be assigned to workers. It has been recently shown that the use of

error-correcting codes, by treating the slowest workers as erasures instead of simply replicating

tasks across workers, significantly lowers the overall computation time [2]. In the context of

straggler mitigation, polynomial-type codes are studied in [3]–[6]. In these schemes, matrices

are first partitioned and encoded using polynomial codes at the master server. Then, workers

compute sub-products by multiplying these coded partitions and send the results back to the

master for decoding. The minimum number of sub-tasks required to decode the result is referred

to as the recovery threshold and denoted by Rth. All these works assume that only one sub-

product is assigned to each worker, and therefore, any work done by the workers beyond the

fastest Rth is completely ignored. This is sub-optimal, particularly when the workers have similar

computational speeds. This problem is addressed by the multi-message approaches in [7]–[10]. In

this works, multiple sub-products are assigned to each worker, and the result of each sub-product

is communicated to the master as soon as it is completed. This results in faster completion of the

full computation as it allows to exploit partial computations completed by stragglers. Moreover,

the multi-message approach makes finishing the task possible even if there are not as many

available workers as the recovery threshold. However, as discussed in [10], a direct extension of

polynomial-type codes to the multi-message setting by simply assigning multiple sub-products to

the workers increase the upload communication costs, which is defined as the number of bits sent

from the master to each worker, or equivalently, the storage required per worker. To combat this

effect, product codes are proposed in [7] for the multi-message distributed matrix multiplication

problem. However, with product codes, every sub-product is not equally useful while decoding

the full-product, i.e., they are not one-to-any replaceable, which degrades their performance.

The bivariate polynomial codes are introduced in [10] to address this issue, achieving a better

trade-off between the upload cost and average computation time.

The second challenge we tackle in this paper is privacy. The multiplied matrices may contain

sensitive information, and sharing these matrices, even partially, with the workers may cause a

privacy breach. Moreover, several workers can exchange information with each other in some

settings to learn about the multiplied matrices. Such a collusion may result in a leakage even

if no information is revealed to individual workers. The first application of polynomial codes

to privacy-preserving distributed matrix multiplication is presented in [11]. To hide the matrices
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from the workers, random matrix partitions are created, and linearly encoded together with the

true matrix partitions using polynomial codes. This requires increasing the degree of the encoding

polynomial and thus increasing the recovery threshold. The recovery threshold has been improved

in subsequent works [12], [13], by carefully choosing the degrees of the encoding monomials so

that the resultant decoding polynomial contains the minimum number of additional coefficients.

In [14]–[16], lower recovery threshold values than [13] are obtained by using different matrix

partitioning techniques and different choices of encoding polynomials, but this is achieved at

the expense of a considerable increase in the upload cost. In [17], a novel coding approach

for distributed matrix multiplication is proposed based on polynomial evaluation at the roots of

unity in a finite field. It has constant time decoding complexity and a low recovery threshold

compared to traditional polynomial-type coding approaches, but the sub-tasks are not one-to-any

replaceable and its straggler mitigation capability is limited. In [18], a multi-message approach

is proposed for SDMM by using rateless codes. Computations are assigned adaptively in rounds,

and in each round, workers are classified into clusters depending on their computation speeds.

Results from a worker in a cluster are useful for decoding only if the results of all the sub-tasks

assigned to that cluster and also to the fastest cluster are collected, making computations not one-

to-any replaceable. Still, the strategy exhibited good average computation times by estimating

and adapting to the computation speeds of the workers.

In this work, we propose Secure Bivariate Polynomial (SBP) codes, for the multi-message,

straggler-resistant, SDMM task based on bivariate Hermitian polynomial codes. We show that,

especially, under a limited upload cost budget, or when the number of fast workers is limited,

SBP codes outperform other schemes in the literature in terms of the average computation time.

We also show that this scheme retains its low average computation time when the computation

speeds of the workers significantly differ, i.e., heterogeneous computation speeds, or when they

are close to each other, i.e., homogeneous computation speeds. In addition, we also propose an

extension of GASP codes [13] to the multi-message setting and evaluate its performance. We

show that when a sufficiently large upload cost budget is available, employing this proposed

extension could considerably lower the average computation time of the SDMM task.

II. PROBLEM SETTING

We study distributed matrix multiplication with strict privacy requirements. The elements of

our matrices are in a finite field F, and we denote the size of the finite field by q. The master
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wants to multiply statistically independent matrices A ∈ Fr×s and B ∈ Fs×t, r, s, t ∈ Z+, with

the help of N dedicated workers, which possibly have heterogeneous computation speeds and

storage capacities.

To offload the computation to several workers, the master divides the multiplication task into

smaller sub-tasks, which are then assigned to workers. The master partitions A into K sub-

matrices as A =
[
AT1 AT2 · · · ATK

]T
, where Ai ∈ F r

K
×s, ∀i ∈ [K] , {1, 2, . . . , K}, and

B into L sub-matrices as B =
[
B1 B2 · · · BL

]
, where Bj ∈ Fs× t

L , ∀j ∈ [L]. The master

sends coded versions, i.e., linear combinations, of these partitions to the workers. We assume

that there is an upload cost constraint per worker, denoted by ui for worker i, which limits the

maximum number of bits that can be transmitted from the master to each worker. This upload

cost is a limiting factor on the number of coded partitions of A, denoted by mA,i, and of B,

denoted by mB,i, that can be sent to each worker. More specifically, for worker i, mA,i and

mB,i must satisfy (mA,irs/K +mB,ist/L) log2(q) ≤ ui. Provided that they comply with the

upload cost constraint, mA,i and mB,i are chosen depending on the underlying coding scheme

and the master sends coded partitions Ãi,k and B̃i,l to worker i, where i ∈ [N ], k ∈ [mA,i] and

l ∈ [mB,i]. For simplicity, we describe a static setting, in which all the coded matrices are sent

to the workers before they start computations. In a more dynamic scenario, matrix partitions can

be delivered when they are needed, which would reduce the memory required at the workers.

The workers multiply the received coded partitions of A and B as instructed by the underlying

coding scheme and send the result of each computation to the master as soon as it is completed.

Once the master receives a number of computations equal to the recovery threshold, Rth, it can

decode the desired multiplication AB.

In our threat model, all the workers are honest but curious. They follow the protocol, but

they can use the received encoded matrices to obtain information about the original matrices,

A and B. We also assume that any T workers can collude, i.e., exchange information among

themselves. Our privacy requirement is that no T workers are allowed to gain any information

about the content of the multiplied matrices. That is,

I
(
A,B; {Ãi,k, B̃i,l | i ∈ N , k ∈ [mA,i], l ∈ [mB,i]}

)
= 0,

where I is the mutual information and N is the any subset of [N ] with cardinality at most T .

Under this setting, the main problem we attempt to solve in this work is minimizing the average

computation time, which is defined as the time required for the master to collect sufficiently many
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computations to decode the desired computation AB. We assume that the workers’ computation

speeds can be homogeneous, i.e., the average speed of each available worker is close to each

other, or heterogeneous, in which the average speeds of the workers vary. Workers can also

straggle, i.e., become unresponsive temporarily.

III. EXTENSION OF BIVARIATE POLYNOMIAL CODES FOR SECURE DMM

As a first attempt to improve the upload cost efficiency of SDMM, in this section, we provide

the naive extension of bivariate polynomial codes proposed in [10] to SDMM. In [10], the

partitioning of the matrices is as described in Section II and the two encoding polynomials are

generated as

A(x) = A1 + A2x+ · · ·+ AKx
K−1, (1)

B(y) = B1 +B2y + · · ·+BLy
L−1. (2)

Therefore, at the master, the goal is to interpolate the following polynomial.

A(x)B(y) =
K∑
i=1

L∑
j=1

AiBjx
i−1yj−1. (3)

Since worker i ∈ [N ] can store mA,i partitions of A and mB,i partitions of B, the master sends

the first mA,i derivatives of A(x) and first mB,i derivatives of B(y), evaluated at xi and yi,

respectively, which are evaluation points of the encoding polynomials chosen distinct for each

worker. Each worker multiplies the received encoded partitions of A(x) and B(y) following a

specific order from the smaller-order derivatives to larger-order derivatives and sends the results

of each computation as soon as it is finished. Then, once the master receives KL computations

from the workers, it instructs all the workers to stop and starts decoding A(x)B(y).

In order to provide a simple direct extension of this scheme to SDMM in which T worker

collude, we limit the analysis to the case mA,i = mA and mB,i = mB, ∀i ∈ [N ]. Thus, from a

security point of view, each worker learns mA coded partitions of A and mB coded partitions

of B and since up to T workers collude, in total, mAT coded partitions of A and mBT coded

partitions of B are leaked to the workers. To protect such a leakage, we need to add mAT and

mBT random matrix partitions to A(x) and B(y), respectively. Thus, the encoding polynomials

for this naive extension of bivariate polynomial codes to SDMM becomes

A(x) = A1 + A2x+ · · ·+ AKx
K−1 +

mAT∑
i=1

Rix
K+i−1, (4)
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B(y) = B1 +B2y + · · ·+BLy
L−1 +

mBT∑
i=1

Six
L+i−1, (5)

where Ri and Si are matrix partitions chosen uniformly at random from the elements of Fq.

Therefore, the polynomial to be interpolated at the master becomes

A(x)B(y) =
K∑
i=1

L∑
j=1

AiBjx
i−1yj−1 +

K∑
i=1

mBT∑
j=L+1

AiSjx
i−1yj−1

+

mAT∑
i=K+1

L∑
j=1

RiBjx
i−1yj−1 +

mAT∑
i=K+1

mBT∑
j=L+1

RiSjx
i−1yj−1. (6)

Therefore, considering the number of monomials of A(x)B(y) in (6), Rth = (K + mAT )(L +

mBT ) evaluations of A(x)B(y) are needed to interpolate it, which has a quadratic dependence

on T .

Observe that in this naive extension, for a worker to provide m = mAmB computations,

uploading mA coded partitions of A and mB coded partitions of B are enough. This means

that the upload cost of the scheme is on the order of
√
m. However, the price we pay for such

a reduced upload cost is a quadratic dependence of the recovery threshold on the number of

colluding workers. Such dependence on T may quickly become restrictive for typical T values

and hence, the benefits of the naive extension of bivariate polynomial codes to SDMM may be

out-weighted by its drawbacks. Thus, we need more sophisticated schemes that can keep this

low upload cost with a better scaling behaviour for the recovery threshold with respect to m and

T . In the next section, we present our proposed solution for such a problem.

IV. SECURE BIVARIATE POLYNOMIAL (SBP) CODES

Our coding scheme is based on bivariate polynomial codes [10]. Compared to their univariate

counterparts, bivariate polynomial codes allow workers to complete more sub-tasks under the

same upload cost budget, which, in turn, improves the average computation time and helps to

satisfy the privacy requirements.

A. Encoding

In SBP coding scheme, coded matrices are generated by evaluating the following polynomials

and their derivatives:

A(x) =
K∑
i=1

Aix
i−1 +

T∑
i=1

Rix
K+i−1, (7)
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B(x, y) =
L∑
i=1

Biy
i−1 +

T∑
i=1

m∑
j=1

Si,jx
K+i−1yj−1, (8)

where m ≤ L is the maximum number of sub-tasks any worker can complete. Matrices Ri ∈

F
r
K
×s

q and Si,j ∈ Fs×
t
L

q are independent and uniform randomly generated from their correspond-

ing domain for i ∈ [T ] and j ∈ [m]. For each worker i, the master evaluates A(x) at xi

and the derivatives of B(x, y) with respect to y up to the order m − 1 at (xi, yi). We only

require these evaluation points to be distinct. Thus, the master sends to worker i, A(xi) and

Bi = {B(xi, yi), ∂1B(xi, yi), . . . , ∂m−1B(xi, yi)}, where ∂i denotes the ith partial derivative with

respect to y. Thus, we require mA,i = 1 and mB,i = m.

In (7) and (8), the role of Ri’s and Si,j’s is to mask the actual matrix partitions for privacy.

The following theorem states that the evaluations of A(x), B(x, y) and its derivatives do not

leak any information about A and B to any T colluding workers.

Theorem 1. For the encoding scheme described above, we have

I(A,B; {A(xi),Bi : i ∈ N}) = 0, (9)

∀N ⊂ [N ] such that |N | ≤ T .

Proof. Since A and B are independent, we have

I(A,B; {A(xi),Bi : i ∈ N}) = I(A; {A(xi) : i ∈ N}) + I(B; {Bi : i ∈ N}). (10)

Let us first bound I(A; {A(xi)|i ∈ N}) as follows.

I (A; {A(xi) : i ∈ N}) = H ({A(xi) : i ∈ N})−H ({A(xi) : i ∈ N}|A) (11)

= H ({A(xi) : i ∈ N})−H ({Ri : i ∈ [T ]}|A) (12)

(a)
= H ({A(xi) : i ∈ N})− T rs

K
log(q) (13)

(b)

≤
|N |∑
i=1

H(A(xi))− T
rs

K
log(q) (14)

= |N |rs
K

log(q)− T rs
K

log(q)
(c)

≤ 0, (15)

where (a) follows from the fact that Ri’s are independent from each other and from A, (b) is

due to the fact that joint entropy of several random variables is upper bounded by the sum of

the individual entropies of these random variables and (c) is due to N ≤ T .
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We can bound I(B; {Bi : i ∈ N}) similarly as follows.

I (B; {Bi : i ∈ N}) = H ({Bi : i ∈ N})−H ({Bi : i ∈ N}|B) (16)

= H ({Bi : i ∈ N})−H({Si,j : i ∈ [T ], j ∈ [m]}|B) (17)

= H ({Bi : i ∈ N})− Tmst

L
log(q) (18)

≤
|N |∑
i=1

m∑
j=1

H(B(xi, yj))− Tm
st

L
log(q) (19)

= |N |mst

L
log(q)− Tmst

L
log(q) ≤ 0. (20)

The claim follows by substituting (15) and (20) into (10).

B. Computation

Worker i multiplies A(xi) and ∂j−1B(xi, yi) with the increasing order of j ∈ [m]. That is, jth

completed computation is A(xi)∂j−1B(xi, yi). As soon as each multiplication is completed, its

result is communicated back to the master.

C. Decoding

After collecting sufficiently many computations from the workers, the master can interpolate

A(x)B(x, y). Note that, in our scheme, every computation is equally useful; that is, the sub-tasks

are one-to-any replaceable. In the following theorem, we give the recovery threshold expression,

which specifies the minimum number of required computations and characterizes the probability

of decoding failure, i.e., bivariate polynomial interpolation, due to the use of a finite field.

Theorem 2. Assume the evaluation points (xi, yi) are chosen uniform randomly over the elements

of F. If the number of computations of sub-tasks received from the workers, which obey the

computation order specified in Subsection IV-B is greater than the recovery threshold Rth ,

(K + T )L+m(K + T − 1), then with probability at least 1− d/q, the master can interpolate

the unique polynomial A(x)B(x, y), where

d ,
m

2

(
3(K + T )2 +m(K + T )− 8K − 6T −m+ 3

)
+

(K + T )L

2
(K + L+ T − 2) . (21)

We give the proof sketch of Theorem 2 in Section VII. Theorem 2 states that we can make

the probability of failure arbitrarily small by increasing the order q of the finite field.
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Theorem 3. The total upload cost of the SBP coding scheme is N (rs/K +mst/L) log2(q) bits.

Proof. The SBP coding scheme assigns m computations to each worker, by sending one coded

partition of A and m coded partitions of B. Remember that each coded partition of A is a

matrix of size r
K
× s and each coded partition of B is a matrix of size s× t

L
. Since there are N

workers, the master uploads N (rs/K +mst/L) elements of the field F. Since, in total, there

are q elements in F, the total upload cost is N (rs/K +mst/L) log2(q) bits.

Remark 1. The SBP scheme, as described in this section, does not exploit any parameter of

the underlying statistical model of the workers’ speeds. Under a total upload cost constraint, if

no prior information about the computation speeds of the workers is available, then assigning

more computation load, m to every worker is a favorable approach. Although this increases

the recovery threshold as well, i.e., the term m(K + T − 1), the faster workers do not run

out of computations easily, avoiding the slowest workers dominating the computation time. The

benefit of this prevails over the detriment due to the increase in the recovery threshold. Surely, if

prior information about the computation speeds of the workers is available, we could exploit it

assigning more computations to the faster workers and fewer computations to the slower workers,

which would result in fewer number of coded partitions leaked to the colluding workers. In such

a case, the recovery threshold would be lower and hence, would further increase the protection

against stragglers. Please note that to extend our scheme to such a scenario, we should still

satisfy a constraint that the maximum number of assigned computations to a worker is less than

L. However, the SBP scheme has been designed as agnostic to the delay model of the workers

and specifically to maximize the number of sub-tasks delivered by a worker under an upload cost

constraint. Thanks to the extra computations at workers, we show in simulation results that a

model-independent version of SBP scheme is enough to beat model-dependent schemes such as

the coding scheme in [18]. Thus, we expect the SBP coding scheme to work for large varieties

of statistical models of the worker’s speeds.

V. EXTENSION OF GASP CODES TO MULTI-MESSAGE SETTING

State of the art schemes in SDMM [11], [12] are combined and improved in [13], referred

to as GASP codes. Originally, GASP codes are designed for the single-message scenario, in

which each worker is assigned a single computation task. In this section, we extend the GASP
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codes to the multi-message setting, which we call multi-message GASP (MM-GASP) scheme.

The encoding polynomials for the GASP codes are

A(x) =
K∑
i=1

Aix
αi +

T∑
i=1

Rix
αK+i ,

B(x) =
L∑
i=1

Bix
βi +

T∑
i=1

Six
βL+i ,

where Ri’s and Si’s are random matrix partitions, and αi’s and βi’s are determined such that

AiBj , ∀i ∈ [K],∀j ∈ [L] can be decoded and the number of monomials whose coefficients

consist of undesired terms, such as multiplications involving Ri’s and Si’s, in A(x)B(x), are

minimized. We do not cover the details of how αi’s and βi’s are determined, but as a result of

the process detailed in [13], the recovery threshold becomes

RGASP
th (K,L, T ) =



KL+K + L 1 = T < L ≤ K

KL+K + L+ T 2 + T − 3 1 < T < L ≤ K

(K + T ) (L+ 1)− 1 L ≤ T < K

2KL+ 2T − 1 L ≤ K ≤ T.

(22)

For the extension of GASP codes to the multi-message setting, i.e., MM-GASP, we assign

m > 1 tasks to each worker. Thus, a worker can see m evaluations of A(x) and B(x), and

any T colluding workers can see mT evaluations. Thus, to make the scheme secure against T

colluding workers, we need to add mT random matrix partitions to each encoding polynomial,

instead of T . Thus, we have

A(x) =
K∑
i=1

Aix
αi +

mT∑
i=1

Rix
αK+i ,

B(x) =
L∑
i=1

Bix
βi +

mT∑
i=1

Six
βL+i .

Theorem 4. The recovery threshold of MM-GASP is given by the following expression.

RMM−GASP
th (K,L, T ) =



KL+K + L 1 = mT < L ≤ K

KL+K + L+ (mT )2 +mT − 3 1 < mT < L ≤ K

(K +mT ) (L+ 1)− 1 L ≤ mT < K

2KL+ 2mT − 1 L ≤ K ≤ mT.

(23)
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Proof. We can define T̃ = mT and write

A(x) =
K∑
i=1

Aix
αi +

T̃∑
i=1

Rix
αK+i , B(x) =

L∑
i=1

Bix
βi +

T̃∑
i=1

Six
βL+i . (24)

Now let us consider

A(x)B(x) =
K∑
i=1

L∑
j=1

AiBjx
αi+βi +

K∑
i=1

T̃∑
j=1

AiSjx
αi+βL+i

+
T̃∑
i=1

L∑
j=1

RiBjx
αK+i+βi +

T̃∑
i=1

T̃∑
j=1

RiSjx
αK+i+βL+i . (25)

According to the proof of (22) in [13], αi’s and βi’s are chosen such that: 1) from the evaluations

of A(x)B(x), AiBj’s ∀i ∈ [K], j ∈ [L] are decodable and 2) the number of monomials in

A(x)B(x) whose coefficients are undesired terms are minimized. For this, we only need to

consider the structure of A(x)B(x) and m itself is not related other than determining the value

of T̃ . Therefore, the problem reduces to deriving the recovery threshold of a classical GASP

coding scheme when T̃ workers collude, which is RGASP
th (K,L, T̃ ) by (22). If we substitute

T̃ = mT , then we obtain (23).

Remark 2. In multi-message univariate polynomial coding schemes, such as in MM-GASP codes

we have just introduced, if a worker is assigned m sub-tasks, then m coded partitions of both

A and B are required. Thus, the total upload cost of MM-GASP is Nm (rs/K + st/L) log2(q)

bits, which is larger than that of SBP coding scheme.

The recovery thresholds of the MM-GASP codes and SBP codes can be compared as a function

of the number of coded partitions m, by direct inspection of the recovery thresholds in (23) and

Theorem 2. Observe that SBP coding scheme’s recovery threshold is smaller than that of the

MM-GASP code if L ≤ mT < K, and K ≤ TL + 1, which is satisfied as K and L become

close to each other, or, if L ≤ K ≤ mT , and (K − T )(L − m) ≥ (1 − m) is satisfied. In

Fig. 1, we provide the recovery thresholds of the two schemes as a function of the number of

computations allocated to each worker for K = L = 100 and T = 30.

We note that such a comparison may only be meaningful in the unlimited upload cost budget

scenario. Otherwise, comparing the recovery thresholds for the same m might be misleading

since, for a given upload cost constraint, each scheme provides a different number of sub-tasks,
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Fig. 1: Rth vs. the number of computations assigned to each worker for SBP coding scheme

and the MM-GASP scheme for K = L = 100 and T = 30.

m, to workers, as detailed in Theorem 3 and Remark 2, for SBP and for MM-GASP, respectively.

We provide further discussion on this issue in the next section, see Fig. 3, where we show the

recovery thresholds as a function of the total upload cost budget for a scenario with K = L = 100

and T = 30.

VI. SIMULATION RESULTS AND DISCUSSION

In this section, we compare SBP codes with MM-GASP and the rateless coding scheme

proposed in [18] in terms of the trade-off between the average computation time (ACT) and

the total upload cost budget (UCB), under the scenarios with heterogeneous and homogeneous

workers.

The comparison between the MM-GASP scheme and SBP coding scheme is direct, as both are

based on the same set of assumptions. They achieve different recovery thresholds as a function

of the L,M, T and m, but they both assume that the coded submatrices are uploaded only

once before the computations start, no prior knowledge of the computation speeds of workers

is needed or can be exploited, and the first Rth results received from any subset of the workers

allow recovering the desired computation. However, the setting and the assumptions in [18] are

slightly different. In the rateless coding scheme proposed in [18], computations are organized

in rounds. If the speeds of the workers are not already known, in the first round, every worker

is assigned one computation to estimate their speeds. Then, based on the known or estimated
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speeds, workers are grouped into c clusters, such that the workers with similar speeds are in

the same cluster. We denote by nu the number of workers belonging to cluster u, u ∈ [c]. In

each round, for any computation within a cluster to be useful for decoding, we need that all the

workers in that cluster and also all workers in cluster one, which is special, to finish their assigned

tasks. Once all the workers in cluster u and cluster 1 finish their tasks, they provide du, and d1

useful computations to the master, where d1 = b(n1 − 2T + 1)/2c and du = b(nu − T + 1)/2c

for 2 ≤ u ≤ c. No further synchronization is needed among clusters, and a new task can be

assigned to a worker as soon as it finishes its assigned task. Once KL(1+ε) useful computations

are collected by the master from different clusters across multiple rounds, the decoding procedure

can start. Here, ε is the overhead due to the Fountain codes used in [18], which in our simulations

is set to 0.05. The performance of this scheme depends critically on how good the distribution of

the workers’ speeds can be estimated. Observe that, in the event that a worker in a "fast" cluster

straggles, the finishing time of the overall cluster can be arbitrarily delayed. This is the main

drawback of this scheme in comparison with SBP coding scheme and the MM-GASP, for which

any computation at any worker is equally useful. The clear advantage of the rateless coding

scheme is that the computation load mi, i.e., the number of tasks assigned to worker i, does not

need to be specified in advance, and tasks can be dynamically allocated to workers in each cluster

across rounds. Moreover, the recovery threshold is not dominated by the maximum computation

load m = maxmi, as is the case for SBP coding and the MM-GASP schemes. Therefore, in

order to allow the rateless coding scheme to benefit from this flexibility, in our simulations, we

consider a total upload cost for [18], i.e., the computations are assigned to clusters until the

total upload communication budget is met, while for MM-GASP and SBP we impose an upload

cost constraint per worker. We emphasize that this is a relaxation of the problem formulation

introduced in Section II, and is only applied to the rateless coding scheme. Although SBP coding

scheme and the MM-GASP code can also benefit from this relaxation when the computation

statistics of the workers are known, such optimization is out of the scope of this paper and will

be considered in future work.

In our simulations, following the literature [2], [19], we assume that the time for a worker to

finish one sub-task is distributed as a shifted exponential random variable with density f(t) =

λe−λ(t−ν) for t ≥ ν, and f(t) = 0 otherwise, where the scale parameter λ controls the speed of

the worker and the shift parameter ν is the minimum time duration for a task to be completed.

Smaller λ implies slower workers and more tendency to straggle. In each scenario, we run 1000
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experiments independently with the given parameters and present the average computation time.

We assume that the partitions of matrices A and B have the same size, i.e., r
K

= t
L

, in all of

the scenarios considered. Given that the computation time per sub-task is a fraction 1
KL

of the

complete task, to facilitate the comparison between different configurations, we choose λ ∝ KL,

and ν ∝ 1
KL

, in all simulation setups.

A. Heterogeneous Workers

In this subsection, we assume that the computation speeds of the workers are heterogeneous.

Specifically, we assume six heterogeneity classes, with scale parameters λ1 = 10−1 × KL,

λ2 = 10−1.5×KL, λ3 = 10−2×KL, λ4 = 10−2.5×KL, λ5 = 10−3×KL and λ6 = 10−3.5×KL,

and a common shift parameter of ν = 10/(KL) seconds. There are 75 workers for each class

summing up to N = 450 workers in total, and assume that any subset of at most T = N/15

workers can collude. We divide both matrices A and B into K = L = 100 partitions. We

evaluate the scheme in [18] for several numbers of clusters, c, to observe the effect of the

mismatch between the actual number of heterogeneity classes and the chosen c value. While

generating the clusters, we simply assign around N/c workers to each cluster, according to the

estimated speeds in the first round. We do not change the parameter c across rounds.

First, we assume that workers’ scale parameters do not deviate at all from the given parameters

across the rounds. We call such workers as stable workers. In Fig. 2, we plot the ACT of

the compared schemes versus the total UCB by assuming stable workers. In Fig. 3, we also

present the actual recovery thresholds of SBP coding scheme, MM-GASP, as well as, the average

recovery threshold of the rateless coding scheme for different c values. As the name suggests,

the rateless scheme does not have a constant recovery threshold. The actual value depends on the

computation speeds of the workers, the number of clusters, and the number of workers assigned

to them. Therefore, we present the average recovery threshold for this scheme.

As observed in Fig. 2, the SBP coding scheme is able to finish the overall task for much lower

UCB values than the other two schemes. This is thanks to the fact that SBP is able to provide

more computations, m, to workers for the same UCB, as highlighted in Remark 1. Moreover,

although by increasing the total UCB we increase m and therefore Rth, as observed in Fig. 3,

and thus workers need to provide more computations to the master, the benefit from having more

computations at workers pays off and the ACT decreases when UCB increases. The reason for

this is the heterogeneity of the workers’ speeds. That is, for a low total UCB, m is so small
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Fig. 2: ACT vs. total UCB trade-off of the compared schemes with heterogeneous and stable

workers.
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Fig. 3: Average Rth of the compared schemes with heterogeneous and stable workers

that the master cannot complete all Rth computations from only fast workers. When we increase

m, the maximum number of computations the fast workers can provide also increases, and the

benefit of this increase dominates over the increase in the Rth. For the SBP scheme, this is so

until we reach a total UCB value corresponding to m = L i.e., total UCB of L ×N = 45000.
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After this point, the ACT of SBP coding scheme stays constant. This is an inherent limitation of

SBP coding scheme since the maximum value of m is L. Beyond that value, we cannot benefit

from the additional UCB.

For MM-GASP codes, we observe that, although their recovery threshold is close to that of

SBP coding scheme in the low UCB regime, as seen in Fig. 3, the minimum total UCB for

which MM-GASP codes are able to complete the overall task is larger than SBP coding scheme.

That is because the MM-GASP scheme is a univariate scheme; and thus, for the same total

UCB, the maximum number of computations a worker can provide is less than the one in SBP

coding scheme. For the same reason, at intermediate total UCB availability, i.e., values less than

9 × 104 partitions, the ACT of the MM-GASP scheme is quite large compared to SBP coding

scheme. However, for larger values of total UCB, we observe in Fig. 2 that MM-GASP’s ACT

decreases rapidly, substantially outperforming the other two schemes. However, after a critical

point, if the total UCB further increases, then the ACT starts to increase again. After that critical

point, the increase in the recovery threshold is not compensated by the additional computations

at workers and the ACT starts to increase. Unfortunately, operating at this point may not be

always possible. Especially when we do not have any prior information about the statistics of

the workers’ speeds. Nevertheless, some heuristics can still be useful to approximate it and even

if the optimal point cannot be found, a sufficiently close point can still be beneficial. Thus, we

can conclude that, if a good heuristic can be found to identify a near-optimal m value, for large

UCB values, MM-GASP codes can complete the overall task faster than SBP coding scheme

as well as the rateless coding scheme. This makes MM-GASP codes a good alternative for the

scenarios with high UCB availability.

Finally, for the rateless codes, as observed for MM-GASP codes, we observe that this scheme

starts being able to complete the overall task only at a relatively high total UCB value. That is

because the rateless coding scheme assigns a new sub-task to a worker as soon as it finishes

its task without waiting for the other clusters to finish. Thus, the UCB is greedily invested in

the fastest cluster. However, despite its speed, in terms of the number of useful computations

provided, the fastest cluster is less efficient than the other clusters. Please remember that d1 =

b(n1 − 2T + 1)/2c, but du = b(nu − T + 1)/2c for 2 ≤ u ≤ c. Therefore, if the number of

workers in the fastest cluster is limited, then for the low UCB values, the rateless scheme cannot

complete the overall task since it runs out of the necessary upload resources before the master

receives the minimum number of useful computations to decode AB, which is KL(1 + ε).
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Moreover, we observe in Fig. 3 that when the number of clusters is low, the recovery threshold

is also lower, and the rateless scheme starts completing the overall task at a lower value of total

UCB. That is because when c is low, since we assign N/c workers per cluster, there are more

workers in the fastest cluster. However, in Fig. 2, we also observe that this does not always have

a positive impact on the ACT. On the other hand, when UCB is large enough for rateless codes

to complete the overall task, its ACT is slightly better than SBP coding scheme for c = 3 and

c = 6, but for c = 5 and c = 7, SBP coding scheme performs better. In general, we expect

that the rateless coding scheme performs well when c is equal to the number of heterogeneity

classes, but, in this case, we also observe that it performs equally well for c = 3. That is

because, for c = 3, there is no λi, i ∈ [6] appearing in more than one cluster, i.e., workers in

the same heterogeneity class are allocated to the same cluster. Therefore, for rateless codes, it is

important to choose the design parameter c carefully. In practice, we may not know the number

of heterogeneity classes, such a clear grouping of computation statistics may not be possible. For

such cases, SBP coding scheme or the MM-GASP may be preferable over the rateless coding

scheme.

In addition to choosing c optimally, estimating the instantaneous speeds of the workers is

another issue we need to address in rateless codes. In real-world scenarios, the speeds of the

workers can occasionally change due to temporary failures, parallel job assignments, etc. To

model this, we introduce another simulation scenario, in which workers’ scale parameters can

deviate from their original values with a very low probability ρ. We refer to such workers as

mostly-stable workers. That is, in any round, a worker with λi sticks to λi with probability 1−ρ,

but with a small probability ρ, it draws its scale parameter uniform randomly from {λj | j ∈ [6]}.

We consider such a scenario to model the instantaneous changes in workers’ speeds since the

detection of such changes by the master and putting this worker to the correct cluster takes at

least one round. Taking ρ = 0.001, we plot the ACT of the compared schemes in Fig. 4.

We observe that even with such a small probability deviation from the estimated scale param-

eters, the performance of [18] degrades considerably. Thus, we can argue that, in addition to the

substantial improvement in the low and the intermediate UCB values, SBP coding scheme can

be advantageous over [18] in the presence of a high UCB as well depending on the statistics of

the workers’ speeds.
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Fig. 4: ACT vs. total UCB trade-off of the compared schemes with heterogeneous and mostly-

stable workers.

B. Homogeneous Workers

In this subsection, we assume that the computation speeds of the workers are homogeneous,

and we compare the ACTs of the considered schemes with respect to the available total UCB.

That is, we have 450 workers as in Subsection VI-A, but this time, all the workers follow

the same computation statistics with λ = 10−2 × KL and ν = 10/(KL). We assume at most

T = N/15 workers can collude, and we divide A and B into K = L = 100 partitions. For the

rateless scheme in [18], although, the workers’ speeds are homogeneous, we consider different

numbers of clusters c ∈ [3] in order to analyse its effect. In Fig. 5, we present the ACT versus

UCB plot for this setting.

Similarly to the heterogeneous case discussed in Subsection VI-A, due to the upload cost

efficiency of the bivariate polynomial codes, we observe that the minimum UCB for which

SBP can complete the overall task is smaller than for the other schemes. Moreover, in this

homogeneous case, we observe that the ACTs of SBP and MM-GASP only increase with the

total UCB. That is because, due to the similarity in workers’ speeds, there is no need for the

faster workers to compensate for the slower ones. Therefore, rather than improving the ACT,

increasing m beyond the minimum value, for which the schemes complete the overall task,

results in a higher ACT since it also increases Rth. Therefore, we depict the best ACT for SBP
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Fig. 5: ACT vs. total UCB trade-off of the compared schemes with homogeneous and stable

workers.

and MM-GASP coding schemes in Fig. 5 and Fig. 6 by flat dashed lines.

On the other hand, for the rateless codes, we observe that, regardless of the number of clusters,

c, considered, they perform significantly worse than SBP coding scheme for all UCB values.

That is because, while the sub-tasks are one-to-any replaceable in SBP coding scheme, i.e, the

result of any sub-task can compensate for the absence of any other sub-task, this is not the case

in the rateless coding scheme. Since we consider the homogeneous workers in their speeds, there

is not much difference between the clusters in the rateless coding scheme. Since, to decode the

sub-tasks in a cluster, all of the workers in that cluster must finish their sub-tasks, the ACT

increases.

As we stated in Subsection VI-A, in a real-world scenario, the speeds of workers can occa-

sionally change. To model this effect, in Fig. 6, we provide the ACT versus UCB trade-off in the

scenario in which the workers are mostly-stable with a transition probability ρ = 0.001. Since

there is only one heterogeneity class in the homogeneous case, to simulate mostly-stable workers,

we assume that a worker sticks to λ = 10−2×KL with probability ρ, but with probability 1−ρ,

its λ parameter is chosen uniformly between λ = 10−3 ×KL and λ = 10−4 ×KL.

We observe that the effect of such a low probable deviation from the original parameters is

considerable in the rateless codes since in order to utilize the computations in a cluster, all the
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Fig. 6: ACT vs. total UCB trade-off with homogeneous and mostly-stable workers.

workers in that cluster must complete their sub-tasks. If some of these workers straggle even

only for one round, it can delay the overall computation significantly.

To conclude, we observe that, in the cases in which the workers’ speeds are known to be

close to each other, i.e., homogeneous, SBP coding scheme is preferable over both the rateless

coding and the MM-GASP schemes.

VII. PROOF OF THEOREM 2

In Fig. 7, we visualize the degrees of the monomials of A(x)B(x, y) in the deg(x)− deg(y)

plane. From Fig. 7, we see that the number of monomials of A(x)B(x, y) is (K + T )L +

m(K + T − 1). We need to show that every possible combination of so many responses from

the workers interpolates to a unique polynomial, implying (K + T )L + m(K + T − 1) is the

recovery threshold.

Definition 1. Bivariate polynomial interpolation problem can be formulated as solving a linear

system of equations, whose unknowns are the coefficients of A(x)B(x, y) and whose coefficient

matrix consists of the monomials of A(x)B(x, y) and their derivatives with respect to y evaluated

at the evaluation points of the workers, (xi, yi), i ∈ [N ] . We refer to this coefficient matrix as

the interpolation matrix and denote it by M . Since the number of monomials of A(x)B(x, y)

is Rth = (K + T )L + m(K + T − 1), we require Rth equations to interpolate it, and hence,
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Fig. 7: The visualization of the degrees of the monomials of A(x)B(x, y) in the deg(x)−deg(y)

plane.

M ∈ RRth×Rth . Each row of M corresponds to the result of one sub-task sent by a worker to the

master. For example, when K = L = 2, m = 2 and T = 1, we have Rth = 10, and one possible

interpolation matrix formed by any 5 workers, each of which provides m = 2 computations, is

as follows:

M =



1 x1 x21 x31 x41 y1 x1y1 x21y1 x31y1 x41y1

0 0 0 0 0 1 x1 x21 x31 x41
...

...
...

...
...

...
...

...
...

...

1 x5 x25 x35 x45 y5 x5y5 x25y5 x35y5 x45y5

0 0 0 0 0 1 x5 x25 x35 x45


.

Observe that the first row represents the direct evaluation A(x1)B(x1, y1) from worker 1, and

the second row represents A(x1)∂1B(x1, y1), again from worker 1. In general, any interpolation

matrix formed by Rth = 10 computations received from any subset of workers is also valid, as

long as the workers follow the computation order specified in Section IV-B.

The problem of showing that any Rth responses from the workers interpolates to a unique

polynomial is equivalent to showing that the corresponding interpolation matrix is non-singular.

The theorem claims that this is the case with high probability. First, we need to show that there

exist some evaluation points for which the determinant of the interpolation matrix is not zero.

That is equivalent to showing that det(M) is not the zero polynomial of the evaluation points.

In [10], such a result for the same type of interpolation matrices is shown for the real field R.

Here, we extend this proof to F. We show that det(M) is non-zero for some evaluation points
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by using Taylor series expansion of det(M), as done in [10]. This can be done since Taylor

series expansion is also applicable in F, as long as, the degree of the polynomial A(x)B(x, y)

is smaller than the field size q. This can be guaranteed by choosing a large q. For further details

on the applicability of Taylor series expansion in finite fields, see [20] and [21].

Without losing generality, let us assume first that n workers with n ≤ N , provide, together,

enough responses, i.e., Rth, to interpolate A(x)B(x, y). Let us assume (xi, yi) and (xj, yj) are

two evaluation points for which the evaluations of A(x)B(x, y) and some of its derivatives at

these points are received by the master. We write the Taylor series expansion of det(M) around

(xi, yi) by taking the evaluation point (xj, yj) as the variable:

det(M) =
∑

(α1,α2)∈N2

1

α1!α2!
(xj − xi)α1(yj − yi)α2Dα1,α2(Z̃), (26)

where Z̃ , {(xk, yk) : k ∈ [n]} \ {(xj, yj)} and

Dα1,α2(Z̃) ,
∂α1+α2

∂xα1
j ∂y

α2
j

det(M)(xj, yj)

∣∣∣∣
xj=xi,yj=yi

.

We call (xi, yi) the pivot node and (xj, yj) the variable node.

Remark 3. The monomials (xj −xi)α1(yj − yi)α2 are linearly independent for different (α1, α2)

pairs if there is no relation between x and y coordinates of the evaluation points, i.e., xi and

xj do not depend on yi and yj . Thus, det(M) is a zero polynomial of all evaluation points, if

and only if Dα1,α2(Z̃) = 0,∀(α1, α2) ∈ N2. Therefore, in order to show that M is non-singular,

it suffices to show that there exists at least one (α1, α2) making Dα1,α2(Z̃) nonzero.

Before looking into Dα1,α2(Z̃) in more detail, let us define some notions which will help us

understanding its structure.

Definition 2. Derivative Set. In an interpolation matrix M , there might be several rows each

corresponding to a different derivative order of A(x)B(x, y) associated with the evaluation point

zi , (xi, yi), which is assigned to worker i. We define the derivative set of zi, denoted by Uzi,M

as the set of derivative orders of A(x)B(x, y) with respect to x and y associated to zi in M .

That is, (dx, dy) ∈ Uzi,M if and only if M has a row corresponding to ∂dx+dy

∂xdxi ∂y
dy
i

A(xi)B(xi, yi).

Definition 3. Derivative order space. The derivative order space of a bivariate polynomial

A(x)B(x, y) is defined as the 2-dimensional space of all its possible derivative orders. Since the



23

largest derivative order of a bivariate polynomial is its largest monomial degree, the derivative

order space has the same shape as deg(x) − deg(y) plane depicted in Fig. 7. For example,

consider the 2-D derivative order (K + T,m). Since all the monomials of A(x)B(x, y) having

a degree larger than m with respect to y have a degree less than or equal to K + T − 1 with

respect to x, the 2-D derivative order (K + T,m) results in a zero polynomial. Thus, this is not

an element of derivative order space. The derivative set of each evaluation point can be depicted

in the derivative order space separately.

Definition 4. Let M be an interpolation matrix for which some of its rows depend on xj and

yj . Let us denote by ri its ith row and define a simple shift as

∂i,xjM ,

[
rT1 , . . . ,

∂

∂xj
rTi , . . . , r

T
KL

]T
(27)

and

∂i,yjM ,

[
rT1 , . . . ,

∂

∂yj
rTi , . . . , r

T
KL

]T
. (28)

That is, ∂i,xj and ∂i,yj transform M into another matrices by taking the derivative of its ith

row with respect to xj and yj , respectively. If in the resulting derivative set, i.e., Uxj ,∂i,xjM or

Uyj ,∂i,yjM , each element has a multiplicity of one, then the shift is called a regular simple shift.

Definition 5. Let k and l be vectors such that k ∈ {0, 1, · · · , K − 1}Rth and l ∈ {0, 1, · · · , L−

1}Rth . We define the composition of simple shifts as

∇xj ,yj
k,l M = ∂

k(1)
1,xj

∂
k(2)
2,xj
· · · ∂k(Rth)

Rth,xj
∂
l(1)
1,yj
∂
l(2)
2,yj
· · · ∂l(Rth)

Rth,yj
M. (29)

That is, the ith element of k denotes the order of the derivative of ith row of M with respect

to the variable xj , and the ith element of l denotes the order of the derivative of ith row of

M with respect to the variable yj . In fact, (29) is not the only way to compute ∇xj ,yj
k,l M since

the derivative operation is commutative. One can compute ∇xj ,yj
k,l M in any other order. Each

of these possible orders are referred to as a derivative path. If a derivative path involves only

regular simple shifts, i.e. after each derivative there are not two equal rows, then it is called a

regular derivative path. We denote the number of regular derivative paths by Ck,l(M).

Based on these definitions, we have the following lemma.
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Lemma 1 (Lemma 1 in [10]). Let k ∈ {0, 1, · · · , K − 1}Rth , l ∈ {0, 1, · · · , L − 1}Rth and

α1 =
∑Rth

i=1 k(i) and α2 =
∑Rth

i=1 l(i). Then, we have

∂α1+α2

∂xα1
j ∂y

α2
j

det(M)

∣∣∣∣
xj=xi,yj=yi

=
∑

(k,l)∈RM (α1,α2)

Ck,l(M) det
(
∇xj ,yj

k,l M
) ∣∣∣∣

xj=xi,yj=yi

(30)

where RM(α1, α2) is the set of (k, l) pairs satisfying Ck,l(M) 6= 0, i.e., there is at least one

derivative path for which ∇xj ,yj
k,l can be applied by using only regular simple shifts.

Definition 6. If RM(α1, α2) has only one element, i.e., there is only one (k, l) resulting in a

regular simple shift, then (α1, α2) is called a unique shift order and (k, l) is called a unique

shift.

Now, let us go back to Dα1,α2(Z̃). Recall that we would like to show that at least for one

(α1, α2), Dα1,α2(Z̃) is non-zero. Observe that it does not depend on (xj, yj) since after taking

the derivatives with respect to (xj, yj), the resulting expression is evaluated at xj = xi, yj = yi.

If (α1, α2) is a unique shift order, then according to (30), it is enough to show that det (M1) is

not the zero polynomial, where M1 , ∇
xj ,yj
k,l M |xj=xi,yj=yi . Notice that, M1 no longer depends

on the evaluation point (xj, yj). We call such a procedure of transforming an interpolation matrix

into another interpolation matrix via unique shifts as the coalescence of the variable node and

the pivot node. After obtaining M1, we can employ the same idea to show M1 is non-singular.

Namely, we can write the Taylor series expansion of det(M1) by choosing a new variable

node and keeping the same pivot node (xi, yi). If there is a unique shift for the coalescence, the

resultant matrix M2 will not depend on neither the previous variable node (xj, yj) nor the current

variable node. We can apply such coalescences successively as long as we can find a unique

shift order (α1, α2) at each coalescence, until Mfinal depends only on one evaluation point, which

is the pivot node, (xi, yi). In Mfinal, the derivative set of (xi, yi) has all possible elements of the

derivative order space. Thus, Mfinal is a triangular matrix, and hence, non-singular.

To summarize, to prove that all possible interpolation matrices, M , generated from our scheme

are non-singular in general, we need to show that we can always find at least one unique shift

for all the steps of the coalescence procedure. Our strategy to show that we can always find

a unique shift in all coalescence steps is based on the idea of keeping the derivative set of

the pivot node to be a lower set. A lower set is defined as a set in which the presence of an

element implies the presence of all possible elements smaller than this element. To decide if an

element is smaller than any other element, we need to define an ordering rule. For our case,
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Fig. 8: Depiction of Uzi,Mp−1 in Example 1

we define such an ordering as follows. Assume we denote our pivot node as zi = (xi, yi) and

take two derivative orders (a, b) ∈ Uzi,M and (c, d) ∈ Uzi,M , where a and c are the orders of the

derivative with respect to xi and b and d are the orders of the derivative with respect to yi. We

say (a, b) < (c, d) if and only if a < c or a = c and b < d.

Before formally stating our strategy to find a unique shift in all the coalescence steps, we

describe it with two simple examples.

Example 1. Assume K = L = 5, T = 1 and m = 3 and we are at the beginning of p-th

coalescence step. Let us choose zi as the pivot node and zj as the variable node. Further, assume

at the beginning we have Uzi,Mp−1 = {(a, b) : (a, b) ≤ (1, 2)} and Uzj ,Mp−1 = {(a, b) : (a, b) ≤

(0, 2)}. We depict the derivative sets of Uzi,Mp−1 and Uzj ,Mp−1 in Fig. 8 and Fig. 9. We will take

smallest possible shift (α1, α2) such that the resultant Uzi,Mp after the coalescence. Knowing the

number of elements in Uzi,Mp after the coalescence, its shape is uniquely determined under the

condition that it must be a lower set and shown in Fig. 10. In Fig. 9 and Fig. 10, we assign to

each element of Uzj ,Mp−1 either the letter "a", "b" or "c" so that we can track its location during

and after the coalescence procedure. Recall that taking derivatives corresponds to shifting the

elements of the derivative set in the derivative order space. Thus, in order to shift the elements

of Uzj ,Mp−1 to their locations in the final shape in Fig. 10, we need to the total number of

shifts in both x and y directions is 4, implying we need to choose (α1, α2) = (4, 4). For this

choice, we have k(ia) = 2, k(ib) = 1, k(ic) = 1, l(ia) = 0, l(ib) = 2 and l(ic) = 2 where

ia is the row-index of the element a. Given this choice of (α1, α2), there is no other possible

resulting shape for Uzi,Mp resulting a non-singular Mp. To see this, observe that, if we write

the derivative sets of Uzi,Mp after-the-coalescence for all possible (k, l) such that
∑

i k(i) = α1

and
∑

i l(i) = α2, then all, except the one depicted in Fig. 10 will have overlapping elements

making the corresponding interpolation matrix singular. Therefore, (α1, α2) = (4, 4) is a unique

shift order.
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Fig. 9: Depiction of Uzj ,Mp−1 in Example 1
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Fig. 10: Depiction of Uzi,Mp after coalescence in Example 1

Example 2. Let us consider the same setting as in Example 1, but now assume that we have

Uzi,Mp−1 = {(a, b) : (a, b) ≤ (6, 1)}. Since the maximum number of computations a worker can

provide is m = 3, the cardinality of the derivative set of the variable node Uzj ,Mp−1 , in this

example, is at its maximum. Thus, we can directly follow the same procedure as in Example 1.

Note that after the coalescence, UziMp will have 34 elements, and the lower set having 34

elements is unique and well defined. To obtain the shape in Fig. 11, we need (α1, α2) = (0, 19)

with k(ia) = 7, k(ib) = 6 and k(ic) = 6, and it is a unique shift order since any other assignment

of 19 shifts to a, b and c results in a non-singular Mp.

Next, we formally state our strategy for an arbitrary coalescence step p. Since we choose

one pivot node and use it for every coalescence step, we guarantee that the variable node’s

derivative set has always at most m elements. To generalize the procedure in Example 1 and
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Fig. 11: Depiction of Uzi,Mp after coalescence in Example 2
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Fig. 12: Visualization of the pivot node and the variable node during a coalescence

Example 2, let us assume (px, py) is the largest element of the derivative set of the pivot node

zi, i.e., Uzi,Mp−1 = {(a, b) : (0, 0) ≤ (a, b) ≤ (px, py)} and (0, vy) is the largest element of the

derivative set of the variable node zj , i.e., Uzj ,Mp−1 = {(0, b) : 0 ≤ b ≤ vy}. While calculating

(α1, α2) pair, we first determine α2, which is the total derivative order with respect to yj , or

equivalently the number of shifts towards y-direction in the derivative order set. This means

that we first take the derivatives with respect to yi, and then with respect to xi. In Fig. 12a,

in the derivative order space, for px ≤ K + T − 1, we depict the derivative set of the pivot

node, i.e., Uzi,Mp−1 , by filled circles, and the locations to which the elements of Uzj ,Mp−1 will

be placed after the coalescence by unfilled circles. Note that we determine these locations by

inserting the elements of Uzj ,Mp−1 into Uzi,Mp−1 such that the derivative set of the pivot after the

coalescence, i.e., Uzi,Mp , satisfies the lower set property. In Fig. 12b, instead of the elements of

Uzi,Mp−1 , we depict the elements of Uzj ,Mp−1 together with the locations they will be placed after

the coalescence to facilitate visualization of the necessary shifts. To be able to keep track of the

elements, we depict each one of them by Φi, i ∈ [vy + 1]. We denote the number of elements in

Uzj ,Mp−1 to be shifted towards y-direction, by µ. We further define ξ , vy + 1 − µ. As shown

in Fig. 12a, when the number of empty spaces in the rightmost partially occupied column of

Uzi,Mp−1 is smaller than |Uzj ,Mp−1| = vy + 1, µ becomes this number, i.e., µ = L− py − 1, since

these spaces must be filled. Otherwise, to fill as many as spaced possible, all elements of the

derivative set of the pivot node are shifted towards y-direction and µ becomes vy + 1. Thus,

µ = min{L− py − 1, vy + 1} if px ≤ K +T − 1. When px > K +T − 1, in fact, the same logic

also applies but the maximum number of elements that can be placed in a column in Fig. 12a

would be m instead of L. Thus, the expression for µ is modified as µ = min{m−py−1, vy+1},
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which is obtained by replacing L with m.

Next, please remember that only regular simple shifts are considered for unique shifts. Thus,

while taking y-directional derivatives, i.e., shifts towards y-direction in Fig. 12b, the sequence

of the elements in the y-axis does not change. For instance, Φvy+1 stays always on top of the

elements denoted by Φi, i ∈ [vy]. If, for example, as a result of some shifts, Φvy is placed on top

of Φvy+1, then this would be possible only if the element Φvy is located in the same location as

Φvy+1 at some point, and this would contradict the assumption of regular simple shifts. Therefore,

thanks to this property, there is only one resulting order after shifting the uppermost µ elements

towards y-direction. We show the elements of the variable node’s derivative set after y-directional

shifts in Fig. 12c. All the remaining shifts, now, are the ones towards x-direction so that the

elements of Uzj ,Mp−1 are located to their intended locations, i.e., unfilled circles in Fig. 12c.

Notice that each Φi is already aligned with its final location in y-direction, and hence, each one

of them will be shifted towards x-direction by a sufficient amount. Therefore, these shifts also

result in a unique shape. From these observations, we can conclude that whenever the derivative

sets of the pivot node and the variable node are lower sets, there exists a unique shift for their

coalescence.

From this discussion, we can conclude that det(M) is not zero polynomial for large enough

q. Next, we need to find the upper bound on the probability det(M) = 0, when the evaluation

points are sampled uniform randomly from F.

Lemma 2. [22, Lemma 1] Assume P is a non-zero, v-variate polynomial of variables αi, i ∈ [v].

Let d1 be the degree of α1 in P (α1, . . . , αv), and P2(α2, . . . , αv) be the coefficient of αd11 in

P (α1, . . . , αv). Inductively, let dj be the degree of αj in Pj(αj, . . . , αv) and Pj+1(αj+1, . . . , αv)

be the coefficient of αj in Pj(αj, . . . , αv). Let Sj be a set of elements from a field F, from

which the coefficients of P are chosen. Then, in the Cartesian product set S1 × S2 × · · · × Sv,

P (α1, . . . , αv) has at most |S1 × S2 × · · · × Sv|
(

d1
|S1| + d2

|S2| + · · ·+ dv
|Sv |

)
zeros.

In our case, since the elements of M are the monomials of A(x)B(x, y) and their deriva-

tives with respect to y, evaluated at some (xi, yi), det(M) is a multivariate polynomial of

the evaluation points (xi, yi). Thus, v is the number of different evaluation points in M . We

choose the evaluation points from the whole field F. Thus, Sj = F and |Sj| = q,∀j ∈ [v],

and |S1 × S2 × · · · × Sv| = qv. Then, the number of zeros of det(M) is at most qv−1(d1 +

d2 + · · · + dv). If we sample the evaluation points uniform randomly, then the probability that
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det(M) = 0 is (d1 + d2 + · · · + dv)/q, since we sample a v-tuple of evaluation points from

S1×S2× · · · ×Sv. To find d1 + d2 + · · ·+ dv, we resort to the definition of determinant, that is

det(M) =
∑Rth

i=1(−1)1+im1,iM1,i, where m1,i is the element of M at row 1 and column i and

M1,i is the minor of M when row 1 and column i are removed [23, Corollary 7.22]. Thus, to

identify the coefficients in Lemma 2, in the first row of M , we start with the monomial with the

largest degree. Assuming the monomials are placed in an increasing order of their degrees, the

largest degree monomial is at column Rth. If that monomial is univariate, then d1 is the degree

of the monomial and the coefficient of αd11 is P2(x2, . . . , xv) = det(M1,1). If the monomial is

bivariate, then we take the degree of the corresponding evaluation of x, i.e., α1, as d1, and the

degree of the corresponding evaluation of y, i.e., α2, as d2. In this case, the coefficient of αd2

is P3(α3, . . . , αv) = det(M1,1). Next, we take M1,1, and repeat the same procedure. We do so

until we reach a monomial of degree zero. In this procedure since we visit all the monomials

of A(x)B(x, y) evaluated at different evaluation points, i.e., αi’s, the sum d1 + d2 + · · · + dv

becomes the sum of degrees of all the monomials of A(x)B(x, y). The next lemma helps us in

computing this.

Lemma 3. Consider the polynomial P (x, y) =
∑a

i=0

∑b
j=0 cijx

iyj , where ci,j’s are scalars. The

sum of the degrees of all the monomials of P (x, y) is given by ξ(a, b) , a(a+1)
2

(b+1)+ b(b+1)
2

(a+

1).

Proof: The sum of the degrees of all the monomials are given by
a∑
i=0

b∑
j=0

(i+ j) =
a∑
i=0

i(b+ 1) +
a∑
i=0

b∑
j=0

j =
a(a+ 1)

2
(b+ 1) +

b(b+ 1)

2
(a+ 1).

By using Lemma 3, the sum of monomial degrees in the diagonally shaded rectangle in Fig. 7

is

ξ(K + T − 1, L− 1) =
(K + T − 1)(K + T )

2
L+

(L− 1)L

2
(K + T )

=
(K + T )L

2
(K + L+ T − 2).

The sum of monomial degrees in the rectangle shaded by crosshatches in Fig. 7 is given by
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ξ(2K + 2T − 2,m− 1)− ξ(K + T − 1,m− 1)

=
(2K + 2T − 2)(2K + 2T − 1)

2
m+

(m− 1)m

2
(2K + 2T − 1)

− (K + T − 1)(K + T )

2
m− (m− 1)m

2
(K + T )

=
m

2

(
3(K + T )2 +m(K + T )− 8K − 6T −m+ 3

)
.

By summing them we obtain d1+d2+· · ·+dv = m
2

(3(K + T )2 +m(K + T )− 8K − 6T −m+ 3)

+ (K+T )L
2

(K + L+ T − 2), which concludes the proof.

VIII. CONCLUSION

In this work, we have proposed storage- and upload-cost-efficient bivariate Hermitian polyno-

mial codes named as SBP coding for straggler exploitation for SDMM. Although the previous

works usually assume the availability of at least as many workers as the recovery threshold,

the multi-message approach allows the completion of the task even if the number of workers is

less than the recovery threshold. Compared to univariate polynomial coding based approaches

including MM-GASP codes, SBP coding scheme has a lower upload cost and less storage

requirement, making the assignment of several sub-tasks to each worker more resource efficient.

Thanks to these properties, SBP codes improve the average computation time for SDMM,

especially when the number of workers, the upload cost budget, or the storage capacity is

limited.
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