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Abstract—The emergence of interactive multimedia ap-
plications with high data rate and low latency require-
ments has led to a drastic increase in the video data
traffic over wireless cellular networks. Locally caching
some of the contents at the small base stations of a
macro-cell is a promising technology to cope with the
increasing pressure on the backhaul connections, and to
reduce the delay for demanding video applications. In
this work, delivery of an interactive multiview video over
an heterogeneous cellular network is studied. Differently
from existing works that ignore the video characteristics,
the caching and scheduling policies are jointly optimized,
taking into account the quality of the delivered video
and the video delivery time constraints. We formulate
our joint caching and scheduling problem via submodular
set function maximization and propose efficient greedy
approaches to find a well performing joint caching and
scheduling policy. Numerical evaluations show that our
solution significantly outperforms benchmark algorithms
based on popularity caching and independent scheduling.

I. INTRODUCTION

Emerging multimedia technologies, such as vir-
tual/augmented reality (AR/VR) and interactive multi-
view video streaming (IMVS), offer users the possibility
to interact with the application in real time. This, how-
ever, imposes more demanding latency and bandwidth
requirements that must be met by mobile data operators.
To deal with the ever increasing amount of mobile video
data, the use of small cell base stations (SBSs) equipped
with caches has been proposed [1]. SBS caches can be
exploited by placing popular contents during off-peak
hours, and serving users locally through short range
communication during peak-hours. In that way, the use
of costly backhaul links during the peak-hours can be
alleviated, and the load on the macro cell base station
(MBS) can be reduced [2].

In this work, we propose a novel framework for jointly
optimizing the caching and scheduling policies for the
delivery of IMVS content over a wireless cellular net-
work consisting of a MBS and multiple SBSs equipped
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with caches. IMVS enables users to freely explore the
scene of interest from different viewpoints in real time
[3]. To offer such interactivity and enable low-latency
view switching at high quality, multiple video streams,
each corresponding to a different view, must be delivered
to users. Thus, IMVS typically requires much higher
bandwidth than single view video streaming.

The optimal selection of the delivered set of views,
assuming the available bandwidth is known, has been
studied in [3]. In our scenario, users’ bandwidth re-
sources may vary depending on the density of the SBS
placement and the number of users served by these
SBSs; and therefore, must be allocated jointly with the
caching policy. Also the key objective in the context of
caching for real-time video streaming is different from
that for video-on-demand (VoD) applications [1], [2],
[4], [5]. In the latter, the users request a single file
according to some popularity distribution, and the aim
is to place the video contents to the caches in a way to
minimize the average download delay. This objective is
not suitable for real-time video streaming applications,
as it ignores the video delivery time constraints and the
quality of the delivered content. Differently from the
state-of-the-art, our framework takes into account the
time constraints of the streamed video and the quality
of the video content delivered to the users.

The goal of our joint caching and scheduling policy
is to optimally cache and deliver subsets of views in
an IMVS application in order to minimize the average
expected distortion of the users who freely navigate
through the available set of views during streaming.
We formulate our problem as the maximization of the
reduction in the average expected distortion, where the
objective function is submodular. To efficiently solve
the formulated optimization problem, we adopt a greedy
algorithm, and show through numerical evaluation that
our joint caching and scheduling algorithm significantly
outperforms benchmark algorithms based on popularity
caching and independent rate allocation.

II. SYSTEM MODEL

We consider an IMVS application illustrated in
Fig. 1. An array of equally spaced cameras capture



the scene of interest from multiple viewpoints. Let
V, = {v1,v2,...,vy,} be the set of captured views,
where |V,| = V,, > 2. Each camera encodes its view
independently, and transmits it to the core network,
where the compressed video streams are stored at the
content provider’s servers, to be further delivered to a
set of wireless users.

Virtual views between two adjacent views v;, v;4+1 €
V), can be synthesized at the decoder, e.g., via the depth
image based rendering (DIBR) technique [6]. We denote
the set of virtual views as Vs. In order to virtually
synthesize a view v € V £ V, UV, a left (v;) and
a right (v,.) reference views (v;, v, € Vp) are required.
The distortion at which the virtual view v (v; < v < v,.)
is synthesized depends on the quality of the reference
views vy, v, and the spatial correlation between v and
vy, vy We adopt the distortion model proposed in [7]:

dy (v, v,) = e (0 (eminte=uer =k 1) (1)

where d,(v;,v,) is the distortion at which view v can
be reconstructed from reference views v; and v,., and «,
B, 7y are video related parameters.!

We study a streaming scenario in which the IMVS
session is initiated some time after the video content
is recorded, and focus on the operation of a single
macro-cell. Let 4 = {1,2,...,U} denote a set of U
wireless users served by the macro-cell. The macro-cell
consists of NV 4 1 base stations (BSs) in total: an MBS
indexed by n = 0, and a set NV = {1,2,..., N} of
N SBSs located across the macro-cell. The MBS can
communicate with all the users within the cell, while the
nth SBS is assumed to serve only a subset U, of users
located within its proximity. We denote the set of BSs
that serve user u as N,. We assume that the MBS and
the SBSs are assigned disjoint sets of subchannels, while
the neighbouring SBSs operate in orthogonal frequency
bands [1]. This permits us to ignore any interference
among the BSs. The total transmission capacity of each
BS is assumed to be limited, and equal to I?,, Mbps, and
can be allocated among the users U,,.

SBS n is equipped with a cache of size C, bytes.
Since the video content is available before its dissemina-
tion to the users, part of the pre-recorded video content
can be placed into the SBS caches during low-traffic
hours. During the streaming session, the cached contents
can then be directly delivered from the local caches
to the users, avoiding the use of backhaul links, and
as a result, reducing the delivery delay. To facilitate
caching and delivery, the video stream from each camera
is partitioned into T segments of b’ bytes, Vt € T =
{1,2,...,T}.2 We denote the t-th segment of view v as

I'This model has been chosen due to its simplicity and accuracy. Our
optimization framework is general and can incorporate other distortion
models.

2We assume that the views are symmetrically coded. Hence, the size
of a segment does not depend on the view index.
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Fig. 1. IMVS system with V), cameras capturing the scene of interest
from multiple viewpoints. Captured content is transmitted to the core
network.

B?t. The index t also stands for the time slot in which
the segment BY"! can be scheduled for delivery.

During the IMVS session a user can select any of the
actual camera viewpoints in the set V,, or synthesize a
virtual view from the set Vs in real time. To enable such
interactivity at the best possible quality, the full set of
actual camera views V), must be delivered to the user
at any given time. However, this is not always possible
in a bandwidth-limited system due to the strict delay
constraints imposed by the IMVS application. Typically
only a subset of actual camera views can be delivered
to the users. The subset of views delivered to the user
determines the distortion at which viewpoints selected by
the user and not included in the delivered set of views
can be reconstructed. Since the views requested by a user
at any given time during an IMVS session are not known
a priori, the subset of views to be cached in the SBSs
and delivered to each user has to be optimized based on
a probabilistic model of the popularity of video segments
of each view. For each segment BVt we define a
popularity p*-* € [0, 1], which represents the probability
that the ¢-th segment of view v will be requested for
viewing. The content popularity can be learned by the
content provider by analyzing the multimedia content
[8], or the history of viewing requests [9].

In this work, we aim to find the optimal joint caching
and scheduling policy for the multiview video segments
B¥! that minimizes the average expected distortion at
the wireless users which participate in the IMVS session.
In the next section, we provide the formal problem
formulation.

III. JOINT CACHING AND SCHEDULING PROBLEM

Let us define the ground set &£ as
E&{ey!y VN eNU{0}, A, ClUpvEV,, tET}

The element e:){tAn denotes the placement of the segment
Bt in the nth cache and its scheduling for delivery to a
subset A,, C U, of the users served by BS n. Any joint
caching and scheduling policy can then be represented
by a subset S € £.

The distortion function D¥*(S) at user u for recon-
structing segment Bt under a caching and scheduling



policy S is:

Mv,t
potisy = [0 ) (1= Tisnrprim ) V€V )
Dy'(S), v eV,

where D?*(S) is the minimum distortion at which
segment BY* can be reconstructed, and FU! £
{enA Vn € Ny, An C Up,stou € Ay}, YV u € U,
v €V, t € T. Set FU! represents all possible ways to
deliver segment BY* to user u. The indicator function
1o is “1” if the condition c is true, and “0” otherwise.
In Eq. (2), we distinguish the following two cases.
When view v belongs to the set of actual views V,, the
distortion for reconstructing the segment B%*! at user u
is 0, if the segment is delivered to user u by at least
one of the BSs in A/,. Otherwise, the distortion is equal
to the minimum distortion D%*(S). When view v is a
virtual view, the segment BY! is not delivered to user
u, and is synthesized using the corresponding segments
of the closest left and right views according to the joint
caching and scheduling policy S§. The minimum distor-
tion DY*(S) at which user u can reconstruct segment
BY! when it is not delivered is
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Expression A in Eq. (3) is equal to “1” if the segment
Bt is delivered to user u by at least one BS, and
v < vy < v for all other segments Bvirt delivered to
user u. Similarly, expression B in Eq. (3) is equal to
“1” if the segment BV~' is delivered to user u by at
least one BS, and v, > v, > v for all other segments
BYrt delivered to user u. The product A - B is non-
zero only for a unique (v, v,) pair. To guarantee the
reconstruction of any view within set V at a minimum
quality, we assume that views v; and vy, are always
delivered to users by the MBS.

Our goal is to devise a joint caching and scheduling
policy that minimizes the average expected distortion of
the wireless users. Equivalently, we can maximize the
average expected distortion reduction. To this aim, we
define the distortion reduction at user u for reconstruct-
ing segment BY:! as:

ADS’t(S) = D’maw - Dtli,t(s)7 VS g 87 (4)

where D,,q, is the maximum distortion experienced
by users when the corresponding segment cannot be
reconstructed.

When ev’ "4, 1s included in the policy S, the segment
Bvtis placed in the cache of BS n consuming a total

space of b’ bytes and a rate of |.A,|r Mbps is allocated
by the BS n to transmit it to the users in A,,. Thus,
with each element en A, We associate a caching cost of
b’ bytes and a rate cost of |A,|r Mbps. We define the
cache cost ¢, (S) and rate cost 7%, (S) functions as:

Cn (S) = Z Cn (6:;,/15”471’ )7 (5)
”,tA /es

(S = Y kel )
Lot " (6)
n’ Al €S

where cn(efl’,’i 'An’) = bt if n’ = n, and 0 otherwise, and
rn(efl’,fAn,) = |A,|r if n = n,t’ =t, and 0 otherwise.
The constant r denotes the video rate, which is the same
for all captured views due to the symmetric view coding
assumption. We also define the cost function f*(S) as:

RS = 3 et ) %
”/ 'f; les
where [ (e U,’;‘ ) =1ifn' =n,v' =v,t' =t and 0
otherwise. Function JU4(S) counts the number of times
segment B! is placed in the cache of BS n.
Equipped with the above notation and definitions,
we can now write our joint caching and scheduling
optimization problem as follows:

SoprT = arg max—— Z Z Z ADDHS)p™t (8)

Tiai=
s.t. en(8) < Ch, Vn e N, ©

r(S) < Rp, Yn e NU{0}, t€ T, (10)
YHS) <1, VneNU{0Y, YoeV,, Ve T, (11
€0y €o g;o’ €S, VteT. (12)

Constraint (9) is the cache capacity constraint and
upper bounds the total amount of data stored in an
SBS’s cache. Constraint (10) is the transmission capacity
constraints, which states that the total rate of content de-
livered by an SBS in each time slot ¢ must not exceed its
transmission capacity. Constraint (11) guarantees that the
segment BY! will be placed in the cache of BS n only
once. This constraint is necessary since neither the cache
cost function nor the rate cost function can distinguish
between two elements e, and e, associated with
the same segment B?. In other WOl‘dS,nfOI‘ two elements
ey'y and ef{,tA; € S the required cache space calculated
by the cache cost function is 2b%, and the required rate
calculated by the rate cost function is (|.A | + |A’ |)r.
In practice, however, the two elements e, tA and e, tA,
can be replaced with an equivalent element en AnUAL -
Hence, the actual cache space needed is b', and the
actual rate needed is |.A,, UA/,|r. Constraint (11) ensures
that only a unique element efl’)tAn for segment BY+! will
be included in the solution set. Finally, constraint (12)



Algorithm 1 UC and WCB greedy algorithms
Cn, Rn, cost

1: Input: &, value query oracle AD(S),
functions ¢, rf,, f2t ,welghts )\1, A2, As

2: Initialization: So < {ej}/ Y1+ €0 Uo } k<0
3: while E\S, # 0 do
4: k<« k+1
5. UC: e arg max Ag_1(e; nA )
ez’yfAnegk—l\Sk—l
WCB: ej, <+ arg max )qw
efl{%egk \Sp_1 enley An)
+/\2Ak 1(en’s,) SAIZtl(UntAn)
T”L( n,.An) n’ (en,.An)
O Akfl(ek)
where Ak71(€) = AD(Sk71 U 6) — AD(Skfl)
6: if cn(Sk) < Cn, 7h(Sk) < Rn, f2'(Sk) < 1 and
0 > 0 then
7: Si +— Sk 1U€nA
8: else
9: E+ E\elt AL
10: end if

11: end while
12: Output: S + Sy

ensures that all the users can reconstruct any segment at
a minimum quality.

IV. GREEDY ALGORITHMS

It can be shown that the optimization problem in (8) -
(12) has the form of submodular function maximization
subject to multiple knapsack constraints [10]. To solve it,
we propose the uniform cost greedy algorithm (UC) [11]
and the weighted cost-benefit greedy algorithm (WCB)
[12]. Both algorithms exploit the submodularity property
of the objective function, and select greedily the next
element to be included in the solution set.

The UC and WCB greedy algorithms are summarized
in Algorithm 1 The UC algorithm starts with a solution
set &y = {eo Yo g‘ﬁo } (due to constraint (12)), and at
the j-th iteration picks the element from the ground set
that maximizes the gain with respect to the solution set at
step j — 1 (step 5 of Algorithm 1). If this choice satisfies
the problem constraints specified in (9) - (11) and the
gain is positive, the element is added to the solution
set. Otherwise, the solution set is not updated and the
element is removed from the ground set. This procedure
is repeated until all elements from the ground set have
been either included in the solution set or removed from
the ground set. The WCB algorithm works similarly,
but instead of selecting the element that maximizes the
reduction in distortion, it maximizes a weighted sum
of the gain divided by the costs defined in Eqgs. (5),
(6) and (7), where the weights A\i, Ao, and A3 satisfy
A1+ A2 + A3 = 1 (step 5 of the Algorithm 1).
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Fig. 2. Average expected distortion reduction vs the cache capacity.

V. PERFORMANCE EVALUATION

We consider a circular cell consisting of an MBS with
transmission range 400m located at the centre, 20 SBSs
with coverage radius 100m placed uniformly at random
within the cell and 200 wireless users uniformly dis-
tributed across the macro cell. The transmission capacity
of the SBSs is set to 100Mbps.

The IMVS system consists of V), = 8 cameras. Each
view is encoded at » = 2 Mbps and divided into 1" = 20
segments of equal size. We assume that L = 3 virtual
views can be synthesized between every two adjacent
physical views. The users select the first segment among
the captured views uniformly at random. Then, during
the streaming session, each user can switch from view
v; to a neighbouring actual or virtual view v; with prob-

(vj—wv4)

;)2
ability p(vj|v;) o \/21708_T for |v; — v;| < W,
and 0 otherwise. We set W = 8 and 02 = 5/(L + 1).
From this model, we calculate the popularity distribution
p¥t of the video segments.

We compare the proposed greedy joint caching and
scheduling algorithms with a maximum popularity based
caching algorithm. The latter fills each SBS’s cache
with the most popular video segments. It then performs
greedy scheduling independently of the cache placement
phase. Fig. 2 shows the average expected distortion
versus the cache capacity of the SBSs expressed as a
percent of the total size of the multiview video. UC-J
and WCB-J denote the uniform cost and weighted cost-
benefit greedy algorithms, respectively, for joint caching
and scheduling. UC-MP and WCB-MP denote the maxi-
mum popularity caching algorithm with uniform cost and
weighted cost-benefit greedy scheduling, respectively.
We present results for a total transmission capacity of
the MBS equal to 200Mbps and 300Mbps. For the WCB
algorithm we have used Ay = 0.2, \a = 0.5 and
A3 = 0.3. The results indicate that the joint caching and
scheduling algorithms outperform the maximum popu-
larity counterparts for all values of the cache capacity.
For low values of the cache capacity, the difference in the
performance is significant as the maximum popularity
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Fig. 3. Average expected distortion reduction vs the total transmission
rate of the MBS.

algorithm caches the same content in all SBSs; thus the
content diversity across the network is limited. Along
with the most popular content cached only in few SBSs,
the joint caching and scheduling algorithm also caches
the less popular contents, which, when delivered to the
users, improves the reconstruction quality of the views.
It is worth noting that this range of capacity values is of
great practical interest, as SBSs are typically assumed
to cache only 5-10% of the total video catalogue [13],
[14]. The performance of all the algorithms becomes
limited by the insufficient transmission capacity of the
network. Thus, even though all the SBSs can cache
almost all of the contents, they cannot be delivered to
the users. Finally, we can see that the uniform cost
and weighted cost-benefit greedy algorithms perform
identically. This is because all the video segments have
the same size in this example. We expect that in the case
of multiple multiview videos encoded at different rates,
or even asymmetrically encoded views, the performance
of the two algorithms would be different. We leave this
investigation for our future work.

In Fig. 3 we illustrate the average expected distortion
versus the total transmission capacity of the MBS for
cache capacity equal to 10% and 20% of the total size of
the video. As the total transmission capacity of the MBS
increases, the average expected quality of the multview
video delivered to the users improves. We can see that
the joint caching and scheduling algorithm outperforms
the maximum popularity algorithm for all values of the
MBS transmission capacity. Although the cache capacity
of the SBSs is limited, our algorithm performs much
better compared to the maximum popularity algorithm
due to the more efficient use of the available cache
and transmission capacities. As previously, the content
diversity is higher when the caching and scheduling
policies are optimized jointly. It is worth noting that to
achieve the same average expected distortion reduction,
the maximum popularity caching algorithm requires a
much higher transmission rate to be allocated by the
MBS compared to the case of joint cache and scheduling
optimization.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a framework for
jointly optimizing the caching and scheduling policy
for interactive multiview video delivery over a wireless
cellular network. Unlike existing works for wireless edge
caching, our scheme takes into account the quality of the
video delivered to the users and the rate requirements
for real-time video delivery. Numerical evaluation of our
scheme shows that the joint policy performs significantly
better than the independent caching and scheduling poli-
cies for the case of multiview video. In our future work,
we will investigate ways to simplify the expression for
calculating the distortion of the delivered video, with the
aim of obtaining a convex problem which can be solved
for optimality.
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