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Abstract—We consider managing the freshness of status up-
dates sent from a source (such as a sensor) to a monitoring
node. The time-varying availability of energy at the sender
limits the rate of update packet transmissions. At any time,
the age of information is defined as the amount of time since
the most recent update was successfully received. An offline
solution that minimizes not only the time average age, but also
the peak age for an arbitrary energy replenishment profile is
derived. The related decision problem under stochastic energy
arrivals at the sender is studied through a discrete time dynamic
programming formulation, and the structure of the optimal policy
that minimizes the expected age is shown. It is found that
tracking the expected value of the current age (which is a linear
operation), together with the knowledge of the current energy
level at the sender side is sufficient for generating an optimal
threshold policy. An effective online heuristic, Balance Updating
(BU), that achieves performance close to an omniscient (offline)
policy is proposed. Simulations of the policies indicate that they
can significantly improve the age over greedy approaches. An
extension of the formulation to stochastically formed updates is
considered.

I. INTRODUCTION

For many monitoring applications (e.g. [1], [2], [3], [4]),

where a source collects measured samples to be sent to a

remote destination, the freshness of the last sample received is

an important quality metric [5]. The Age of Information, i.e.

the amount of time that has elapsed since the most recently

received sample was formed, is useful as a freshness metric

in such a scenario [6], [3], [7] and [8].

Age of Information was used as a metric of freshness of

status updates in recent literature [3], [6]. In [3], modeling the

generation intervals of updates as well as packet transmission

durations as random, a queuing-theoretic system analysis was

conducted. Using a first-come-first-served (FCFS) queuing

discipline, the existence of an optimal rate at which a source

must generate its information to keep its status as timely

as possible at all its monitors was shown. It is noteable

that this rate differs from those that maximize throughput or

minimize status packet delivery delay, and motivates further

study of age of information as a metric of relevance to

monitoring applications. Futher work reported in [6] employed

a time average age metric for the performance evaluation of

status update systems. In [7], age of information in a cloud
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system with randomly generated status updates is analysed.

Following the framework of [7], average age as well as the

peak age in M/M/1/1, M/M/2, M/M/1/2 and M/M/1/2* (the last

corresponding to a queueing discipline where a new arrival to

the system replaces the one in the queue) queuing models was

analyzed in [8], [9]. It was observed that age is improved when

the source node has the capability of packet management by

discarding some samples.

In this paper, we turn the question around by asking when

the sender should generate status updates, if the number of

updates per time it is allowed to send is constrained by an

arbitrary time-varying upperbound. While our analysis applies

to an arbitrary bound on the total number of updates NU (t)
that may be sent by time t, we motivate the problem formula-

tion by modeling a sender with energy arrivals. Self-sustaining

operation of energy harvesting sensor systems have been

the focus of a plethora of studies in recent years (e.g.[10]).

Accordingly, the number of updates that may be sent by

time t depends on the total energy harvested by time t. In

the continuous time setup of the problem, the objective is to

determine the sequence of update instants that minimize the

time average age of the most recent update, while respecting

the energy constraints. The discrete time version is cast as a

decision problem of whether or not to send an update in any

given time slot. To the best of our knowledge, there has been

no previous study of the age of information with respect to

such constraints.

The contributions of the paper may be summarized as fol-

lows: The continuous time problem of optimizing status update

instants in order to minimize average age of information for a

given bounding function NU (t) (corresponding to an ”energy

harvest” profile) on the number of updates by time t is solved.

The online problem, where the energy profile is a stochastic

process with known statistics, investigated within a dynamic

programming formulation. The study of the optimal threshold

policy reveals what we believe is an interesting result: at any

time (provided that energy is not fully depleted) the decision

to send an update depends on the expectation of the current

age. We conclude the paper by exhibiting a simple online

heuristic which is motivated by the offline solution and appears

to perform quite well as indicated by numerical studies.



II. PROBLEM FORMUATION

Consider the operating scenario energy harvesting wireless

device (such as a sensor node) S which continuously monitors

the real time status of a system and repeatedly sends status

update packets to a recipient device. Assume that the device

can generate a status update packet at any arbitrary time,

and transmit it instantly (an abstraction for the case when

generation and transmission of a status update packet take

negligibly small amount of time with respect to typical times

between updates.) According to this assumption, status updates

can be treated as time instants on the problem timeline. The

recipient gets status updates at those particular time instants

where S decides to send a status update packet. The most

recent status update packet received by the recipient device

gets outdated upon the reception of a new status update. The

instantaneous ”age” is the time that has elapsed since the most

recent update. The goal of S is to time the status updates

so that the average age is as small as possible. The problem

is only meaningful under some constraint on the number of

updates that can be sent. For illustration, we model S as an

energy harvesting device which limits its energy consumption

profile. In Section II-A and II-C, this situation is characterized

in offline and online optimisation problems.
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Fig. 1. The System Model.

A. Offline Problem

In the offline version of the problem, let us denote by NU (t)
the counting process of updates sent by time t, defined for

t ∈ [0, T ].

NU (t) =
∑

k

u(t− lk) (1)

where u(t) is the unit step function and lk is the time instant

for the kth status update.

If all the status packets sent by S are received, the time

difference t − lNU (t) corresponds to the age of the freshest

status packet at the recipient device by the time t. Let d̄ be

the average age of status information available at the recipient

device side. Then, the average age of status packets d̄ can be

computed as in below:

d̄ =
1

T

∫ T

0

t− lNU (t) dt. (2)

It can be seen from Fig.2 that the age of status packets

exhibits a sawtooth pattern and its average d̄ can be expressed

as the sum of areas of triangles between status updates:

d̄ =
1

2T

∑

k

(max{lk+1, T } − lk)
2

(3)

From the above formulation of d̄, one can deduce that

status updates should be sent as frequently as possible to

reduce d̄ which is desired to monitor the system accurately.

However, in an energy harvesting device like S, the frequency

of status updates is limited by the energy availability of the

device which depends on both energy consumption and energy

replenishment rate. Let us assume that each update requires

one unit of energy, hence NU (t) is also the amount of energy

used up to time t solely for updates. We will impose the

condition that the device is ”on” for the time window of

interest, [0, T ], and, modeling a constant current drain while

the device is on, there is an energy loss which is linear in

time. Therefore:
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Age of Information
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.......
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Fig. 2. Age of status update packets.

NU (t) ≤ MU (t) = max(0, ⌊B0 + Eh(t)− PON t⌋) (4)

Note that due to the negative linear term, the RHS of (4)

is not necessarily non-decreasing. As our formulation imposes

the device to be ”on” and consume a constant minimum power

for the whole duration of interest, the RHS attaining the value

zero for any t would force NU (t) = 0 for all t ∈ [0, T ].
However, we are interested in examining the (typical) case

where PON t is small with respect to the positive terms such

that the RHS constitutes a nontrivial upperbound.

As NU (t) is a counting process, we can write a tighter

bound N̂U (t) on it by finding the largest counting process

that fits within the RHS of (4).

NU (t) ≤ N̂U (t) = min
s≥t

MU (s) (5)

In an operating regime where PON t is appreciable with respect to the
other terms (i.e. battery size is very small, and/or the energy replenishment
rate is not sufficient to keep the device on continuously), it would be more
appropriate to consider a formulation where we have the option of turning
the device ”off” or putting it in ”sleep mode”.



N̂U (t) is the highest possible nondecreasing integer valued

function below MU (t), hence it still constitutes an upper

bound for NU (t). Let us decompose N̂U (t) in terms of unit

step functions as we did for NU (t).

N̂U (t) =
∑

l

u(t− l̂k) (6)

where l̂k is the earliest time instant to send the kth status

update.

In the offline problem, the counting process NU (t) rep-

resents a solution which is constrained by another counting

process N̂U (t). Therefore, the offline problem to minimize

the average age of status packets d̄ can be defined as follows:

min.
1

T

∫ T

0

t− lNU (t) dt.

s.t.NU (t) ≤ N̂U (t)

Also note that even if a deterministic and constant delay

were assumed to be seen by individual status update packets,

the problem definition for that case would be equivalent to the

above definition.

B. Offline Solution

To characterize the offline optimal solution for the offline

problem in the previous section, we first state and prove an

essential property of offline solutions. This property dictates

that in optimal offline solutions, the frequency of status

updates is nondecreasing in time.

Lemma 1. Let Xks represent the interval length between kth

and (k + 1)st status updates. In any feasible NU (t) which

minimizes d̄, interval lengths Xks are nonincreasing in k.

Proof. Suppose that for some feasible NU (t), a status update

interval (lk−1, lk) is shorter than the next status update interval

(lk, lk+1), i.e. Xk−1 < Xk. In this case, without changing the

interval length lk+1 − lk−1, the time instant for the kth status

update lk can be shifted towards lk+1 which is the time instant

of the next status update. This rearrangement does not violate

energy constraints for any new value l′k of lk between lk and

lk+1. The change in the value of d̄ can be calculated as follows:

∆d̄ =
1

2T

[

(l′k −lk−1)
2+(lk+1 − l′k)

2−((lk − lk−1)
2+(lk+1 − lk)

2)
]

Therefore, d̄ can be decreased for any NU (t) in which,

status update intervals can increase as status update packets

are sent.

Note that this result is also valid when lk+1 = T .

By using the above lemma, a policy using X∗
k as the status

update interval after sending kth status update packet can be

derived:

X∗
k = max

v∈(lk,T )

(

v − lk

N̂U (v) + 1− k

)

(7)

Theorem 1. Using X∗
ks as in Eq. 7 gives the optimal offline

status update process.

Proof. From the Lemma 1, it is known that Xks do not

increase by time in an optimal offline solution. Clearly, a status

update process NU (t) satisfying this property, should be the

one that keeps the frequency of status updates fixed until the

end of problem horizon, i.e. Xm = Xk for m > k. Therefore,

such a status update process NU (t) can be written for time

instants t ≥ lk as in below:

NU (t) = k + ⌊
t− lk

Xk

⌋ (8)

From the energy causality conditions NU (t) should be

always smaller than N̂U (t):

k + ⌊
t− lk

Xk

⌋ ≤ N̂U (t)

In the above inequality, both sides take integer values and

the equality holds for a range of t−lk
Xk

smaller than 1. Hence

incrementing the RHS by 1 allows us to eliminate the floor

operation for finding critical values of Xk. Accordingly, the

inequality below can be written:

Xk ≥
t− lk

N̂U (t) + 1− k

The above inequality should be satisfied for any time in

(lk, T ), hence X∗
k in Eq. 7 is an achievable lower bound for

the optimal offline status update interval.

Now suppose that Xk is selected to be longer than X∗
k

such as X∗
k + δXk. When Xk is lengthened by δXk, the rest

of the status update intervals, i.e. Xms for m > k, should

be shortened by δXk in total. However, the reduction in the

age of information for updates m > k, cannot compensate the

increase due to the lenghtening of Xk by δXk. The reason

of this is that Xms should be shorter than Xk by the Lemma

1 and hence a smaller area in the age of information pattern

vanishes with their shortening. Therefore, in the optimal offline

solution, it is not useful to have Xks longer than X∗
ks and this

shows that X∗
ks are optimal offline status update intervals.

Theorem 2. Using X∗
k s as in Eq. 7 minimizes the longest

status interval within (0, T ).

Proof. The results in the Lemma 1 and Theorem 1 are also

valid for an altered version of the offline problem where the

objective function is replaced with the sum of nth powers of

status update intervals, i.e.
∑

k

Xn
k . Again, minimizing this

objective function is also equivalent to minimizing the nth

root of itself, i.e. n

√

∑

k

Xn
k which is an Ln norm for the

age of status updates. Therefore, as n goes to infinity, the

objective function n

√

∑

k

Xn
k goes to the longest of status

update interval, i.e. a supremum norm for the age of status



updates, which shows that status update intervals as in Eq. 7

also minimize max
k

Xk.

lim
n→∞

n

√

∑

k

Xn
k = max

k
Xk

C. Online Problem

Suppose S has only real time knowledge of N̂U (t) (the

energy arrival profile), and its statistics. Also assume that S

decides whether to send a status update packet at every ts units

of time and this status update packet can be succesfully re-

ceived with a probability of p. Then, a dynamic programming

formulation can be employed to find the action minimizing the

expected cumulative age of status updates J(x, t) after some

time t.

J(x(t), t)= min
µ(t)∈{0,1}

E[c(x(t), µ(t))+J(φ(x(t), µ(t)), t+ts )|θ(t)]

(9)

where x(t) is the present state, µ(t) represents the action

to be taken, c(x(t), µ(t)) is the cost of the action µ(t)
,φ(x(t), µ(t)) is the next state and θ(t) is the history before

time t.

The cost function J(x(t), t) where t > T − ts is defined as

follows:

J(x(t), t > T − ts) = min
µ(t)∈{0,1}

E[c(x(t), µ(t))]

Let us assume S takes actions depending on only its present

state x and time t. In this case, the present history θ(t)
can be eliminated from the stochastic dynamic programming

equation.

As a part of the present state x(t), the present energy

level e(t) should be taken into account to track the energy

availability of S. The present energy level e(t) changes until

the next decision instant t+ ts as follows:

e(t+ ts) = e(t)− µ(t)− PON ts −Eh(t) +Eh(t+ ts) (10)

Whenever S has energy above 1 at a decision instant, it

can decide on sending a status update packet. On the other

hand, the expected cost of the decision µ(t) depends on the

age of the most fresh status update packet at the recipient

device. Let d(t) represent the present age of status updates.

Then, the expected cost of the decision µ(t), i.e. immediate

cost function, can be expressed as follows:

E[c(x(t), µ(t))] = E[d(t)](1 − µ(t)p)ts +
1

2
t2s (11)

Note that the expectation of d(t) is sufficient to determine

the expected cost of the decision µ(t) and its time evolution

can be computed as in below:

E[d(t+ ts)] = E[d(t)](1 − µ(t)p) + ts (12)

It can be concluded that the expectation E[d(t)] is a part

of the present state together with the present energy level e(t)
and assuming the energy harvesting is a stationary process, it

is sufficient to have the pair as the present state information:

x(t) = (e(t), E[d(t)]). Note that the main goal of the online

problem is to minimize the time average of E[d(t)] while

being restricted by e(t).

1) Extension to Randomly Formed Updates: This model

can be extended to the case when the source only has access

to status updates generated at random instants. In this case,

the freshest update available at time t has a positive age s(t)
to which the current age d(t) reduces once the update is

successfully received. The discrete time analysis above (where

a decision is made once every ts time units) can be applied

with minor modifications: if an update is generated, the sender

may choose to send it the next slot, or keep it. At any decision

point, it is sufficient to consider the latest single update that

has not yet been sent, as any earlier (older) ones will be made

obsolote by the arrival of the freshest. Hence, multiple updates

occurring within the previous slot may be treated as one update

without any effect on the optimal decision rule.

Let I(t, t′) be the indicator function of the event that a new

update (i.e. at least one new update) became available to the

sender in the time interval (t, t′), for t′ > t. Then, s(t + ts)
can be expressed as:

s((n+ 1)ts) = s(nts)[1− I(nts, (n− 1)ts)] + ts (13)

Suppose that the age s(t) is known to S at time t and hence

the state representation for the problem in the previous section

can be enlarged to x(t) = (e(t), E[d(t)], s(t)). The immediate

cost for this case can be rewritten as follows:

E[c(x(t), µ(t))] = (E[d(t)](1 − µ(t)p) + s(t)µ(t)p) ts +
1

2
t2s

(14)

The expectation of d(t) can be tracked by the following

equation:

E[d(t+ ts)] = E[d(t)](1 − µ(t)p) + s(t)µ(t)p+ ts (15)

Note that the expectation of d(t) is always larger than s(t),
thus for µ(t) = 1 and sufficiently small ts, the expected age

gets smaller, i.e. E[d(t+ ts)] < E[d(t)].

D. Solution of the Online Problem

The optimal solution to the dynamic programming formu-

lation of the online problem in Eq.9 can be obtained by

evaluating the cost function J(x(t), t) with the help of time

evolutions in Eq. 10,12 and the immediate cost function in

Eq. 11. Yet, considering the complexity of this computation,

finding the optimal action might be impractical.

On the other hand, we will show (Thm 3) that the optimal

policy is a threshold-type policy for p = 1, as well as for p < 1
for sufficiently small ts, where the optimal decision function



µ∗(t) is a time-varying indicator function in the following

form:

µ∗(t) = 1(e(t)≥1)
⋂
(E[d(t)]≥d∗(t)) (16)

To prove that µ∗(t) can be expressed as in Eq. 16, we first

show that the cost function J((e(t), E[d(t)]), t) is nondecreas-

ing with E[d(t)].

Lemma 2. J((e(t), E[d(t)]), t) is a nondecreasing function

of E[d(t)].

Proof. When t ≥ T−ts, the cost function J((e(t), E[d(t)]), t)
is the immediate cost function in Eq.11 which increases with

E[d(t)].

J(x(t), t ≥ T − ts) = E[d(t)](1 − 1(e(t)≥1)p)ts +
1

2
t2s

Nondecreasing monotonicity of J(x(t), t) for t ≥ T − ts
with respect to E[d(t)] also implies the monotonicity of

J(x(t), t) by t > T−2ts Eq. 9. To show that consider the time

interval T − ts > t > T −2ts where J(x(t), t) is computed as

the minimum of expected costs, i.e. age of information, with

decisions µ(t) = 0 or µ(t) = 1. In either of these decisions,

J(x(t), t) cannot decrease with increasing E[d(t)] since both

immediate cost function and the expected age of information

for t > T − ts are monotonicaly nondecreasing with E[d(t)].
Therefore, J(x(t), t) is nondecreasing function of E[d(t)] for

t > T − 2ts. Similarly, by the monotonicity of J(x(t), t),
if the claim is true for t > T − (m − 1)ts, it is true for

t > T −mts for any integer m ≥ 1. Therefore, by induction,

J((e(t), E[d(t)]), t) is nondecreasing with E[d(t)].

Theorem 3. If (i) p = 1, or (ii) p < 1 and ts is chosen

sufficiently small, the optimal policy is a threshold type policy

as in Eq.16.

Proof. For x(t) = (e(t), E[d(t)]) where e(t) > 1, the

difference between the expected costs of decisions µ(t) = 0
and µ(t) = 1 , say J0,1(x(t), t), can be written as follows:

J0,1(x(t), t) = E[d(t)]pts+E[J((e
′

(t+ts), E[d(t)]+ts), t+ts)]

−E[J((e
′

(t+ ts)− 1, (1− p)E[d(t)] + ts), t+ ts)]

where e
′

(t+ ts) = e(t)− PON ts − Eh(t) + Eh(t+ ts)
To prove that the optimal policy is a threshold type pol-

icy for E[d(t)], it is sufficient to show that the difference

J0,1(x(t), t) is nondecreasing in E[d(t)] which means that

if µ(t) = 1 is the optimal decision for some x(t) =
(e(t), E[d(t)]), then the optimal decision, for any x

′

(t) =
(e(t), E[d′(t)]) where E[d′(t)] > E[d(t)], is still µ(t) = 1.

When p = 1, the positive part of J0,1(x(t), t) increases with

E[d(t)] by Lemma 3 but its negative part is independent from

E[d(t)], thus it is guaranteed that J0,1(x(t), t) is nondecreas-

ing with E[d(t)].
In order to show the monotonicity of J0,1(x(t), t) for p < 1,

J0,1(x(t), t) can be expressed in terms of J0,1(x
′(t+ ts), t+

ts). Let us define J0(.) and J1(.) as the expected costs of

decisions µ(t) = 0 and µ(t) = 1, respectively. Then, J(.) =
min(J0(.), J1(.)) can be written in one of the following forms:

J(.) = J1(.)− (−J0,1(.))+

J(.) = J0(.) − (J0,1(.))+

Substituting these in the previous expression of J0,1(x(t), t),
the expression below can be derived:

J0,1(x(t), t) = E[d(t)]pts +R(ts)

−E[(−J0,1((e
′

(t+ ts), E[d(t)] + ts), t+ ts))+]

+E[(J0,1((e
′

(t+ ts)− 1, (1− p)E[d(t)] + ts), t+ ts))+]

where

R(ts) = −pts+E[J((e
′′

, (1−p)(E[d(t)]+ ts)+ ts), t+2ts)]

−E[J((e
′′

, (1− p)E[d(t)] + 2ts), t+ 2ts)]

and

e
′′

= e(t)− 2PON ts − Eh(t) + Eh(t+ 2ts)− 1

Note that R(ts) goes to zero as ts goes to zero and accordingly

its contribution in the above expression of J0,1(x(t), t) can

be neglected for sufficiently small ts compared to E[d(t)].
If R(ts) is omitted from the above expression, it can be

seen that the nondecreasing monotonicity of J0,1(x, t) with

respect to E[d(t)] could be inherited from the monotonicity

of J0,1(x
′, t+ts). This means that when J0,1(x

′, t+ts) is non-

decreasing with respect to its expected age state, J0,1(x(t), t)
should be also nondecreasing with respect to its expected

age state. In addition to this, we know that J0,1(x(t), t) is

nondecreasing with E[d(t)] for t > T − ts. Therefore, by the

induction method, it can be concluded that J0,1(x(t), t) is a

nondecreasing function of E[d(t)] at any time t.

E. Suboptimal Online Solution: Balanced Updating

As an online heuristic, we introduce Balanced Updating

(BU) policy where S registers the present state of expected

age of status updates E[d(t)]. Basically, in this policy, S sends

a status update whenever E[d(t)] is higher than a threshold

value based on an approximation of average interval of status

updates that can be achieved in the remaining part of the

period. Let P̄h show the average harvested power and assume

that is higher than PON . The decisions of BU policy µ(t)BU

can be represented by a time varying indicator function as in

the below:

µ(t)BU = 1(e(t)≥1)
⋂
(E[d(t)]≥X̄(t)) (17)

where

X̄(t) =
T − t

e(t) + (T − t)(P̄h − PON )
(18)

Note that as T goes to infinity, the time varying threshold

X̄(t) converges to 1
P̄h−PON

.



Let us define the simplest policy with µ(t) = 1(e(t)≥1),

which only checks whether S has sufficient energy to send a

status, as Greedy. This simple non-adaptive policy is used as

baseline in our comparative study below.

III. NUMERICAL AND SIMULATION RESULTS

The performance of BU against Greedy is studied in a

numerical experiment. In this numerical experiment, setting

ts as a unit time, T has been taken as 100 time units and

results have been averaged over 104 different realizations of

energy profiles and packet failure/success events where PON

has been set to 0.01 power units ( i.e. unit energy/unit time).

Energy arrivals are generated according to a Bernoulli process

where energy harvested during each time unit is either zero or

a constant satisfying a preset average harvested power level.

In Fig. 3 and 4, performances of BU and Greedy policies

with respect to average and maximum age of information

are compared for p = 0.9. As seen from these figures, the

performances of BU and Greedy policies are close to each

other at extreme values of harvested power. This result can be

explained by the following observation: When average power

is very low, a long time is needed between status updates and

E[d(t)] becomes so high that the conditions (e(t) ≥ 1) and

(E[d(t)] ≥ X̄(t)) are satisfied concurrently most of the time

although the threshold X̄(t) is relatively high for this case. On

the contrary, at a high average power, the threshold X̄(t) is

very low which guarantees the condition (E[d(t)] ≥ X̄(t))
holds almost always. The performance difference is much

more apparent outside of these extremes. For example, Greedy

policy requires 30%−50% more average power than BU policy

to achieve the same average and maximum age of information

when average harvested power is around 0.6 power units.

For p = 1, the optimal offline solution in Eq. 7 can

be also applied for any numerical realization of the energy

arrival process. In Fig.5, the policies BU and Greedyt are

compared with the performance of the offline optimal solution

(the solution computed with full knowledge of the energy

constraints at t = 0.)

IV. CONCLUSION

We considered the problem of optimizing the process of

sending updates from a source to a receiver to minimize the

time average age of updates, under constraints on the number

of updates that may be sent by a given time. The solution

also turns out to minimize peak age over all update packets

sent. The constraints on the rate of updates are general but can

model a sender whose battery gets replenished at arbitrary time

instants.

Based on offline throughput maximizing solution and the

cost-to-go function generated by a dynamic programming

approach, an online heuristic (BU) is presented, and observed

to achieve close to offline optimal performance. According to

the numerical results obtained through simulations, the average

age of information as well as the peak status age is improved,

especially in low energy cases, if energy management policies

proposed in this paper are employed.
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Fig. 3. Average age of information (in unit time) versus average harvested
power (in unit power) comparison of BU and greedy policies for p = 0.9

taken over 10
4 different Bernoulli realizations of energy profiles and packet

failure/success events where the probability of energy arrival is 0.1, PON =

0.01 power units and T = 100 time units.
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Fig. 4. Maximum age of information (in unit time) versus average harvested
power (in unit power) comparison of BU and greedy policies for p = 0.9

taken over 10
4 different Bernoulli realizations of energy profiles and packet

failure/success events where the probability of energy arrival is 0.1, PON =

0.01 power units and T = 100 time units.
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Fig. 5. Average age of information (in unit time) versus average harvested
power (in unit power) comparison of offline optimal, BU and greedy policies
for p = 1 taken over 10

4 different Bernoulli realizations of energy profiles
and packet failure/success events where the probability of energy arrival is
0.1, PON = 0.01 power units and T = 100 time units.

Extension of the formulation to incorporate randomly

formed updates, where the sender only has updates that are

formed according to a stochastic process at the source side,

was also briefly considered. Examination of the related dy-

namic programming formulation suggests a similar threshold

that depends on the joint state of current energy, expected age

at the receiver, and the current age at the source. In future

work, it would be interesting to examine the behavior of this

threshold with respect to the inter-update arrival distribution,

specifically the three cases where update arrivals are memo-

ryless, light-everywhere or heavy-everywhere. Finally, inves-

tigating the effect of delays during the transmission of status

update messages which cause messages to be received out of

order could be incorporated into the formulation constructed

in this paper.
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