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Abstract—We study wireless collaborative machine learning
(ML), where mobile edge devices, each with its own dataset, carry
out distributed stochastic gradient descent (DSGD) over-the-air
with the help of a wireless access point acting as the parameter
server (PS). At each iteration of the DSGD algorithm wireless
devices compute gradient estimates with their local datasets,
and send them to the PS over a wireless fading multiple access
channel (MAC). Motivated by the additive nature of the wireless
MAC, we propose an analog DSGD scheme, in which the devices
transmit scaled versions of their gradient estimates in an uncoded
fashion. We assume that the channel state information (CSI) is
available only at the PS. We instead allow the PS to employ
multiple antennas to alleviate the destructive fading effect, which
cannot be cancelled by the transmitters due to the lack of CSI.
Theoretical analysis indicates that, with the proposed DSGD
scheme, increasing the number of PS antennas mitigates the
fading effect, and, in the limit, the effects of fading and noise
disappear, and the PS receives aligned signals used to update the
model parameter. The theoretical results are then corroborated
with the experimental ones.

I. INTRODUCTION

With the growing prevalence of Internet of things (IoT) de-

vices, constantly collecting information about various physical

phenomena, and the growth in the number and processing

capability of mobile edge devices (phones, tablets, smart

watches and activity monitors), there is a growing interest in

enabling distributed machine learning (ML) to learn from data

distributed across mobile devices. Centralized ML techniques

are often developed, assuming that the datasets are offloaded

to a central processor. In the case of wireless edge devices,

centralized ML techniques are not desirable, since offloading

such massive amounts of data to a central cloud may be too

costly in terms of both energy and privacy.

In many ML problems, the goal is to minimize a loss

function, F (θ), where θ ∈ Rd captures the model param-

eters to be optimized. The loss function F (θ) represents

the average of empirical loss functions computed at different

data samples with respect to model parameter θ, F (θ) =
1
|B|

∑

u∈B f (θ,u), where B is the set of available data points,

and u represents a data sample and its label.

We assume that an iterative stochastic gradient descent

(SGD) algorithm is used to minimize the loss function F (θ),
in which the model parameter vector at iteration t, θt, is

updated according to the stochastic gradient g (θt). SGD

allows parallelization across multiple mobile devices. In dis-

tributed SGD (DSGD), devices process data locally with

respect to a globally consistent parameter vector, and send

their gradient estimates to the parameter server (PS). To be

more precise, at iteration t, device m computes the gradient

estimate gm (θt) , 1
|Bm|

∑

u∈Bm

∇f (θt,u) with respect to

its local dataset Bm and model parameter θt, and sends the

result to the PS. Having M devices in the system, the PS

updates the model parameter vector according to

θt+1 = θt − ηt
1

M

∑M

m=1
gm (θt) , (1)

where ηt denotes the learning rate at iteration t, and shares the

result with the devices for the computations at the following

iterations. Although parallelism reduces the computation load

at each device, communication from the devices to the PS

becomes the main performance bottleneck [1]–[5], particularly

for wireless edge learning due to limited bandwidth and power.

Several architectures have been proposed in recent years to

employ computational capabilities of edge devices, and train

an ML model collaboratively with the help of a remote PS.

However, these works ignore the physical characteristics of

the communication channel from the devices to the PS, and

consider interference-and-error-free links with a fixed capacity,

which is hard to guarantee in most wireless environments.

Collaborative ML taking into account the physical layer

channel characteristics has recently been studied in [6]–[9].

These works consider a wireless multiple access channel

(MAC) from the edge devices to the PS, and propose over-the-

air computation to average gradient vectors or estimated model

parameters at the PS. In [6] the authors focus on bandwidth

efficient learning, and employ gradient sparsification followed

by linear projection to design a communication efficient

DSGD algorithm. This scheme has been extended to the fading

MAC model in [9]. Distributed ML over a wireless fading

MAC is studied in [7], where the wireless devices employ

power allocation with perfect channel state information (CSI)

to align the received signals at the PS. A single-input multiple-

output (SIMO) wireless fading MAC is studied in [8], where a

beamforming technique is designed to maximize the number

of devices participating in each iteration, while keeping the

quality of the received signal at the PS above the specified

threshold level.

Our goal in this paper is to enable distributed learning

over a wireless fading MAC, while removing the requirement

of CSI at the transmitters (CSIT). This will be achieved by
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employing multiple antennas at the PS. Similarly to [6]–[9]

we considering uncoded transmission of gradient estimates

and over-the-air computation. We design a receive beamformer

at the PS in order to mitigate the fading effect and align

the desired signals. We analytically show that the proposed

scheme alleviates the destructive effects of interference and

noise terms at the PS thanks to the utilization of multiple

antennas, and, in the limit, due to channel hardening, it boils

down to a deterministic channel with identical gains from all

the devices. This result is validated by numerical experiments,

where we investigate the impact of the number of antennas

on the performance of the proposed scheme with no CSIT.

It is worth noting that the CSI requirements of over-the-air

computation with a multi-antenna receiver was also studied

in [10]. The authors proposed a scheme that encodes the

information on the energy of the transmitter signals, and hence,

limited only to positive values, but requires CSI neither at the

transmitters nor at the PS. Performance of this no-CSI scheme

for DSGD will be studied in the extended version of this paper.

Notations: R and C represent the sets of real and complex

values, respectively. We denote entry-wise complex conjugate

of vector x by (x)
∗
, and Re{x} and Im{x} return entry-

wise real and imaginary components of x, respectively. For

x and y with the same dimension, x · y returns their inner

product. We denote a zero-mean normal distribution with

variance σ2 by N
(
0, σ2

)
, and CN

(
0, σ2

)
represents a cir-

cularly symmetric complex normal distribution with real and

imaginary terms each distributed according to N
(
0, σ2/2

)
.

We let [i] , {1, . . . , i}. We denote the cardinality of set X by

|X |, and l2 norm of vector x by ‖x‖2.

II. SYSTEM MODEL

We consider M devices, where device m has access to a

local dataset Bm, and employs SGD to compute the gradient

estimate gm (θt) ∈ Rd at iteration t, m ∈ [M ]. These local

gradient estimates are transmitted to the PS, equipped with K
antennas, through a wireless shared medium. The PS updates

the model parameter based on its received signal, and shares

it with all the devices over an error-free shared link, so that

all the devices have a globally consistent model parameter.

We model the shared wireless channel from the edge devices

to the PS as a wireless fading MAC, where OFDM is used

to divide the available bandwidth into s subchannels, s ≤ d
(in practice, we typically have s ≪ d). We assume that

N OFDM symbols can be transmitted over each subchannel

at each iteration of DSGD algorithm. The received vector

corresponding to the n-th OFDM symbol in iteration t at the

k-th antenna of the PS is given by

yn
k (t) =

∑M

m=1
hn
m,k(t) · xn

m(t) + zn
k (t), k ∈ [K], (2)

where xn
m(t) is the n-th symbol of dimension s transmitted by

the m-th device, hn
m,k(t) ∈ Cs denotes the vector of channel

gains from device m to the k-th PS antenna, m ∈ [M ], and

zn
k (t) ∈ Cs represents the circularly symmetric complex white

Gaussian noise at the k-th antenna of the PS, n ∈ [N ]. The

i-th entry of channel vector hn
m,k(t), denoted by hn

m,k,i(t),

is distributed according to CN
(
0, σ2

h

)
, i ∈ [s], and different

entries of hn
m,k(t) can be correlated, while the channel gains

are assumed to be independent and identically distributed

(i.i.d.) across PS antennas, OFDM symbols, and wireless

devices, k ∈ [K], n ∈ [N ], m ∈ [M ]. Similarly, different

entries of noise vector zn
k (t) can be correlated, and its i-th

entry, denoted by znk,i(t), distributed according to CN
(
0, σ2

z

)
,

i ∈ [s], k ∈ [K], n ∈ [N ]. Noise vectors are also assumed to be

i.i.d. across PS antennas and OFDM symbols. We consider the

following average power constraint imposed at each wireless

device assuming a total of T iterations of the DSGD algorithm:

1

NT

∑T

t=1

∑N

n=1
E
[
||xn

m(t)||22
]
≤ P̄ , ∀m ∈ [M ], (3)

where the expectation is taken with respect to the randomness

of the communication channel.

We assume that the PS has perfect CSI, while there is no

CSI at the wireless devices. At each iteration, the goal at

the PS is to estimate the average of the gradient estimates,
1
M

∑M

m=1 gm (θt), denoted by ĝ (θt), and update the model

parameter as in (1) at the end of each iteration based on the

received symbols y1
k(t), . . . ,y

N
k (t), ∀k, and its knowledge of

the CSI hn
m,k(t), ∀k, n,m.

We note that the PS is interested in the average of the

gradient estimates computed by the devices rather than each

individual estimate. Motivated by the additive nature of the

wireless MAC, we consider an analog approach similarly to

[6]–[9], where the devices transmit their gradient estimates

simultaneously without employing any channel coding.

III. ANALOG DSGD WITHOUT CSIT

At iteration t of DSGD, device m transmits its gradient

estimate gm (θt) ∈ Rd over N = ⌈d/2s⌉ OFDM symbols

across s subchannels in an uncoded manner, m ∈ [M ]. We

denote the i-th entry of gm (θt) by gm,i (θt), i ∈ [d], and

define, for n ∈ [N ], m ∈ [M ],

gn
m,re (θt) , [gm,2(n−1)s+1 (θt) , · · · , gm,(2n−1)s (θt)]

T ,
(4a)

gn
m,im (θt) , [gm,(2n−1)s+1 (θt) , · · · , gm,2ns (θt)]

T , (4b)

gn
m (θt) , gn

m,re (θt) + jgn
m,im (θt) , (4c)

where j ,
√
−1, and we zero-pad gm (θt) to have length

2sN . The i-th entry of gn
m (θt) is then given by

gnm,i (θt) = gm,2(n−1)s+i (θt) + jgm,(2n−1)s+i (θt) ,

for i ∈ [s], n ∈ [N ], m ∈ [M ]. (5)

According to (4), we have

gm (θt) =
[
g1
m,re (θt) , g

1
m,im (θt) , · · · ,

gN
m,re (θt) , g

N
m,im (θt)

]T
, (6)

with N = ⌈d/2s⌉. At the n-th OFDM symbol of iteration t,
device m sends

xn
m(t) = αtg

n
m(t), n ∈ [N ],m ∈ [M ]. (7)



Accordingly, the average transmit power depends on αt, and

is evaluated as follows:

1

NT

∑T

t=1
α2
t

∑N

n=1
||gn

m(t)||22 ≤ P̄ . (8)

The PS observes the following signal at its k-th antenna,

for k ∈ [K], n ∈ [N ]:

yn
k (t) = αt

∑M

m=1
hn
m,k(t) · gn

m(t) + zn
k (t). (9)

Having known the CSI, the PS combines the signals at

different antennas in the following form:

yn(t) ,
1

K

∑K

k=1

(
∑M

m=1
hn
m,k(t)

)∗

· yn
k (t), (10)

whose i-th entry is given by

yni (t) =
1

K

∑K

k=1

∑M

m=1

(
hn
m,k,i(t)

)∗
ynk,i(t), (11)

where ynk,i(t) denotes the i-th entry of yn
k,i(t), i ∈ [s], n ∈ [N ].

By substituting ynk,i(t), given in (9), it follows that

yni (t) = αt

M∑

m=1

(

1

K

K∑

k=1

∣
∣hn

m,k,i(t)
∣
∣
2

)

gnm,i(θt)

︸ ︷︷ ︸

signal term

+
αt

K

K∑

k=1

M∑

m=1

M∑

m′=1,m′ 6=m

(
hn
m,k,i(t)

)∗
hn
m′,k,i(t)g

n
m′,i(θt)

︸ ︷︷ ︸

interference term

+
M∑

m=1

(

1

K

K∑

k=1

(
hn
m,k,i(t)

)∗

)

znk,i(t)

︸ ︷︷ ︸

noise term

. (12)

There are three terms with yni (t) specified by signal, interfer-

ence, and noise terms, respectively, in (12). With the law of

large numbers, as the number of antennas at the PS K → ∞,

the signal term approaches

yni,sig(t) , αtσ
2
h

∑M

m=1
gnm,i(θt), i ∈ [s], n ∈ [N ], (13)

from which the PS can recover

1

M

∑M

m=1
gm,2(n−1)s+i (θt) =

Re
{
yni,sig(t)

}

αtMσ2
h

, (14a)

1

M

∑M

m=1
gm,(2n−1)s+i (θt) =

Im
{
yni,sig(t)

}

αtMσ2
h

. (14b)

However, the interference term in (12) does not allow

the exact recoveries of 1
M

∑M

m=1 gm,2(n−1)s+i (θt) and
1
M

∑M

m=1 gm,(2n−1)s+i (θt) from yni (t), which is observed at

the PS. To analyze the interference term, we first define, for

i ∈ [s], n ∈ [N ],

hni (t) ,
1

K

K∑

k=1

M∑

m=1

M∑

m′=1,m′ 6=m

(
hn
m,k,i(t)

)∗
hn
m′,k,i(t). (15)

It is easy to verify that the mean and the variance of hni (t) are

given by

E [hni (t)] =0, (16a)

E

[

|hni (t)|2
]

=
M(M − 1)σ4

h

K
, (16b)

respectively. We note that the gradient values computed at

each iteration are independent of the channel realizations

experienced during the same iteration. Accordingly, by fixing

the gradient values, from the analysis in (16), we conclude

that the interference term in (12) has zero mean and a variance

that scales with M2/K . Thus, for a fixed number of wireless

devices M , the variance of the interference term in (12) ap-

proaches zero as K → ∞. In practice, it is feasible to employ

sufficiently large number of antennas at the PS exploiting

massive multiple-input multiple-output (MIMO) systems [11].

According to the above analysis, the PS estimates
1
M

∑M

m=1 gm,2(n−1)s+i (θt) and 1
M

∑M

m=1 gm,(2n−1)s+i (θt),
for i ∈ [s], n ∈ [N ], through

ĝ2(n−1)s+i (θt) =
Re {yni (t)}
αtMσ2

h

, (17a)

ĝ(2n−1)s+i (θt) =
Im {yni (t)}
αtMσ2

h

, (17b)

respectively. It then utilizes the estimated vector ĝ(θt) ,

[ĝ1 (θt) , · · · , ĝd (θt)]
T

, which can provide a good estimate of

the actual average of gradients if a sufficiently large number

of PS antennas are employed, to update the model parameters.

Remark 1. We note that with SGD the empirical variances

of the gradient estimates decay over time and approach zero

asymptotically [3], [4], [6], [12], [13]. Thus, for robust

communication of the gradient estimates against noise at each

iteration of the DSGD algorithm, it is reasonable to increase

the power allocation factor αt over time.

Remark 2. We remark that the main focus in this paper is

to develop techniques to perform a DSGD algorithm at the

wireless edge with no CSIT. We propose to employ multiple

antennas at the PS, which can help to mitigate the effect of

fading, and, in the limit, align the received signals at the

PS. We can further employ some of the existing schemes in

the literature providing more efficient communication over the

limited bandwidth wireless MAC, such as the idea of linear

projection proposed in [6]. We leave the analysis of such

combined techniques to future work.

IV. NUMERICAL EXPERIMENTS

Here we evaluate the performance of the proposed analog

DSGD algorithm with no CSI available at the wireless devices.

We are particularly interested in investigating the impact of the

number of PS antennas on the performance of the proposed

scheme. We run experiments on MNIST dataset [14] with

60000 training and 10000 test samples, and train a single layer

neural network with d = 7850 parameters utilizing ADAM

optimizer [15]. We train the network for T = 800 iterations.

We consider M = 20 wireless devices in the system. To

have a realistic model of data distribution across the devices
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Fig. 1: Test accuracy of the proposed multi-antenna analog DSGD algorithm without CSIT for different number of antennas

values
(
K ∈ {1, 5, 2M, 2M2}

)
and noise variances σ2

z .

for the wireless edge learning model, we assume that each

device has access to 1000 training data samples selected at

random from the training dataset. Thus, some of the training

data samples are not assigned to any device, and the data

samples across different devices may not be independent. For

simplicity, we assume that the s channel gains associated with

each OFDM symbol from each device to each PS antenna

are i.i.d., and σ2
h = 1. The performance is measured as the

accuracy with respect to the test samples based on the updated

model parameters at each DSGD iteration.

For numerical comparison, we also consider the benchmark

scenario, in which the PS receives the actual average of

the gradient estimates 1
M

∑M

m=1 gm (θt), and updates the

parameter vector according to this noiseless observation at

each DSGD iteration. We refer to this as the error-free shared

link scenario, and its accuracy can serve as an upper bound

on the performance of the proposed analog DSGD scheme.

In Fig. 1 we illustrate the performance of the proposed

analog DSGD scheme with no CSIT for different K values

and different noise levels. We consider K ∈ {1, 5, 2M, 2M2},

and investigate the performance of the proposed scheme for

σ2
z = 20 and σ2

z = 100 in Figures 1a and 1b, respectively.

We also include the performance of the error-free shared link

scenario. We set the power allocation factor αt = 1+ t/1000,

t ∈ [T ], and for simplicity, we assume that s = d/2 resulting

in N = 1. We note that, for a fixed power allocation αt, ∀t,
the value of s does not have any impact on the accuracy of

the considered schemes; instead, any change in s scales the

average transmit power, whose value is proportional to N . As

it can be seen, employing more antennas at the PS results in a

higher accuracy with the improvement more highlighted when

the noise level is higher. This is due to the fact that increasing

K mitigates the effects of both the interference and noise

terms, inferred from (12). Thus, the advantage of having more

PS antennas is more pronounced when the channel is noisier.

For example, even when σ2
z = 100, the proposed scheme with

K = 2M2 PS antennas and average power P̄ = 0.21 provides

a slightly smaller accuracy than that of the error-free shared

link scenario; this result indicates the success of the proposed

scheme in mitigating the noise term even when the ratio P̄ /σ2
z

is relatively small. We further observe that, compared to having

a single-antenna PS, the accuracy improves by exploiting even

a few antennas at the PS, e.g., K = 5, where the improvement

is much higher when the channel is noisier, i.e., σ2
z = 100 case.

We note that, with all the other parameters fixed, the required

average transmit power reduces with K , which verifies a faster

convergence rate with higher K resulting in a faster reduction

in the empirical gradients’ variances over time. The same

observation is made by reducing σ2
z from 100 to 20 while

all the other parameters are fixed.

V. CONCLUSIONS

We have studied DSGD at the wireless edge, where wireless

devices compute the gradient estimates based on their available

limited datasets, and transmit their estimates to the PS over

a wireless fading MAC. To make the model more realistic,

we have assumed that the devices do not have CSI for the

underlying fast fading channel. With the goal of recovering

the average gradient estimates at the PS, we have developed

an analog DSGD technique, where the effect of fading, which

cannot be cancelled at the transmitters due to the lack of

CSIT, is alleviated by employing multiple antennas at the

PS. Theoretical analysis, corroborated with numerical results,

indicates that, with the proposed approach, increasing the

number of PS antennas provides a better estimate of the

average gradients through a better alignment of the desired

signals, as well as elimination of the interference and noise

terms. Asymptotically, the proposed DSGD scheme guaran-

tees, despite the lack of CSIT, that the wireless MAC becomes

deterministic, and both the fading and noise effects disappear.
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