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Abstract

Source-channel coding for an energy limited wireless sensor node is investigated. The sensor node

observes independent Gaussian source samples with variances changing over time slots and transmits to

a destination over a flat fading channel. The fading is constant during each time slot. The compressed

samples are stored in a finite size data buffer and need to be delivered in at mostd time slots. The

objective is to design optimal transmission policies, namely, optimal power and distortion allocation,

over the time slots such that the average distortion at destination is minimized. In particular, optimal

transmission policies with various energy constraints arestudied. First, a battery operated system in

which sensor node has a finite amount of energy at the beginning of transmission is investigated.

Then, the impact of energy harvesting, energy cost of processing and sampling are considered. For

each energy constraint, a convex optimization problem is formulated, and the properties of optimal

transmission policies are identified. For the strict delay case,d = 1, 2D waterfilling interpretation is

provided. Numerical results are presented to illustrate the structure of the optimal transmission policy,

to analyze the effect of delay constraints, data buffer size, energy harvesting, processing and sampling

costs.

I. INTRODUCTION

Wireless sensor nodes measure physical phenomena, compress their measurements and trans-

mit the compressed data to a destination such that the reconstruction distortion at the destination is

minimized subject to delay constraints. Various components of a wireless sensor node consume

This work was presented in part at the IEEE International Symposium on Information Theory, Istanbul, Turkey, Jul. 2013.
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energy, including sensing, processing and communicationsmodules. The small size and low

cost of typical sensors impose restrictions on the available energy, size of the battery and data

buffers, and efficiency of sensing and transmission circuity. When the variation of the physical

environment and the communication channel are also considered, the optimum management of

available energy is essential to ensure minimal reconstruction distortion at the destination under

limited resources.

We consider a wireless sensor node that collects samples of aGaussian source and delivers

them to a destination. To model the time-varying nature of the source and the channel, we

consider a time slotted system such that the source varianceand the channel power gain remain

constant within each time slot that spansn uses of the channel. We assume that the source

samples arrive at the beginning of each time slot and need to be delivered withind time slots.

The data buffer, which stores the compressed samples, has finite capacity. We first assume that

the sensor node is run by a battery and energy is only consumedfor data transmission. Our

goal is to identify the optimal power and compression rate/distortion allocation over a finite

time horizon such that the average distortion at the destination is minimized. This problem is

formulated under the offline optimization framework, that is, we assume that the sensor node

knows all the source variances and channel gains of time slots a priori. We show that this problem

can be cast into the convex optimization framework which allows us to identify the necessary

and sufficient conditions for the optimal power and distortion allocation. For the special case

of strict delay constraints, i.e.,d = 1, we show that the optimal strategy has atwo-dimensional

(2D) waterfilling interpretation.

We then extend the above model to study various energy constraints on the sensor node. First,

we investigate energy harvesting, and consider a model in which energy arrives (or becomes

available) at the beginning of each time slot. Then, we concentrate on various sources of

energy consumption in the sensor such as the operation of transmitter circuitry (digital-to-

analog converters, mixers, filters) and the sensing components (source acquisition, sampling,

quantization, and compression). We model the former energycost by the processing costǫp

Joules per channel use, and the latter by the sampling costǫs Joules per sample. We consider

that these energy costs are constant and independent of the transmission power. The offline

optimization framework retains its convexity under energyharvesting, processing and sampling

costs. Accordingly, we identify properties of the optimal power and distortion allocation when
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the processing and sampling costs are considered.

In recent years optimal energy management polices for source-channel coding has received

significant attention. Optimal energy allocation to minimize total distortion using uncoded analog

transmission is investigated in [1], [2]. In [1], the total distortion is minimized under power

constraint by using a best linear unbiased estimator at the fusion center. In [2], distortion mini-

mization for energy harvesting wireless nodes under finite and infinite energy storage is studied

for both causal and non-causal side information about channel gains and energy arrivals. For

separate source and channel coding in an energy harvesting transmitter, optimal energy allocation

is investigated in [3]-[6]. In [3], compression and transmission rates are jointly optimized for

stochastic energy arrivals taking into consideration the energy used for source compression. The

work in [4] extends results in [3] to incorporate battery andmemory constraints. Our previous

work [5] considers delay limited transmission of a time varying Gaussian source over a fading

channel with infinite memory size. The problem of sensing andtransmission for parallel Gaussian

sources for a battery operated transmitter with processingand sensing costs is studied in [6]. In

[7], maximization of the number of samples delivered with only the sampling cost is studied.

There is also a rich literature on energy harvesting transmission policies for throughput

optimization ignoring the source coding aspects, such as [8]-[14], [18]-[21]. In [8], overview of

recent developments in the energy harvesting transmissionpolicies is provided. In [9], Yang and

Ulukus investigate offline throughput maximization and transmission completion time minimiza-

tion problems over a constant channel. The throughput maximization problems for single fading

link [10]-[11], broadcast [12] and multiple access channels [13] have also been studied. In [14], an

energy harvesting system is studied under battery constraints, such as battery leakage and limited

size. In short range communications, as in wireless sensor networks, sensing and processing cost

can be comparable to transmission cost [15], [16]. Recently, the effect of processing cost on the

throughput maximizing policies are studied for parallel Gaussian channels in [17], and in the

energy harvesting scenario, for a single-link in [18]-[20], and for a broadband channel in [21].

The paper is organized as follows. In the next section, we describe the system model. In Section

III, we investigate distortion minimization for a battery-run system, and provide properties of

the optimal distortion and power allocation. We also propose a 2D waterfilling algorithm for

d = 1. We study distortion minimization with energy constraintsin Section IV. We investigate the

structure of the optimal distortion and power allocation, and provide2D directional waterfilling
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algorithm for the energy harvesting, processing and sampling cost in Sections IV-A, IV-B, IV-C

respectively. In Section V, numerical results are presented and in Section VI we conclude.

II. SYSTEM MODEL

We consider a wireless sensor node measuring source samplesthat are independent and

identically distributed (i.i.d.) with a given distribution. Due to the potentially time-varying nature

of the underlying physical phenomena, we assume that the statistical properties of the source

samples change over time. To model this change, we consider atime slotted system withN time

slots, with each time slot containingn source samples. We denote the samples arriving at time

slot i as sourcei, and assume that the samples of sourcei come from a zero-mean Gaussian

distribution with varianceσ2
i . The samples are compressed and stored in a data buffer of size

Bmax bits/source sample. In addition, in order to model delay-limited scenarios, e.g., real-time

applications, we impose delay constraints on the samples, such that samples arriving in a time

slot need to be delivered within at mostd time slots. Afterd time slots, samples become stale,

and we set the corresponding distortion to its maximum value, σ2
i .

We consider that the collected samples are delivered over a fading channel having an additive

white Gaussian noise (AWGN) with zero mean and unit variance. We assume that the real

valued channel power gain remains constant within each timeslot, and its value for time sloti

is denoted byhi. Assuming that the time slot durations in terms of channel use are large enough

to invoke Shannon capacity arguments, the maximum transmission rate in time sloti is given by

the Shannon capacity1
2
log(1+hipi), wherepi indicates the average transmission power in time

slot i. Since the source statistics do not change within a time slot, constant power transmission

within each time slot can be shown to be optimal. This followsfrom the concavity and the

monotonically increasing property of the Shannon capacity. We also assume that in each time

slot the number of source samples collected is equal to the number of channel uses. However,

the results in this paper can be easily extended to bandwidthexpansion/compression.

Since the samples are continuous valued, lossy reconstruction at the destination is unavoidable.

We consider mean squared error distortion criterion on the samples at the destination. Denoting

the average distortion of the sourcei by Di, the objective is to minimizeD ,
∑N

i=1Di. We are

interested inoffline optimization, that is, we assume that the transmitter knows all the sample

variances and the channel gains for time slotsi = 1, ..., N in advance. Atransmission policy
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Figure 1. Equivalent multiterminal source-channel communication scenario under orthogonal multiple access.Sn
i denotes

source samples in time sloti, Ŝn
i denotes their reconstruction at the receiver.

refers to average transmission powerpi and average distortionDi allocation to channeli and

source samples collected in time sloti, respectively, fori = 1, ..., N . We study the optimal

transmission policy under different energy constraints. First, we consider a battery operated

system in which sensor node hasE Joules of energy at the beginning of transmission. Then,

we investigate more stringent energy constraints including energy harvesting, energy cost of

processing and sampling. For the energy harvesting system,we assume that the sensor harvests

energy packets of sizeEi Joules at the beginning of time sloti, i = 1, ..., N . The processing cost

is modelled as constantǫp Joules per transmitted symbol, and it is assumed to be independent

of the transmission power. The sampling cost is also assumedto be constant, and considered as

ǫs Joules per source sample and independent of the sampling rate [3].

This formulation considers separate source and channel coding. We can equivalently model this

point-to-point communication problem as multiterminal source-channel communication under

orthogonal multiple access as shown in Figure 1. In this correspondence, Encoderi corresponds

to the encoder at time sloti which observes source samples over the lastd time slots, and

transmits over the channel within time sloti. Similarly, we can consider a separate decoder for

each time sloti, i = d, d+1, ..., N , such that Decoderi observes channel outputsi−d+1, ..., d,

and reconstructs the source samples that have been accumulated within time sloti − (d − 1).

Note that this is equivalent to decoding the source samples just before their deadline expires,

since decoding them earlier does not gain anything to the system. Using [22] we can argue the

optimality of source-channel separation in this setting; hence the above formulation gives us the

optimal total distortion.
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In the next section, we study the optimal distortion and power allocation for the battery-run

system. Then, in Section IV we investigate additional energy constraints on the system including

energy harvesting and energy cost of processing and sampling. We study each energy constraint

separately to study its effect on the optimal transmission policy. In Section IV-A, we incorporate

energy harvesting capability into the sensor node. Then, inSection IV-B, we consider jointly

the energy cost of transmission and processing. Finally, weconsider both transmission and

sampling energy cost in Section IV-C. Details of the energy models will be presented in the

relevant sections.

III. D ISTORTION M INIMIZATION FOR A BATTERY-RUN SYSTEM

We assume that the sensor node hasE Joules of energy at the beginning of transmission. We

focus only on the energy consumption of the power amplifier, and ignore any energy cost due to

processing and sampling. We denote the rate allocated to source i in time slotj, j ≤ N asRi,j.

Note thatRi,j = 0 for i+d < j or j < i. In a feasible transmission policy, the transmission power

in time slot i limits the maximum rate that can be transmitted over that time slot. Therefore,

any feasible transmission policy should satisfy the following constraints:
j
∑

i=j−d+1

Ri,j ≤
1

2
log (1 + hjpj) , j = 1, ..., N, (1)

whereRi,j = 0 for i < 1. The rate-distortion theorem in [24] states that the average distortion

of the samples taken at time sloti, Di, should satisfy the following.

1

2
log

(

σ2
i

Di

)

≤
i+d−1
∑

j=i

Ri,j, i = 1, ..., N. (2)

In addition, the limited data buffer size imposes the following constraints.

k+d−1
∑

j=k

k
∑

i=j−d+1

Ri,j ≤ Bmax, k = 1, ..., N. (3)

Remark 1:Note that the buffer size constraint is in terms of the total bits per sample for

those sources that have not yet expired. This would mean thatthe buffer size is infinite since

the above assumptions of capacity and rate-distortion achieving codes stipulaten→ ∞.

The goal is to identifyRi,j andDi values that minimizeD =
∑N

i=1Di under constraints (1)-(3).

It can be shown using Fourier-Motzkin elimination [23] thatthe above inequalities (1)-(3)

are equivalent to the following causality, delay and rate constraints, respectively. The proof of
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Fourier-Motzkin elimination for the case of three time slots with delay constraintd = 2 is given

in Appendix.
N
∑

j=i

rj ≤
N
∑

j=i

cj, i = 1, ..., N, (4)

i
∑

j=k

rj ≤
i+d−1
∑

j=k

cj , i = k, ..., N − d, k = 1, ..., N − d, (5)

i+1
∑

j=k

rj ≤
i
∑

j=k

cj +Bmax, i = k, ..., N − 1, k = 1, ..., N − 1, (6)

rj ≤ Bmax, i = 1, ..., N, (7)

whereri , 1
2
log
(

σ2
i

Di

)

and ci , 1
2
log (1 + hipi). Notice thatri corresponds to the total source

rate for the samples collected in time sloti, and ci is the channel capacity for time sloti for

powerpi and channel gainhi. The causality constraints in (4) suggest that the samples can only

be transmitted after they have arrived. The delay constraints in (5) stipulate that the samples

collected in time sloti need to be delivered to the destination within the followingd time slots.

The data buffer constraints in (6)-(7) impose restrictionson the amount of bits per sample. The

goal of the transmitter is to allocate its transmission power pi within each time slot and choose

distortion levelDi for each source,i = 1, ..., N , such that the causality, delay, and data buffer

constraints are satisfied, while the sum distortionD at the destination is minimized.

Then, the optimization problem can be formulated as follows.

min
ri,ci

N
∑

i=1

σ2
i 2

−2ri (8a)

s.t.
N
∑

i=1

22ci − 1

hi
≤ E, (8b)

N
∑

j=i

rj ≤
N
∑

j=i

cj , i = 1, ..., N, (8c)

i
∑

j=k

rj ≤
i+d−1
∑

j=k

cj, i = k, ..., N − d, k = 1, ..., N − d, (8d)

i+1
∑

j=k

rj ≤
i
∑

j=k

cj +Bmax, i = k, ..., N − 1, k = 1, ..., N − 1, (8e)

0 ≤ ri ≤ Bmax and 0 ≤ ci, i = 1, ..., N. (8f)
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where the constraint in (8b) ensures that the total consumedenergy is less than the energy

available in the battery att = 0. The constraints in (8c), (8d), and (8e) are the causality, delay

and data buffer size constraints from (4), (5), and (6), respectively. Since the optimization problem

in (8) is convex, we can compute the optimal solution by efficient numerical methods [25]. In the

following, we investigate the properties of the optimal solution using the Karush-Kuhn-Tucker

(KKT) optimality conditions. The Lagrangian of (8) is defined as follows:

L =

N
∑

i=1

σ2
i 2

−2ri + λ

(

N
∑

i=1

22ci − 1

hi
− E1

)

+

N
∑

i=1

γi

(

N
∑

j=i

rj −
N
∑

j=i

cj

)

+
N−d
∑

k=1

N−d
∑

i=k

δi,k

(

i
∑

j=k

rj −
i+d−1
∑

j=k

cj

)

+
N−1
∑

k=1

N−1
∑

i=k

ζi,k

(

i+1
∑

j=k

rj −
i
∑

j=k

cj − Bmax

)

−
N
∑

i=1

βiri +

N
∑

i=1

ρi(ri − Bmax)−
N
∑

i=1

µici, (9)

whereλ ≥ 0, γi ≥ 0, δi,k ≥ 0, ζi,k ≥ 0, βi ≥ 0, ρi ≥ 0 andµi ≥ 0 are Lagrange multipliers

corresponding to (8b)-(8f).

Taking the derivative of the Lagrangian with respect tori and ci, we get

∂L
∂ri

= −2(ln 2)σ2
i 2

−2ri +

i
∑

j=1

γj +

i
∑

k=1

N−d
∑

j=i

δj,k +

i
∑

k=1

N−1
∑

j=i−1

ζj,k − βi + ρi = 0, ∀i, (10)

whereζi−1,i = 0 for ∀i, and

∂L
∂ci

= λ
2(ln 2)22ci

hi
−

i
∑

j=1

γj −
i
∑

k=1

N−d
∑

j=i−d+1

δj,k −
i
∑

k=1

N−1
∑

j=i

ζj,k − µi = 0, ∀i, (11)

whereδj,k = 0 for j < k.

A. Optimal Distortion Allocation

From (10), replacingri with 1
2
log
(

σ2
i

D∗

i

)

, we obtain

D∗
i =

1

2 ln 2

(

i
∑

j=1

γj +
i
∑

k=1

N−d
∑

j=i

δj,k +
i
∑

k=1

N−1
∑

j=i−1

ζj,k − βi + ρi

)

. (12)

The complementary slackness conditions require that, wheneverβi > 0, we haveDi = σ2
i , and

wheneverρi > 0, we haveDi = σ2
i 2

−2Bmax. Therefore, the optimal distortionDi can be further
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simplified as

D∗
i =



















σ2
i 2

−2Bmax , if ξi ≤ σ2
i 2

−2Bmax ,

ξi, if σ2
i 2

−2Bmax < ξi < σ2
i ,

σ2
i , if ξi ≥ σ2

i ,

(13)

whereξi is defined as:

ξi ,
1

2 ln 2

(

i
∑

j=1

γj +
i
∑

k=1

N−d
∑

j=i

δj,k +
i
∑

k=1

N−1
∑

j=i−1

ζj,k

)

. (14)

Note thatξi is similar to thereverse water levelin the classical solution of the optimal distortion

levels for parallel Gaussian sources [24]. While the classical solution has a fixed reverse water

level, i.e.,ξi is independent ofi, in our formulation, due to the causality, delay and data buffer

size constraints, the reverse water level depends on the source indexi. Note that the optimal

distortionDi is confined to the interval[σ2
i 2

−2Bmax , σ2
i ] for time slot i.

Next, we identify some properties of the optimal distortionallocation.

Lemma 2:Whenever the reverse water levelξi in (14) increases from time sloti to time

slot i + 1, all samples collected until time sloti must be transmitted by the end of time slot

i, and wheneverξi decreases from time sloti to time slot i + 1, either the data buffer is

full at the beginning of time sloti and/or delivery of the samples collected at time slotk,

k ∈ i+ 1, ..., i+ d− 2, is postponed byi− k + d time slots.

Proof: From (14), we have

ξi+1 − ξi =
γi+1 +

∑N−d

j=i+1 δj,i+1 +
∑N−1

j=i+1 ζj,i+1 −
∑i−1

k=1 ζi−1,k −
∑i

k=1 δi,k

2 ln 2
, i = 1, ..., N − 1.(15)

Therefore, whenξi+1 − ξi > 0, eitherγi+1 or, for somej ≥ i δj,i+1 or ζj,i+1 , must be positive.

From the complementary slackness conditions, we know that wheneverγi+1 > 0, the constraint in

(8c) is satisfied with equality, i.e.,
∑N

j=i+1 rj =
∑N

j=i+1 cj . This means that all samples collected

until time slot i must be transmitted by the end of time sloti since the later time slots can only

support the source ratesrj , j ≥ i+1. In addition, from the complementary slackness conditions

and the constraint in (8d), we can conclude that whenδj,i+1 > 0,
∑j

k=i+1 rk =
∑j+d−1

k=i+1 ck for

j ≥ i+ 1 must be satisfied. Since only samples collected at time slotsi+ 1, ..., j are delivered

in time slotsi+ 1, ..., j + d − 1, and each group of source samples has a delay constraint ofd

time slots, the samples collected until time sloti should be delivered by the end of time sloti.
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Similarly, from the complementary slackness conditions and the constraint in (8e), we can argue

that if ζj,i+1 > 0 then
∑j+1

k=i+1 rk −
∑j

k=i+1 ck = Bmax for j ≥ i + 1 must be satisfied. This

means that the data arriving between time slotsi + 1 and j leads to a full data buffer at time

slot j for j ≥ i + 1, so all the samples collected until time sloti must be transmitted by the

end of time sloti. Therefore, wheneverξi in (14) increases from time sloti to time sloti+ 1,

all samples collected by time sloti must be transmitted until the end of time sloti. Note that

this leads to an empty data buffer at the end of time sloti which follows from the positivity of

γi+1, δj,i+1, ζj,i+1 for somej ≥ i+ 1.

On the other hand, from the complementary slackness conditions and the constraint in (8d),

we can conclude that whenδi,k > 0,
∑i

j=k rj =
∑i+d−1

j=k cj for k ≤ i should be satisfied.

Therefore, samples collected at time sloti + 1 should be delayedd time slots since time slots

i+1, ..., i+ d− 1 are allocated for the delivery of samples that have arrived at time slotsk ≤ i.

Similarly, from the complementary slackness conditions and the constraint in (8e), we can argue

that if ζi−1,k > 0 then
∑i

j=k rj −
∑i−1

j=k cj = Bmax for k ≤ i− 1 must be satisfied. This means

that the data buffer must be full at the beginning of time sloti. Since wheneverξi decreases

from time sloti to time sloti + 1, δi,k > 0 for somek ≤ i, or ζi−1,k > 0 for somek ≤ i− 1.

We can conclude that wheneverξi decreases from time sloti to time sloti+ 1, either the data

buffer is full at the beginning of time sloti and/or the delivery of the samples collected at time

slot k, k ∈ i+ 1, ..., i+ d− 2, is postponed byi− k + d time slots.

B. Optimal Power Allocation

We can identify the optimal power allocation by replacingci with 1
2
log (1 + hipi) in (11).

The optimal power allocation is given as follows.

p∗i =

[

∑i
j=1 γj +

∑i
k=1

∑N−d
j=i−d+1 δj,k +

∑i
k=1

∑N−1
j=i ζj,k

2(ln 2)λ
− 1

hi

]+

, (16)

whereδj,k = 0 for j < k. We defineνi ,
∑i

j=1
γj+

∑i
k=1

∑N−d
j=i−d+1

δj,k+
∑i

k=1

∑N−1

j=i ζj,k

2(ln 2)λ
, which can

be interpreted similarly to the classical waterfilling solution obtained for power allocation over

parallel channels withwater levelbeing equal toνi. Similarly to (13),νi depends oni due to

causality, delay and data buffer size constraints.

Next, we provide some properties of the optimal power allocation.
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Lemma 3:Whenever the water levelνi in (14) increases from time sloti to time sloti+1, all

the samples collected until time sloti must be transmitted by the end of time sloti, and whenever

νi decreases from time sloti to time sloti+ 1, either the data buffer is full at the beginning of

time slot i+ 1 and/or the delivery of the samples collected at time slotk, k ∈ i− d+ 2, ..., i, is

postponed by at leasti− k + 1 time slots.

Proof: We can show thatνi+1 − νi =
γi+1+

∑N−d
j=i+1

δj,i+1+
∑N−1

j=i+1
ζj,i+1−

∑i−d+1

k=1
δi−d+1,k−

∑i
k=1

ζi,k

2(ln 2)λ
.

Using arguments similar to the proof of Lemma 2, the proof canbe completed.

Remark 3.1:When there is no delay constraint, i.e.,d = N , the constraint in (8d) is no longer

necessary andδi,k = 0, ∀i, k. Therefore, from Lemma 2 (Lemma 3), we can argue that full data

buffer at the beginning of time sloti (i+1) is the only reason of a decrease in the reverse water

level ξi (the water levelνi) from time sloti to time sloti+ 1.

Remark 3.2:When the data buffer size is infinite, i.e.,Bmax = ∞, we haveζi,k = 0, ∀i, k.

Following the arguments in Lemma 2 (Lemma 3), we can concludethat whenever the reverse

water levelξi (the water levelνi) decreases from time sloti to time sloti + 1, delivery of the

samples collected at time slotk, k ∈ i+ 1, ..., i+ d− 2 (k ∈ i− d+ 2, ..., i) must be postponed

by i− k + d time slots.

C. Strict delay constraint(d = 1)

In this section, we investigate the case in which the samplesneed to be transmitted within

the following time slot, i.e.,d = 1. Note that this is equivalent to the problem investigated in

[6] when sensing energy cost is zero. Here we provide a 2D waterfilling interpretation for the

solution. The optimization problem in (8) can be formulatedas follows ford = 1:

min
ci

N
∑

i=1

σ2
i 2

−2ci (17a)

s.t.
N
∑

i=1

22ci − 1

hi
+ ≤ E, (17b)

0 ≤ ci ≤ Bmax, i = 1, ..., N, (17c)

whereci = 1
2
log (1 + hipi) =

1
2
log
(

σ2
i

Di

)

.

Solving the above optimization problem we find

p∗i =
σi√
hi

[

min

{

22Bmax

σi
√
hi
,
1

λ

}

− 1

σi
√
hi

]+

. (18)
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M1 M2

K1

K2

1

λ

K12
2Bmax

K22
2Bmax

(a)

M1 M2

K1

K2

1

λ

K12
2Bmax

K22
2Bmax

(b)

Figure 2. 2D water-filling algorithm, (a) data buffer constraint is not active (b) data buffer constraint is active.

DefiningMi ,
σi√
hi

andKi ,
1

σi

√
hi

, the optimal power in (18) can be written as

p∗i =Mi

[

min

{

Ki2
2Bmax ,

1

λ

}

−Ki

]+

. (19)

Since 1
2
log
(

σ2
i

Di

)

≤ 1
2
log (1 + hipi) is satisfied with equality ford = 1, from (19) the optimal

distortionD∗
i is given by

D∗
i =



















σ2
i 2

−2Bmax , if Miλ ≤ σ2
i 2

−2Bmax ,

Miλ, if σ2
i 2

−2Bmax < Miλ < σ2
i ,

σ2
i , if Miλ ≥ σ2

i .

(20)

The above solution is illustrated in Fig. 2 forN = 2. For each time slot, we have rectangles

of width Mi and heightKi. The total energy is poured above the levelKi for each time slot

up to the water level1
λ
. The power allocated to time sloti is given by the shaded area below

the water level and aboveKi. Note that the water level is bounded by the data buffer size,i.e.,

Ki2
2Bmax , as argued in (19). Ifp∗i > 0, the distortion for sourcei is given by the widthMi times

the reciprocal of the water level, and ifp∗i = 0, the distortion for sourcei is σ2
i = Mi

Ki
. As seen

in Fig. 2(a) the water level is constant over the two time slots, therefore, the optimal allocated

power in time sloti is given byMi

(

1
λ
−Ki

)

for i = 1, 2, and the optimal distortion is given

by Miλ. However, in Fig 2(b) the water level in the first time slot is limited byK12
2Bmax due

to the data buffer constraint. Therefore, as argued in Lemma3, the increase in the water level

from the first time slot to the second is due to full data bufferat the first time slot. The optimal

power levels for the first and second time slots are given byMiKi(2
2Bmax−1) andMi

(

1
λ
−Ki

)

,

respectively. The optimal average distortion values areM1

K122Bmax
andM2λ for source one and

two, respectively.
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IV. D ISTORTION M INIMIZATION UNDER VARIOUS ENERGY CONSTRAINTS

In this section, we consider additional energy constraintson the system including energy

harvesting, processing and sensing energy costs. We study the constraints separately to clearly

illustrate their impact on the performance. In Section IV-Awe identify the effect of energy

harvesting on the optimal power and distortion allocation.Then, in Section IV-B we consider

the energy cost of processing circuitry together with the transmission energy, and show that the

optimal power allocation is bursty in this case. Finally, inSection IV-C we investigate the effect

of sampling cost on the optimal power and distortion allocation.

A. Distortion Minimization with Energy Harvesting

In this section, we consider energy harvesting at the sensornode. We consider that the sensor

node harvests energy packet of sizeEi at the beginning of time sloti, i = 1, ..., N . We consider

only the transmission cost and ignore the energy cost of processing and sampling. Due to energy

arrivals over time, a feasible transmission policy must satisfy the following energy casuality

constraint.
i
∑

j=1

22cj − 1

hj
≤

i
∑

j=1

Ej , i = 1, ..., N. (21)

Consequently, the optimization problem in (8) remains the same except that the constraint (8b)

is replaced by the energy casuality constraints in (21). Then the Lagrangian of (8) with energy

harvesting becomes:

L =
N
∑

i=1

σ2
i 2

−2ri +
N
∑

i=1

λi

(

i
∑

j=1

22ci − 1

hi
−

i
∑

j=1

Ej

)

+
N
∑

i=1

γi

(

N
∑

j=i

rj −
N
∑

j=i

cj

)

+

N−d
∑

k=1

N−d
∑

i=k

δi,k

(

i
∑

j=k

rj −
i+d−1
∑

j=k

cj

)

+

N−1
∑

k=1

N−1
∑

i=k

ζi,k

(

i+1
∑

j=k

rj −
i
∑

j=k

cj − Bmax

)

−
N
∑

i=1

βiri +
N
∑

i=1

ρi(ri − Bmax)−
N
∑

i=1

µici, (22)

with λi ≥ 0, γi ≥ 0, δi,k ≥ 0, ζi,k ≥ 0, βi ≥ 0, ρi ≥ 0 andµi ≥ 0 as the Lagrange multipliers.

The derivative of the Lagrangian with respect tori is the same as in (10); hence, the structure

of the optimal distortion is the same as in Section III. Therefore, the properties of the optimal

distortion given in Lemma 2 still hold.
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Differentiating the Lagrangian with respect toci, we can argue that the optimal channel rate

ci of time slot i must satisfy

∂L
∂ci

=
2(ln 2)22ci

hi

N
∑

j=i

λj −
i
∑

j=1

γj −
i
∑

k=1

N−d
∑

j=i−d+1

δj,k −
i
∑

k=1

N−1
∑

j=i

ζj,k − µi = 0, (23)

for i = 1, ..., N whereδj,k = 0 for j < k.

This leads to the optimal power levelp∗i as follows.

p∗i =

[

∑i

j=1 γj +
∑i

k=1

∑N−d

j=i−d+1 δj,k +
∑i

k=1

∑N−1
j=i ζj,k

2 ln 2
∑N

j=i λj
− 1

hi

]+

, ∀i. (24)

Defining πi ,
∑i

j=1 γj+
∑i

k=1

∑N−d
j=i−d+1

δj,k+
∑i

k=1

∑N−1

j=i ζj,k

2 ln 2
∑N

j=i λj
, we can interpret (24) similarly to the

directional waterfilling solution of [10] with water level equal toπi. Accordingly, Lemma 3 is

updated as follows for an energy harvesting sensor node.

Lemma 4:Whenever the water levelπi in (14) increases from time sloti to time sloti+ 1,

either all the samples collected until time sloti are transmitted by the end of time sloti and/or

the battery is empty at the end of time sloti. Similarly if πi decreases from time sloti to time

slot i + 1, either the data buffer is full at beginning of time sloti + 1 and/or delivery of the

samples collected within time slotk, k ∈ i− d+ 2, ..., i, is postponed by at leasti− k+ 1 time

slots.

Proof: From complementary slackness conditions, we know that whenλi > 0, the constraint

in (21) is satisfied with equality, hence, the battery must beempty at the end of time sloti.

Therefore, following the arguments in the proofs of Lemma 2 and 3, the proof can be completed.

For the case of strict delay constraint,d = 1, we can reformulate the optimization problem in

(17) by replacing the constraint (17b) by (21). Solving the optimization problem, we obtain the

optimal transmission power and distortion in terms ofMi andKi as follows.

p∗i =Mi



min







Ki2
2Bmax ,

1
√

∑N

i=i λi







−Ki





+

. (25)

Similarly, the optimal distortionD∗
i is given by

D∗
i =



















σ2
i 2

−2Bmax , , if Mi

√

∑N

i=i λi < σ2
i 2

−2Bmax ,

Mi

√

∑N
i=i λi, if σ2

i 2
−2Bmax < Mi

√

∑N
i=i λi < σ2

i ,

σ2
i , if Mi

√

∑N

i=i λi ≥ σ2
i .

(26)
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M1 M2 M3

K1

K2
K3

E1

E2

E3

(a)

M1 M2 M3

K1

K2
K3

E1

E2

E3

(b)

M1 M2 M3

K1

K2
K3

E1

E2

E3

(c)

M1 M2 M3

K1

K2
K3

E1

E2

E3

(d)

Figure 3. 2D directional water-filling algorithm. Dashed line represents the buffer constraints (a) three time slots with energy

arrivalsEi, i = 1, 2, 3, (b) E3 allocated to the third time slot, (c)E2 allocated to the second time slot, (d)E1 allocated to time

slots 1 and 2.

Extending Section III-C, we can interpret the energy harvesting solution ford = 1 as direc-

tional 2D water-filling such that the harvested energyEi can only be allocated to time slots

j > i. Accordingly, we allocate energy to the following time slots starting from the last arriving

energy and continuing backwards to the first such that the energy causality constraint is satisfied.

In addition, allocated power to time sloti is limited by the data buffer size and channel gain,

i.e., p∗i ≤MiKi

(

22Bmax − 1
)

= 1
hi

(

22Bmax − 1
)

.

Consider the illustration given in Fig. 3 with three time slots. Similarly to Fig. 2, we have

rectangles of widthMi and heightKi. The horizontal dashed lines above the rectangles corre-

spond toKi2
2Bmax. The arrival times of the energy packets are represented by downward arrows.

As argued above, we first allocate the last energy packetE3 to the third time slot as shown in

Fig. 3(a). Note that due to the data buffer constraint, the compression rate and the optimal power

in the third time slot are limited byBmax and 1
hi

(

22Bmax − 1
)

, respectively. This leads to an
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excessive energy in the battery ifE3 >
1
h3

(

22Bmax − 1
)

. Then, as shown in Fig. 3(c) the second

energy packetE2 is considered for time slots two and three. Since the water level of the second

time slot is lower than the third time slot,E2 is allocated only to the second time slot. Finally,

we consider the first energy packetE1 and allocate it to the first and second time slots as shown

in Fig. 3(d). As argued before, we can obtain the optimal distortion for sourcei by multiplying

Mi with the reciprocal of the water level above rectanglei in Fig. 3(d).

B. Distortion Minimization with Processing Cost

In this section, we investigate the properties of the optimal distortion and power allocation

when, in addition to transmission energy, processing energy cost is also taken into account. For

ease of exposure, we consider a battery operated system as inSection III and ignore sampling

cost. We assume that the sensor node consumes energy for processing only when transmitting

[18]. We consider that the processing energy cost isǫp Joules per transmitted symbol, and it is

independent of the transmission power. As it is shown in [17], when processing cost is taken

into account, the optimal transmission policy becomes bursty. Therefore, the optimal policy may

utilize only a fraction of each time slot. We denote the transmission duration within time sloti

by θi, 0 ≤ θi ≤ 1. We redefine the auxiliary variableci, the total delivered data in time sloti, as

ci ,
θi
2
log (1 + hipi). Accordingly, the optimization problem in (8) remains the same except that

there is an additional constraint0 ≤ θi ≤ 1, and the constraint (8b) is replaced by the following

energy constraint.

N
∑

i=1

θi

(

2
2ci
θi − 1

hi
+ ǫp

)

≤ E. (27)

Then, the Lagrangian of (8) with processing energy cost is given by the following.

L =
N
∑

i=1

σ2
i 2

−2ri + λ

(

N
∑

i=1

θi

(

2
2ci
θi − 1

hi
+ ǫp

)

−E

)

+
N
∑

i=1

γi

(

N
∑

j=i

rj −
N
∑

j=i

cj

)

+

N−d
∑

k=1

N−d
∑

i=k

δi,k

(

i
∑

j=k

rj −
i+d−1
∑

j=k

cj

)

+

N−1
∑

k=1

N−1
∑

i=k

ζi,k

(

i+1
∑

j=k

rj −
i
∑

j=k

cj − Bmax

)

−
N
∑

i=1

βiri +
N
∑

i=1

ρi(ri − Bmax)−
N
∑

i=1

µici −
N
∑

i=1

νiθi +
N
∑

i=1

φi(θi − 1), (28)

whereλ ≥ 0, γi ≥ 0, δi,k ≥ 0, ζi,k ≥ 0, βi ≥ 0, ρi ≥ 0, µi ≥ 0, νi ≥ 0, andφi ≥ 0 are Lagrange

multipliers.
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When we take the derivative of the Lagrangian with respect tori, and replaceri with
1
2
log
(

σ2
i

Di

)

, we obtain (12). Therefore the optimal distortion allocation satisfies (13), and the

properties given in Lemma 2 are also valid in this case.

Differentiating the Lagrangian with respect toci, we obtain

∂L
∂ci

= λ
2(ln 2)2

2ci
θi

hi
−

i
∑

j=1

γj −
i
∑

k=1

N−d
∑

j=i−d+1

δj,k −
i
∑

k=1

N−1
∑

j=i

ζj,k − µi = 0, ∀i, (29)

whereδj,k = 0 for j < k. When we replaceci in the above equation withθi
2
log (1 + hipi), the

optimal power allocation is given as in (16). However, unlike the optimal transmission policy in

Section III, due to the processing cost the optimal transmission powerpi needs to be allocated

θi fraction of time sloti. Taking derivative of the Lagrangian with respect toθi, we get

∂L
∂θi

= λ

(

2
2ci
θi − 1

hi
+ ǫp −

2(ln 2)ci2
2ci
θi

hiθi

)

− νi + ψi = 0, ∀i. (30)

Using complementary slackness conditions together with (30), we can argue that

• If θ∗i = 0, thenci = 0 andpi = 0.

• If 0 < θ∗i ≤ 1, i.e., νi = 0, then assuming thatλ > 0, i.e., the battery is depleted by the

end of time slotN , and replacingci with θi
2
log (1 + hipi) in (30), we get

ln 2 log(1 + hipi)

(

1

hi
+ pi

)

= (ǫp + pi) +
ψi

λ
. (31)

When0 < θ∗i < 1, i.e.,ψi = 0, we obtain the same results as in [18, Eq. (4)]. Therefore, as

argued in [18], Equation (31) has a unique solution which depends only on the channel gain

and the processing cost. We denote the solution of (31) byp∗i = vp,i. When θ∗i = 0, i.e.,

ψi ≥ 0, it can be argued from (31) that the optimal transmission power satisfiesp∗i ≥ vp,i.

Note that whenλ = 0, i.e., the battery may not be depleted by the end of time slotN , we

can restrict the optimal power allocation to the above solution without loss of optimality.

Next, we study the optimal power and distortion allocation for the strict delay constraint,

d = 1. The optimization problem can be formulated by replacing the constraint (17b) by (27),

and inserting an additional constraint0 ≤ θi ≤ 1. Solving the optimization problem, we obtain

the optimal power allocation as follows:

p∗i =
σ

2

θi+1

h
θi

θi+1

i

[

min

{

2
2Bmax

θi

(σi
√
hi)

2

1+θi

,
1

λ
1

1+θi

}

− 1

(σi
√
hi)

2

1+θi

]+

, (32)
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wherep∗i ≥ v∗p,i. The optimal transmission durationθi satisfies the properties obtained for general

delay constraint. Therefore, the optimal transmission power can be further simplified as follows:

p∗i =



















σi√
hi

[

min
{

22Bmax

σi

√
hi
, 1√

λ

}

− 1
σi

√
hi

]+

, if θi = 1,

v∗p,i, if 0 < θi < 1,

0, if θi = 0.

(33)

Similarly, we can argue that the optimal distortion is givenas follows:

D∗
i =



















σ2
i 2

2Bmax , if ξi ≤ σ2
i 2

2Bmax and0 < θi,

ξi, if σ2
i 2

2Bmax < ξi < σ2
i and0 < θi,

σ2
i , if ξi ≥ σ2

i or θi = 0,

(34)

whereξi = σ
2

θi+1

i

(

λ
hi

)

θi
θi+1

.

Note that for the strict delay constraint case, i.e.,d = 1, θi can be interpreted as the number

of channel uses per source sample, or the channel-source bandwidth ratio for the source-channel

pair in time sloti.

C. Distortion Minimization with Sampling Cost

In this section, we consider sampling energy cost in addition to transmission energy. For ease

of exposure, we assume a battery operated system and ignore the processing cost, i.e.,ǫp = 0.

Because of sampling cost, collecting all source samples maynot be optimal. Hence, we assume

that the sensor collectsφi fraction of the samples with energy cost ofǫs Joules per sample. We

also assume that the sampling cost is independent of the sampling rate [3]. The distortion of

sourcei is now given byDi = σ2
i (1 − φi) + σ2

i φi2
−

2ri
φi , whereri is the compression rate for

the samples collected in time sloti. Therefore, we can obtain the corresponding optimization

problem by replacing the objective function in (8) with
∑N

i=1 σ
2
i (1− φi) + σ2

i φi2
−

2ri
φi and the

constraint in (8b) with the following energy constraint:

N
∑

i=1

φiǫs +
22ci − 1

hi
≤ E, (35)

where0 ≤ φi ≤ 1.
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Accordingly, the Lagrangian of (8b) withλ ≥ 0, γi ≥ 0, δi,k ≥ 0, ζi,k ≥ 0, βi ≥ 0, ρi ≥ 0,

µi ≥ 0, ηi ≥ 0, andωi ≥ 0 as Lagrange multipliers can be written as follows:

L =
N
∑

i=1

σ2
i (1− φi) + σ2

i φi2
−

2ri
φi + λ

(

N
∑

i=1

φiǫs +
22ci − 1

hi
− E

)

+

N
∑

i=1

γi

(

N
∑

j=i

rj −
N
∑

j=i

cj

)

+

N−d
∑

k=1

N−d
∑

i=k

δi,k

(

i
∑

j=k

rj −
i+d−1
∑

j=k

cj

)

+
N−1
∑

k=1

N−1
∑

i=k

ζi,k

(

i+1
∑

j=k

rj −
i
∑

j=k

cj − Bmax

)

−
N
∑

i=1

βiri +

N
∑

i=1

ρi(ri − Bmax)−
N
∑

i=1

µici −
N
∑

i=1

ηiφi +

N
∑

i=1

ωi(φi − 1). (36)

When we take the derivative of the Lagrangian with respect toci, we obtain the optimal

transmission power as given in (16). Therefore, the properties provided in Lemma 3 are also

valid in this case. However, when we differentiate the Lagrangian with respect tori andφi, we

obtain

∂L
∂ri

= −2(ln 2)σ2
i 2

−
2ri
φi +

i
∑

j=1

γj +
i
∑

k=1

N−d
∑

j=i

δj,k +
i
∑

k=1

N−1
∑

j=i−1

ζj,k − βi + ρi = 0, ∀i, (37)

whereζi−1,i = 0 for ∀i, and

∂L
∂φi

= −σ2
i + σ2

i 2
−

2ri
φi +

2(ln 2)σ2
i ri

φi

2
−

2ri
φi + λǫs − ηi + ωi = 0, ∀i, (38)

respectively.

Combining (37) withDi = σ2
i (1−φi)+σ

2
i φi2

−
2ri
φi we obtain the optimal distortion for source

i as follows:

D∗
i =



















σ2
i (1− φi) + σ2

i φi2
− 2Bmax

φi , if ξi ≤ σ2
i 2

− 2Bmax
φi andφi > 0,

σ2
i (1− φi) + φiξi, if σ2

i 2
− 2Bmax

φi < ξi < σ2
i andφi > 0,

σ2
i , if ξi ≥ σ2

i or φi = 0,

(39)

whereξi is equal to (14). Therefore,ξi in (39) satisfies the properties given in Lemma 2. From

(37) we can argue thatξi = σ2
i 2

−
2ri
φi , and from (38) we obtain:

λǫs − ηi + ωi

σ2
i

= 1− 2−2ki − 2ki2
−2ki, (40)

whereki ,
ri
φi

. We can interpretki as the compression rate for the sampledφi fraction of source

i. Note that right hand side (RHS) of (40) is a monotonically increasing function ofki. When
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0 < φi < 1, i.e., ηi = 0 and φi = 0, there is a unique solution of (40), which is denoted as

k∗i = vs,i, for givenλ, ǫs, andσ2
i . In addition, we can argue that whereasξi decreases as source

varianceσ2
i increases, it increases as the sampling cost increases. When φi = 1, i.e.,φi ≥ 0, the

solution of (40) must satisfyk∗i ≥ vs,i.

Next, we investigate the effect of sampling cost on the optimal power and distortion allocation

in the strict delay constrained case. Ford = 1, the optimization problem can be formulated by

replacing the constraint in (17b) with (35), and inserting an additional constraint0 ≤ φi ≤ 1.

With the new objective function
∑N

i=1 σ
2
i (1− φi) + σ2

i φi2
−

2ci
φi , the Lagrangian of the optimization

problem be can written as

L =
N
∑

i=1

σ2
i (1− φi) + σ2

i φi2
−

2ci
φi + λ

N
∑

i=1

φiǫs +
2

2ci
θi − 1

hi
−E

−
N
∑

i=1

βici +

N
∑

i=1

µi(ci − Bmax)−
N
∑

i=1

ηiφi +

N
∑

i=1

ωi(φi − 1), (41)

whereλ ≥ 0, βi ≥ 0, µi ≥ 0, ηi ≥ 0, andωi ≥ 0 are Lagrange multipliers. Differentiating the

Lagrangian with respect toci we obtain

∂L
∂ci

= −2(ln 2)σ2
i 2

−
2ci
φi +

2(ln 2)λ

hi
22ci − βi + µi = 0, ∀i. (42)

In addition, when we differentiate the Lagrangian with respect toφi, we get (38).

Replacingci in (42) with 1
2
log (1 + hipi), we can argue that the optimal power allocation is

given by

p∗i =
σ

2φi
φi+1

i

h
1

1+φi

i

[

min

{

22Bmax

(σi
√
hi)

2θi
1+θi

,
1

λ
φi

1+φi

}

− 1

(σi
√
hi)

2θi
1+θi

]+

. (43)

Combining (42) and (38) such thatλ is eliminated, we obtain

− σ2
i + σ2

i 2
−

2ci
φi +

2(ln 2)σ2
i ci

φi

2
−

2ci
φi + ǫshiσ

2
i 2

−
2ci
φi 2−2ci + βi − µi − ηi + ωi = 0. (44)

We can further simplify (44) as follows.

ǫs
1
hi
+ pi

+ βi − µi − ηi + ωi = 22ki − 2(ln 2)ki − 1, (45)

whereki =
ci
φi

. Using (45), we can argue the following:

• If φi = 0 or ci = 0, thenpi = 0 andDi = 0.
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• If 0 < φi < 1 and0 < ci < Bmax, then RHS of (44) is monotonically increasing function

of ki, therefore Equation (44) has a unique solutionk∗i = vs,i for a givenǫs, hi, and pi.

When hi and pi are given,ci = 1
2
log (1 + hipi) is known as well; and hence, we can

compute the optimal sampling fractionφi. Then the optimal distortionDi is given by

Di = σ2
i (1− φi) + σ2

i φi2
−2ki .

• If φi = 1 and 0 < ci < Bmax, thenωi ≥ 0, therefore from (45), we can argue that the

optimal solutionk∗i must satisfyk∗i ≥ vs,i. Then, the optimal distortionDi is given by

Di = σ2
i (1− φi) + σ2

i φi2
−2ki .

V. ILLUSTRATION OF THE RESULTS

In this section, we provide numerical results to illustratethe structure of the optimal distortion

and power allocation, and to analyze the impact of the delay constraint, energy harvesting,

processing and sampling costs on the optimum sum distortion. Throughout this section, we

considerN = 10 time slots. The channel gains are chosen ash = [0.4, 0.2, 0.2, 0.5, 0.4,

0.6, 0.9, 0.3, 0.4, 1], and the source variances areσ2 = [0.7, 0.6, 1, 0.5, 0.3, 0.6, 0.2, 0.3, 0.7, 0.5].

We first setd = 1 and consider a battery-run system with initial energyE = 4 Joules. We set

ǫp = ǫs = 0. We illustrate the optimal rate and power allocation forBmax = 0.15 bits in Fig. 4.

In the figure, the dashed line corresponds toKi2
2Bmax. As shown in Fig. 4, the data buffer size

bounds the total sampled data in each time slot and the minimum distortion. The sum achievable

distortion is computed asD = 4.57. The optimal power and distortion allocation arep∗ =

[0.57, 0.23, 1.15, 0.46, 0.11, 0.38, 0.25, 0, 0.5, 0.23] W andD∗ = [0.56, 0.57, 0.81, 0.40, 0.28, 0.48,

0.16, 0.3, 0.56, 0.4], respectively.

Next, we provide the optimal rate and power allocation for the infinite data buffer size. We

assume the same channel gains and source variances as given above. The 2D waterfilling solution

is shown in Fig. 5, resulting in the optimal total distortionD = 4.48. The optimal power

and distortion allocation arep∗ = [0.74, 0, 0.48, 0.45, 0, 0.78, 0.04, 0, 0.74, 0.73] W and D∗ =

[0.53, 0.6, 0.9, 0.4, 0.3, 0.4, 0.19, 0.3, 0.53, 0.28], respectively.

We illustrate the optimal distortion with respect toBmax in Fig. 6. We assume the same

channel gains and source variances as before, and setE = 4 Joules andǫp = ǫs = 0. As shown

in Fig. 6, the distortion decreases dramatically when the data buffer size is large. As expected,

the distortion, when the delay constraint isd = 1, is larger than the case whend = N . The
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Figure 4. 2D waterfilling for a battery-run system.E = 4 Joules, Bmax = 0.15 bits per sample,ǫp =

ǫs = 0, h = [0.4, 0.2, 0.2, 0.5, 0.4, 0.6, 0.9, 0.3, 0.4, 1], σ2 = [0.7, 0.6, 1, 0.5, 0.3, 0.6, 0.2, 0.3, 0.7, 0.5], p∗ =

[0.57, 0.23, 1.15, 0.46, 0.11, 0.38, 0.25, 0, 0.5, 0.23] W, andD∗ = [0.56, 0.57, 0.81, 0.40, 0.28, 0.48, 0.16, 0.3, 0.56, 0.4].
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Figure 5. 2D waterfilling for battery-run system.E = 4 Joules,Bmax → ∞, ǫp = ǫs = 0, h = [0.4, 0.2, 0.2, 0.5,

0.4, 0.6, 0.9, 0.3, 0.4, 1], σ2 = [0.7, 0.6, 1, 0.5, 0.3, 0.6, 0.2, 0.3, 0.7, 0.5], p∗ = [0.74, 0, 0.48, 0.45, 0, 0.78, 0.04, 0, 0.74, 0.73]

W andD∗ = [0.53, 0.6, 0.9, 0.4, 0.3, 0.4, 0.19, 0.3, 0.53, 0.28].

figure also shows that the data buffer size has more impact on the distortion when the delay

constraint is more relaxed. This is because a relaxed delay constraint allows more flexibility in

terms of rate allocation, but this flexibility can be exploited only with a sufficiently large data

buffer. In addition, distortion remains constant when the data buffer sizeBmax ≥ 0.31 for d = 1,

and whenBmax ≥ 1.12 for d = 10.

We investigate the variation of the optimal distortionD with respect to the delay constraint
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Figure 6. Distortion versus buffer size.E = 4 Joules,ǫp = ǫs = 0, h = [0.4, 0.2, 0.2, 0.5, 0.4, 0.6, 0.9, 0.3, 0.4, 1],

σ2 = [0.7, 0.6, 1, 0.5, 0.3, 0.6, 0.2, 0.3, 0.7, 0.5].

d in Fig. 7. We consider a battery-run system with initial energy E = 4 Joules andǫp = ǫs = 0.

The optimal distortion values for increasingd plotted in Fig. 7 show that the optimal distortion

decreases monotonically ford ≤ 4 and remains constant afterwards whenBmax = ∞. However,

when the data buffer size is limited toBmax = 0.15 bits per sample, relaxing the delay constraint

beyond two time slots does not decrease the minimum achievable distortion.
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Figure 7. Total distortionD versus delay constraintd. E = 4 Joules,Bmax = 0.15 bits per sample,ǫp = ǫs = 0,

h = [0.4, 0.2, 0.2, 0.5, 0.4, 0.6, 0.9, 0.3, 0.4, 1], σ2 = [0.7, 0.6, 1, 0.5, 0.3, 0.6, 0.2, 0.3, 0.7, 0.5].

We also investigate the variation of the optimal distortionD with respect to the available

energy. We consider a battery-run system with initial energy E ∈ [0, 10] Joules andǫp = ǫs = 0.

We assume thatBmax = 0.15. As it can be seen from Fig. 8, the achievable distortion decays

with the available total energy, and for very low and very high energy levels, the minimum

achievable distortion values are the same ford = 1 and d = N . Since the allocated energy to

March 1, 2022 DRAFT



24

each time slot is partly limited by the data buffer constraint, when the available energy in the

battery is large, all the samples of sourcei can be transmitted within time sloti, and hence,

relaxing the delay constraint does not decrease the minimumachievable distortion.
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Figure 8. Total distortionD versus available energy.E = 4 Joules,ǫp = ǫs = 0, h = [0.4, 0.2, 0.2, 0.5, 0.4, 0.6, 0.9, 0.3, 0.4, 1],

σ2 = [0.7, 0.6, 1, 0.5, 0.3, 0.6, 0.2, 0.3, 0.7, 0.5].

Next, we consider an energy harvesting system with energy packets of sizesE1 = 1, E6 =

3, Ei = 0 otherwise. We setǫp = ǫs = 0 andBmax =→ ∞ bits per sample. The 2D directional

waterfilling solution for infinite data buffer size is given in Fig. 9. Note that the water level

changes after time slot five because of directional waterfilling. The resulting optimal distortion

is D = 4.50, larger than the battery-run system with the same total energy (see Fig. 5), since

the battery-run system has more flexibility in allocating the available energy over time. The

optimal power and distortion allocations arep∗ = [0.54, 0, 0.15, 0.3, 0, 0.98, 0.13, 0, 1, 0.87] W

andD∗ = [0.57, 0.6, 0.97, 0.43, 0.3, 0.37, 0.17, 0.29, 0.49, 0.26], respectively.

The effect of the processing cost on the minimum distortion for a battery-run system is

illustrated in Fig. 10. We setE = 4 Joules andǫs = 0. As seen in the figure, when the data

buffer constraint is 0.1 bits per sample and the processing cost is low, the minimum achievable

distortion is the same for the delay constrained and unconstrained scenarios. However, as the

processing cost increases system without delay constraintperforms better than the strict delay

constrained case. In addition, when the data buffer size is relaxed, the performance without a

delay constraint significantly improves. However, when theprocessing cost is high, relaxing the

data buffer size does not decrease the total distortion because high processing cost limits the

compression rate.

Finally, we consider the effect of the sampling cost on the minimum distortion for a battery-
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Figure 9. 2D directional waterfilling for an EH system.E1 = 1, E6 = 3, Ei = 0 Joules, Bmax → ∞,

ǫp = ǫs = 0, h = [0.4, 0.2, 0.2, 0.5, 0.4, 0.6, 0.9, 0.3, 0.4, 1], σ2 = [0.7, 0.6, 1, 0.5, 0.3, 0.6, 0.2, 0.3, 0.7, 0.5], p∗ =

[0.54, 0, 0.15, 0.3, 0, 0.98, 0.13, 0, 1, 0.87] W andD∗ = [0.57, 0.6, 0.97, 0.43, 0.3, 0.37, 0.17, 0.29, 0.49, 0.26].
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Figure 10. Total distortionD versus processing energy cost for a battery-run system.E = 4 Joules,Bmax = 0.1 bits per

sample,ǫs = 0, h = [0.4, 0.2, 0.2, 0.5, 0.4, 0.6, 0.9, 0.3, 0.4, 1], σ2 = [0.7, 0.6, 1, 0.5, 0.3, 0.6, 0.2, 0.3, 0.7, 0.5].

run system illustrated in Fig. 11. We setE = 4 Joules andǫp = 0. As seen in the figure, when

the sampling cost is low, the effect of the limited data buffer on the sum achievable distortion is

more significant. However, when we increase the sampling cost, the performance of the system

is mostly determined by the delay constraint. As it can be seen from Fig. 10 and Fig. 11, the

behavior of the distortion with respect to sampling cost is similar to that of the processing cost.
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Figure 11. Total distortionD versus sampling energy cost for a battery-run system.E = 4 Joules,Bmax = 0.1 bits per

sample,ǫp = 0, h = [0.4, 0.2, 0.2, 0.5, 0.4, 0.6, 0.9, 0.3, 0.4, 1], σ2 = [0.7, 0.6, 1, 0.5, 0.3, 0.6, 0.2, 0.3, 0.7, 0.5].

VI. CONCLUSIONS

We have investigated source-channel coding for a wireless sensor node under delay, data buffer

size and various energy constraints. For a time slotted system, we have considered the scenario

in which the samples of a time varying Gaussian source are to be delivered to a destination over

a fading channel withind time slots. In addition, we have imposed a finite size data buffer on the

compressed samples. In this framework, we have investigated optimal transmission policies that

minimize the total mean squared distortion of the samples atthe destination for battery operated

as well as an energy harvesting system. We have also studied the impact of various additional

energy costs, including processing and sampling costs. In each case, we have provided a convex

optimization formulation and identified the characteristics of the optimal distortion and power

levels. We have also provided numerical results to investigate the impact of energy harvesting,

processing and sampling costs. Our results have shown that for an energy harvesting transmitter

energy arrivals over time may result in higher average distortion at the destination. In addition,

we have observed that relaxing the delay and data buffer constraints induce more dramatic

increase in the average distortion when processing and sampling costs are low. These results

have important implications for the design of energy-limited wireless sensor nodes, and indicate

that the optimal system operation and performance can be significantly different when the energy

consumption of various other system components, or the arrival of the energy over time are taken

into consideration.
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APPENDIX

In this appendix, we illustrate Fourier-Motzkin elimination of (1)-(3) for three time slots

N = 3 when delay constraint isd = 2. Rewriting (1)-(3) in terms ofri , 1
2
log
(

σ2
i

Di

)

and

ci ,
1
2
log (1 + hipi) we get

R1,1 ≤ c1

R1,2 +R2,2 ≤ c2

R2,3 +R3,3 ≤ c3

r1 ≤ R1,1 +R1,2

r2 ≤ R2,2 +R2,3

r3 ≤ R3,3

R1,1 +R1,2 ≤ Bmax

R1,2 +R2,2 +R2,3 ≤ Bmax

R2,3 +R3,3 ≤ Bmax,

whereR1,1 ≥ 0, R1,2 ≥ 0, R2,2 ≥ 0, R2,3 ≥ 0, R3,3 ≥ 0, ri ≥ 0, andci ≥ 0.

We have upper and lower bounds onR1,1 asmax{0, r1−R1,2} ≤ R1,1 ≤ min{c1, Bmax−R1,2}.

Therefore, eliminatingR1,1 and the redundant inequalities, we obtain:

r1 ≤ c1 +R1,2

R1,2 +R2,2 ≤ c2

R2,3 +R3,3 ≤ c3

r2 ≤ R2,2 +R2,3

r3 ≤ R3,3

r1 ≤ Bmax

R1,2 +R2,2 +R2,3 ≤ Bmax

R2,3 +R3,3 ≤ Bmax

The upper and lower bounds onR1,2 aremax{0, r1 − c1} ≤ R1,2 ≤ min{c2 − R2,2, Bmax −
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R2,2 −R2,3}. Therefore, eliminatingR1,2 and the redundant inequalities, we obtain:

r1 +R2,2 ≤ c1 + c2

R2,2 ≤ c2

R2,3 +R3,3 ≤ c3

r2 ≤ R2,2 +R2,3

r3 ≤ R3,3

r1 +R2,2 +R2,3 ≤ c1 +Bmax

r1 ≤ Bmax

R2,2 +R2,3 ≤ Bmax

R2,3 +R3,3 ≤ Bmax

The upper and lower bounds onR2,2 are max{0, r2 − R2,3} ≤ R2,2 ≤ min{c2, c1 + c2 −
r1, Bmax − R2,3, c1 + Bmax − r1 − R2,3}. EliminatingR2,2 and the redundant inequalities, we

obtain:

r1 ≤ c1 + c2

r2 ≤ c2 + R2,3

r1 + r2 ≤ c1 + c2 +R2,3

R2,3 +R3,3 ≤ c3

r3 ≤ R3,3

ri ≤ Bmax, i = 1, 2

r1 +R2,3 ≤ Bmax + c1

r1 + r2 ≤ Bmax + c1

R2,3 +R3,3 ≤ Bmax

The upper and lower bounds onR2,3 are max{0, r2 − c2, r1 + r2 − c1 − c2} ≤ R2,3 ≤
min{Bmax + c1 − r1, c3 − R3,3, Bmax − R3,3}. EliminatingR2,3 and the redundant inequalities,

we obtain:
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R3,3 + r1 + r2 ≤ c3 + c2 + c1

r1 ≤ c1 + c2

R3,3 ≤ c3

R3,3 + r2 ≤ c3 + c2

r3 ≤ R3,3

ri ≤ Bmax, i = 1, 2

R3,3 ≤ Bmax

R3,3 + r2 ≤ Bmax + c2

R3,3 + r1 + r2 ≤ Bmax + c2 + c1

r1 + r2 ≤ Bmax + c1

Finally, we have upper and lower bounds onR3,3 asmax{0, r3} ≤ R3,3 ≤ min{c3, c3 + c2 −
r2, Bmax, Bmax + c2 − r2, Bmax + c1 + c2 − r1 − r2, c3 + c2 + c1 − r1 − r2}. EliminatingR3,3 and

the redundant inequalities, we obtain:r3 ≤ c3

r2 + r3 ≤ c2 + c3

r1 + r2 + r3 ≤ c1 + c2 + c3

r1 ≤ c1 + c2

r1 + r2 ≤ c1 +Bmax

r1 + r2 + r3 ≤ c1 + c2 +Bmax

r2 + r3 ≤ c2 +Bmax

ri ≤ Bmax, i = 1, 2, 3.
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