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Abstract—Delay limited transmission of a uniform source over
an additive white Gaussian noise (AWGN) channel under an av-
erage power constraint is considered. Assuming that the channel
can be used only once, mean squared error (MSE) distortion is
studied for both the bandwidth matched, and the 2:1 bandwidth
compression cases. In the bandwidth matched scenario, simply
scaling the source sample, i.e., analog transmission, performs
better than transmitting the scalar quantized source samples.
For the bandwidth compression scenario, a hybrid digital analog
transmission scheme that quantizes the first source sample and
superimposes the quantized sample with the scaled version of
the second sample is studied. It is shown that, in this scheme,
as opposed to the bandwidth matched case, a finite number
of quantization indices minimizes the achievable distortion. The
performance of this hybrid scheme is then compared with a nu-
merically optimized encoder using the steepest decent algorithm
iteratively. It is observed that the performance of the hybrid
scheme is reasonably close to the numerically optimized scheme,
while having a significantly lower computational complexity. The
theoretical Ziv-Zakai (ZZ) bound on the average distortion is
also considered to better understand the gap between the optimal
performance and the proposed scheme.

I. INTRODUCTION

We study the transmission of a uniform source over an addi-

tive white Gaussian noise (AWGN) channel under strict delay

constraints. In this model a single use of the underlying channel

is possible to transmit the source samples. In particular, we

consider the transmission of one or two source samples. Most

previous work on delay-limited joint source channel coding

focus exclusively on Gaussian source and channel distributions.

While Gaussian channel noise is a common assumption and

accurate in most scenarios, the validity of Gaussian source as-

sumption is harder to argue for many practical applications. In

many sensing applications, the underlying system parameters

that are being sensed, such as temperature, pressure, humidity,

etc., are bounded within a certain finite interval. When there

is no prior information on the distribution of the parameter of

interest, a uniform distribution assumption is arguably the most

appropriate one following the maximum entropy principle [1].

In the case of a Gaussian source and an AWGN chan-

nel, the minimum mean squared error (MMSE) distortion is

trivially achieved by uncoded transmission in the bandwidth

matching scenario [2]. However, this is not true for non-

Gaussian distributions, and the optimal transmission scheme is

not known in general. Many techniques have been developed

for the Gaussian problem for both bandwidth compression and

expansion scenarios [3]–[9] with varying performances and

complexities to implement.

Lower bounds for this problem are harder to come by. Shan-

non lower bound is commonly used, although it is based on the

infinite block-length source and channel coding assumptions.

Apart from the ideally matched case of Gaussian source and

channel distributions, Shannon lower bound is not tight in

general. Ziv and Zakai provided an alternative lower bound

in [10] exploiting the data processing inequality for general

information measures, in particular the Rényi information of

order α. Ziv-Zakai (ZZ) lower bound is used in [11] to

derive tighter bounds on the MSE distortion for the Gaussian

problem in the high SNR/ high resolution regime for both

bandwidth compression and expansion. It is shown in [11] that

as the mismatch between the source and channel bandwidths

increases, the improvement of the ZZ bound over the Shannon

bound also increases.

The rest of the paper is organized as follows: In Section

II we introduce the system model. In Section III we study

the bandwidth matched scenario. In Section IV 2:1 bandwidth

compression is considered, and a hybrid transmission scheme

is proposed. In Section IV-B we study the numerically opti-

mized encoder structure using the steepest decent algorithm.

In Section V the ZZ bound for this scenario is considered. In

Section VI, numerical results and comparisons are presented,

and finally Section VII concludes the paper.

II. SYSTEM MODEL

We consider the transmission of a uniform source V over an

AWGN channel. The channel output is given by Y = X+W ,

where X is the channel input, and W is the AWGN with

zero mean and variance σ2
n, i.e., W ∼ N (0, σ2

n). The encoder

h : Rm → R maps m source samples to the channel input

X , and must satisfy the average power constraint P , that is,

E[|X|2] ≤ P . The source V is uniformly distributed over

[− 1
2 ,

1
2 ]. In the bandwidth matching scenario we have m = 1,

whereas in the 2:1 bandwidth compression scenario we have

m = 2, and assume that the source samples V1 and V2 are

independent. The reconstruction function g : R → R
m maps

the channel output to the source estimates, V̂ m = g(Y ). The
goal is to characterize the encoder h(·) and the decoder g(·)
such that the average MSE,D∗ = minh,g

1
m

∑m
i=1 E[|Vi−V̂i|2]

is minimized, where the expectation is over the source and

channel noise distributions.
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III. MATCHED BANDWIDTH

We first consider the bandwidth matching scenario, i.e.,

m = 1. We consider a transmission scheme, in which the

source sample is first scalar quantized, then the quantization

index is scaled and transmitted over the channel. The channel

input is given by X = β · Q(V ), where β is a scaling

factor, and Q is the uniform quantizer with quantization indices

qi = 2i−N−1
2N , i = 1, ..., N . Due to the uniform source

assumption, each quantization index is equally likely, i.e.,

p(qi) = 1
N . We denote the variance of the quantized source

sample by σ2
q . Then the average input power is given by

E[|X|2] = β2σ2
q = β2

N∑
i=1

1

N
·
(
2i− 1

2N
− 1

2

)2

=
β2

4N3

N∑
i=1

[
4i2 − 4i(N + 1) + (N + 1)2

]

=
β2

12
·
(
1− 1

N2

)
.

This encoder maps each interval of the uniform quantizer to

an interval on the real line, whose length is chosen based on

the power constraint. To satisfy the average power constraint,

β is chosen such that β2 ≤ 12P
(
1− 1

N2

)−1
. With an optimal

MMSE estimator at the receiver, the estimated sample and the

corresponding average distortion are found as:

V̂ (y) = E[V |y] =

1
2∫

− 1
2

vfV (v)fW (y − βQ(v))dv
1
2∫

− 1
2

fV (v)fW (y − βQ(v))dv

=

N∑
i=1

fW (y − βqi)
qi+

1
2N∫

qi− 1
2N

vdv

N∑
i=1

fW (y − βqi)
qi+

1
2N∫

qi− 1
2N

dv

=
N

N∑
i=1

fW (y−βqi)((qi+ 1
2N )2−(qi− 1

2N )2)

2
N∑
i=1

fW (y − βqi)

=

N∑
i=1

qifW (y − βqi)

N∑
i=1

fW (y − βqi)

� gNw,β(y), (1)

DN = E[|V − V̂ |2] = σ2
v − E[V V̂ ]

=
1

12
−

N∑
j=1

qi+
1

2N∫
qi− 1

2N

v

∞∫
−∞

gNw,β(βqj + w)fW (w)dwdv

=
1

12
− 1

N

N∑
j=1

qj

∞∫
−∞

gNw,β(βqj + w)fW (w)dw. (2)
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Figure 1. Average MSE (dB) vs. average SNR (dB) in the bandwidth matched
scenario.

In Fig. (1) we plot the achievable MSE distortion as a

function of the channel SNR for different values of N. It is clear

that the distortion can be reduced by increasing the number of

quantization points. While the MSE saturates for any finite N ,

we get the best performance by letting N →∞.

In this asymptotic limit the proposed digital scheme becomes

analog transmission with X = α · V , where α =
√
12P . With

MMSE estimation at the receiver, the reconstructed sample and

the average distortion for analog transmission is found as

E[V |y]=

σn√
2πα

⎛
⎝e

− (2y+α)2

8σ2
n −e

− (2y−α)2

8σ2
n

⎞
⎠+ y

α [Q(
2y−α
2σn

)−Q( 2y+α
2σn

)]

Q( 2y−α
2σn )−Q( 2y+α

2σn )
,

D∞ =
1

12
−

∞∫
−∞

1
2∫

− 1
2

vE[V |αv + w]fW (w)dvdw,

where Q(·) is the Q-function defined as Q(t) � 1√
2π

∞∫
t

e−
t2

2 .

Although analog transmission outperforms scalar quantiza-

tion, unlike in the Gaussian scenario, it does not meet the

Shannon lower bound. The comparison of the achievable MSE

performance with the lower bound will be presented in Section

VI.

IV. 2:1 BANDWIDTH COMPRESSION

A. Hybrid Digital- Analog Transmission

Our goal is to introduce an achievable scheme for the

transmission of two source samples over one channel use with

reasonable computational complexity. We use a scalar uniform

quantizer for the first source sample, while the second sample

is transmitted in an uncoded fashion. The channel input X is

generated as the superposition of the scaled versions of the

quantized first sample and the uncoded second sample:

X = β · Q(V1) + α · V2. (3)

The coefficients α and β that are introduced to satisfy the

power constraint. Once N is fixed we choose α such that V2 is

mapped to an interval of length at most β
N . This guarantees that
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the channel input intervals for different quantization indices

do not overlap. In order to create some resistance against the

channel noise we allow a gap of d between adjacent intervals,

and set α = β
N − d, where 0 ≤ d ≤ β

N . The average power

constraint for the hybrid scheme is found to be

E[|X|2] =
1

12

(
β2 − 2βd

N
+ d2

)
≤ P

Since 0 ≤ d ≤ β
N , we have

√
12P ≤ β ≤

√
12P

1− ( 1
N )2

.

The goal is to characterize the parameters (N, d, β) that

minimize the average MSE distortion. At the receiver we use

MMSE estimation is applied to reconstruct the transmitted

source samples. For the first quantized sample, similarly to

(1), we have

V̂1(y) = gNz,β(y),

where Z = W + αV2 is the equivalent noise when estimating

the second sample. fZ(z) can be characterized as

fZ(z) =
1

α

(
Q

(
z − α

2

σn

)
−Q

(
z + α

2

σn

))
.

The expanded version of (4) is given in (5). For the analog

second sample, we have

V̂2(y) =

N∑
i=1

1
2∫

− 1
2

vfW (y − αv − βqi)dv

N∑
i=1

1
2∫

− 1
2

fW (y − αv − βqi)dv

. (4)

The resulting distortion under MMSE estimation can be
obtained by calculating E[|Vi − V̂i|2] for i = 1, 2. For the
first sample, similarly to (2), the distortion is given by

D1 =
1

12
− 1

N

N∑
j=1

qj

∞∫
−∞

gNz,β(βqj + z)fZ(z)dz,

while for the second sample, we have

D2 =
1

12
− 1

N

N∑
j=1

∫
v

∫
w

vV̂2(αv + βqj + w)fW (w)dwdv. (6)

The final average distortion is obtained as D = D1+D2

2 . The

numerical results and comparisons for the hybrid scheme can

be found in Section VI.

Remark IV.1. We have observed in Section III that, in the
bandwidth matched case, increasing N reduces the MMSE
distortion, and analog transmission achieves the lowest dis-
tortion among all schemes of this type. On the other hand,
in the bandwidth compression case N has conflicting effects
on the distortion of the first and second samples. While
increasing N decreases the distortion of the first sample, it has
a negative effect on the distortion of the second sample. Since
the quantized first sample acts as noise for the second sample,

increasing the number of the quantization points increases the
entropy of the noise, and makes it harder for the receiver to
estimate the second source sample. As we will see in Section
VI through numerical results, for a given power constraint P ,
there is a specific N∗ which minimizes the average distortion.

Remark IV.2. Since the entropy of the quantizer output for
the first source sample can be seen as a proxy for the severity
of its impact as noise on the transmission of the second source
sample, we can argue that minimizing the entropy of the
scalar quantizer output will reduce the overall distortion. In
[12], authors present optimal scalar quantization for uniform
sources subject to an entropy constraint. They prove that for
entropy R, the optimal quantizer has N = �eR� 1 quantization
cells, with N − 1 cells of equal length and the remaining cell
of length less than the others. While we have considered this
optimal quantizer in our simulations, we have not observed
any significant gains by considering an additional cell smaller
than the others; and hence, we limit the presentation in Section
VI to uniform quantizers. However, we expect that entropy-
constrained quantizers will be useful for applying our hybrid
scheme to sources with non-uniform distributions.

B. Numerically Optimized Encoder

In this section we study the encoding structure numerically

optimized given that the receiver performs MMSE decoding.

Numerical techniques have been previously used for joint

source channel mappings in various scenarios [7], [13]. In the

following for simplicity we use h, for the encoder h(v1, v2),
and g1, g2 for separate decoders, respectively. By writing the

Lagrangian cost function for this system model we have

Jh,g1,g2 =
1

12
− 1

2
(E[|V1V̂1|] + E[|V2V̂2|]) + λE[|h(V1, V2)|2],

where λ is the Lagrangian multiplier.
Applying the standard method in variational calculus to the

cost function above, we have

∇hJh,g1,g2 = −fV (v1, v2)

2
·⎛

⎝
∫
w

(v1ǵ1(h+ w) + v2ǵ2(h+ w)) fW (w)dw − 4λh

⎞
⎠ ,

where ǵi is the derivative of gi(·), which is the optimal MMSE

decoder for the sample i = 1, 2 given by

gi(y) =

∫ ∫
vie

− (y−h)2

2σ2
w dv1dv2∫ ∫

e
− (y−h)2

2σ2
w dv1dv2

.

The necessary condition for the optimality of h is

∇hJh,g1,g2 = 0. Then, the optimal encoder for an individual

pair of (v1, v2) is obtained as below

h =
1

4λ

∫
w

(v1ǵ1(h+ w) + v2ǵ2(h+ w)) fW (w)dw.(7)

Since it is not possible to solve (7) explicitly, we use

an iterative algorithm to find the optimal encoding function.

1�z� is the minimum integer greater than z.
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V̂2(y) =

N∑
i=1

[
σn√
2π

(
exp

{
− (y+α

2 −βqi)
2

2σ2
n

}
− exp

{
− (y−α

2 −βqi)
2

2σ2
n

})
+ (y − βqi)

(
Q(

y−α
2 −βqi
σn

)−Q(
y+α

2 −βqi
σn

)
)]

N∑
i=1

(
α
(
Q(

y−α
2 −βqi
σn

)−Q(
y+α

2 −βqi
σn

)
)) (5)

However, due to the non-convexity of the problem there is

no guarantee that the algorithm will converge to the global

optimum, and the performance of the resultant encoder will

be sensitive to the initial mapping. In our simulations we use

a linear encoder as the initial mapping, and use the steepest

decent algorithm to update the encoder. At every step the

encoder is updated as follows:

hj+1(v1, v2) = hj(v1, v2)− μ · ∇hJh,g1,g2 . (8)

where μ is the step size. The updating process is terminated

once ∇hJh,g1,g2 is less than a preset threshold value (we have

considered 10−10 in our simulations).

V. MSE LOWER BOUND

A. Shannon Lower Bound

The trivial lower bound is obtained by relaxing the delay-

constraint, and using Shannon’s classical result on the opti-

mality of source-channel separation as the block-length goes

to infinity. For a uniform source spread over an interval of

length Δ, the rate-distortion function is not known, but it can

be lower bounded by 1
2 log

Δ2

2πeD . Hence, the Shannon lower

bound for our problem is DSLB = 1
2πe (1 +

P
σ2
n
)−1/2.

B. Ziv-Zakai (ZZ) Lower Bound

The ZZ bound on the distortion is obtained by using an

information measure different from the mutual information

which still satisfies the data processing inequality. Tighter

than Shannon bounds have been obtained for the bandwidth

mismatch Gaussian problem in [11] using Rènyi information

of order γ. While the maximum Rènyi information of order γ
is not known in general for the AWGN channel, in [11] a high

SNR approximation is derived as follows:

Cγ
∼= 1

2
log(Pc−2

1,2−γ)−Hγ(W ), (9)

where 0 < γ < 5
3 , and Hγ(Z) is the Renyi entropy of the

channel noise, where

Hγ(W ) =
1

1− γ
log

∫
fW (w)γdw,

cn,γ = a1/nn,γ [γ(1 +
2

n
)− 1]−1/2bn,γ , (10)

bn,γ =

{
(1− n(1−γ)

2γ )
1

n(1−γ) , γ 
= 1,

e−1/2, γ = 1,

an,γ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1−γ)
n
2

+1Γ(n
2 +1)

π
n
2 β(n

2 +1, 1
1−γ −n

2 )
, γ < 1,

1

π
n
2
, γ = 1,

(γ−1)
n
2

+1Γ(n
2 +1)

π
n
2 β(n

2 +1, 1
γ−1 )

, γ > 1.
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Figure 2. Average MSE distortion (dB) vs. the average SNR (dB) under
bandwidth compression for a source variance of 1

12
and σ2

n = 1.

Similarly, in [14] the authors derive an approximation for

the Renyi rate distortion function of order γ at high resolution.

They show that for a k-dimensional source with distribution f ,
Rènyi rate-distortion function of order γ under MSE distortion

measure can be approximated as follows:

Rγ(D) ∼= k

2
log

(
1

k
c2k,γ ||f

(2−γ)2+k(γ−1)
k(γ−1) || k(γ−1)

k(γ−1)+2

)
, (11)

where ||f ||p �
(∫

supp(u)
f(u)pdu

)1/p

.

Combining (9) and (11) with the data processing inequality,

we obtain the bound on the MSE distortion for k : 1 bandwidth

compression in the high SNR regime:

DZZ = c2k,γ ·
⎛
⎝ ∞∫
−∞

fW (w)γdw

⎞
⎠

2
k(1−γ)

⎛
⎝k

(
P

c21,2−γ

) 1
k

⎞
⎠

−1

.

We remark here that the ZZ lower bound reduces to the

Shannon lower bound when γ → 1; and hence, the distortion

lower bound obtained by minimizing DZZ over γ is going to

be at least as tight as the Shannon lower bound.

VI. NUMERICAL RESULTS

In this section, we numerically analyze the transmission

schemes and compare their performances with each other

and the analytical lower bounds. For the numerical analysis,

integrals in the distortion and encoder expressions in Section

IV are calculated by discretizing the domain of the source and

noise random variables. The tails of the random variables with

unbounded support, e.g., the channel noise, are ignored.

In Fig. 1 we plot the results for the bandwidth matching

case. The ZZ bound improves slightly (approximately 0.22 dB)

compared to the Shannon lower bound. The gap between the

lower bound and the analog transmission is 1.22 dB.
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In Fig. 2, 2:1 bandwidth compression is considered, and

the performance of the numerically optimized encoder using

(8) and the proposed hybrid transmission scheme are com-

pared with the lower bound. We have fewer results for the

numerically optimized encoder since the algorithm needs long

time to converge, especially at high SNR values. We observe

that the proposed hybrid scheme performs reasonably close

to the numerically optimized encoder. This performance is

remarkable considering the significantly low complexity of the

hybrid encoder. As opposed to the bandwidth matching case,

there is no visible gain from the ZZ lower bound compared

to the Shannon bound in this case. We also observe that

the optimal N in the hybrid scheme, that is, the number of

quantization indices for the scalar quantized sample, increases

with SNR. This is in line with our argument that the optimal

quantizer balances the distortion of the first sample with the

noise effect on the second sample. The size of the optimal noise

gap, d, for the hybrid scheme is plotted for different channel

SNRs in Fig. 3. We observe that d also increases with SNR,

but the rate of increase for d decreases with SNR. Also, the

optimal value of d is not continuous at the points where N is

increased by one. Finally, in Fig. 4, the numerically optimized

encoder mapping is shown for λ = 0.01. It is worth to mention

that for higher SNRs (equivalently, for lower λ) we need to

increase the discretization accuracy. The slow convergence of

the encoder mapping at higher SNRs makes this algorithm hard

to implement in practice. For higher SNRs it is observed that

the encoder has a linear structure.

VII. CONCLUSION

We have considered the delay limited transmission of a

uniform source over an AWGN channel under an average

power constraint. A considerably simple hybrid transmission

scheme is studied, which quantizes one source sample to a

very low number of quantization indices (2 quantization bins

are sufficient up to channel SNR of 18 dB, while only 5 bins

are required below 32 dB), and superposes the second sample

in an uncoded fashion. This hybrid scheme is considered

with MMSE estimation at the receiver. Comparison with a

computationally demanding numerically optimized scheme,

using an iterative steepest descent algorithm, is also considered.

Finally, we have also studied the Ziv- Zakai lower bound for

this problem in the high SNR regime, and have seen that it

improves upon the Shannon lower bound in the bandwidth

matched scenario, reducing the gap between the lower bound

and the uncoded transmission to 1.22 dB. The improvement in

the 2:1 bandwidth compression case is negligible.
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