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Abstract—The information-theoretic notion of energy efficiency
is studied in the context of various joint source-channel coding
problems. The minimum transmission energy � � required to
communicate a source over a noisy channel so that it can be re-
constructed within a target distortion is analyzed. Unlike the
traditional joint source-channel coding formalisms, no restrictions
are imposed on the number of channel uses per source sample. For
single-source memoryless point-to-point channels, � � is shown
to be equal to the product of the minimum energy per bit ��� of
the channel and the rate-distortion function � � of the source,
regardless of whether channel output feedback is available at the
transmitter. The primary focus is on Gaussian sources and chan-
nels affected by additive white Gaussian noise under quadratic dis-
tortion criteria, with or without perfect channel output feedback.
In particular, for two correlated Gaussian sources communicated
over a Gaussian multiple-access channel, inner and outer bounds
on the energy-distortion region are obtained, which coincide in
special cases. For symmetric channels, the difference between the
upper and lower bounds on energy is shown to be at most a constant
even when the lower bound goes to infinity as �. It is also
shown that simple uncoded transmission schemes perform better
than the separation-based schemes in many different regimes, both
with and without feedback.

Index Terms—Energy efficiency, feedback, information theory,
joint source-channel coding, multiple-access channel (MAC), sep-
arate source and channel coding, uncoded transmission.

I. INTRODUCTION

A FUNDAMENTAL problem in communications is to
transmit a message from a source terminal to a des-

tination over a noisy channel such that the destination can
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reconstruct the source message with the highest fidelity. In
general, we can associate a cost for using the channel and also
define the fidelity of the reconstruction by a distortion function.
Naturally, there is a tradeoff between the available budget for
transmission and the achievable distortion at the destination. In
classical models, it is assumed that there is an average budget
per use of the channel as well as a fixed bandwidth ratio that
specifies the number of channel uses per source sample. Then,
the problem is to find the minimum distortion achievable for
the given average budget and a specified bandwidth ratio which
characterizes the power-distortion tradeoff of the given system.

In this paper, we introduce the notion of an energy-distor-
tion tradeoff. The “energy” refers to the cost of using the com-
munication channel per source observation. Thus, to properly
capture the use of energy in this joint compression-communica-
tion framework, we relax the following two related restrictions:
first, rather than constraining the cost of each channel use for a
fixed bandwidth ratio, we constrain the total budget (per source
sample) used over all the channel uses; second, we place no re-
striction on the number of channel uses allowed per source ob-
servation (bandwidth ratio). In this model, by removing the re-
strictions on bandwidth ratio, we identify the fundamental limit
on the minimum energy requirements without any constraints
on spectral efficiency.

The main objective of this paper is to explore the possibility
of reducing the energy consumption in joint source-channel
coding problems by allowing an unrestricted number of channel
uses per observation. To do so, we first cast the problem of
energy-distortion tradeoff within an information-theoretic
framework. We show that, for point-to-point settings, separa-
tion holds for memoryless stationary sources and channels.
However, our main focus is on the case in which Gaussian bi-
variate sources are to be communicated over an additive white
Gaussian noise (AWGN) affected multiple-access channel
(MAC) with or without feedback.

A potential application of our model is in wireless sensor net-
works where a physical phenomenon is observed at the sensor
nodes and is to be reconstructed at a fusion center. Ultrawide-
band has been considered as a viable communication strategy
for sensor networks because of several benefits including good
performance in the low-power regime [6]. In most sensor net-
work applications, the sensors are expected to be severely en-
ergy constrained while the required information rates are rela-
tively low. As we show in this paper, in such networks, removing
the constraint on the bandwidth ratio substantially reduces the
energy requirements in many cases.

For a single-source point-to-point communication system,
separate source and channel coding is known to be optimal in
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terms of the power-distortion tradeoff. Naturally, the optimality
of separation applies to the energy-distortion tradeoff as well:
for a given level of distortion , the minimal value of the
transmission energy is achieved by lossy compression
(at the rate per source sample) followed by channel
encoding in the most energy efficient manner, i.e., by operating
the channel in the wideband regime such that the transmitter
uses minimum energy per bit . In fact, this analogy
extends to a general cost function on channel use to yield
the cost-distortion tradeoff for the source and channel pair.
Similarly to the power-distortion tradeoff, the cost-distortion
(and hence, the energy-distortion) tradeoff is unchanged in
the presence of feedback when the channel is memoryless.
The results for the single-source scenario are presented in
Section II.

The situation is considerably more complicated for multiuser
settings. It is well known that the optimality of source-channel
separation does not extend to multiuser scenarios other than in
a number of special cases [1], [7]. Taking the next natural step
from the single-user scenario, in Section III we introduce the
problem with two sources that are to be conveyed to a single
destination through an additive memoryless Gaussian MAC. For
the two-source model, we are interested in the set
of energy consumption pairs which can achieve the
distortion pair for the two sources. As we show in
Section IV, there is a provable energy efficiency advantage in
increasing the bandwidth ratio in some situations.

In addition to studying the simple setup where no channel
output feedback is available at the encoders in Section IV, in
Section V we consider the effects of the availability of perfect
instantaneous channel output feedback. The model with feed-
back finds possible applications in sensor networks for which
the fusion center (central receiver) has abundant power and
bandwidth and can provide accurate feedback about its channel
observations to the energy-limited sensor nodes. For the case
of unit bandwidth ratio, these models have been studied in
[10] and [11] with and without feedback, respectively (see also
[16] and references therein). An interesting result in [10] and
[11] is that uncoded transmission is optimal when the channel
signal-to–noise ratio is below a certain threshold.

Exact characterization of the region is a difficult
problem in the most general form. We provide outer (con-
verse) bounds on with and without feedback. For
the inner (achievability) bounds, in each case, we propose a
separate source and channel coding scheme and an uncoded
transmission scheme. In the proposed separate source and
channel coding scheme, the observations are compressed into
digital messages (see, e.g., [14] and [19]), which are then
orthogonally transmitted to the receiver. When feedback is
not available, a very simple uncoded transmission scheme in
which both encoders transmit suitably scaled versions of their
observations (see [11] and references therein) is more efficient
than the separation-based scheme for large distortions. When
feedback is available, we propose an uncoded transmission
scheme which is motivated by the capacity achieving coding
scheme for a Gaussian MAC [15]. The main idea of the scheme
is for both transmitters to keep improving the estimates at the
receiver using very low power uncoded transmissions of the

“estimation error” at the receiver. The coding scheme in [15] is
extended in [12] to a MAC with noisy feedback, proving that
its effectiveness is not limited to the perfect feedback scenario.
For the symmetric setup, we show that the energy-distortion
tradeoff achieved by uncoded transmission is close to the lower
bound. In fact, numerical experiments suggest that uncoded
transmission outperforms separation for the symmetric case.

A related problem, where two or more sensors observe inde-
pendent noisy versions of a single Gaussian source and com-
municate them to a central receiver over a Gaussian MAC with
or without feedback, has been studied in [3] and [4] for a finite
bandwidth ratio and in [8] from an energy-distortion perspec-
tive. In these cases, the uncoded transmission schemes are either
exactly optimal or optimal in a scaling sense (for a large number
of sensors).

II. SINGLE-SOURCE SCENARIO

We begin by studying the single source and point-to-point
communication channel scenario, both with and without feed-
back. We define and study the cost-distortion tradeoff for
such channels, a special case of which is the energy-distortion
tradeoff.

A. System Model

Consider independent and identically distributed (i.i.d.)
realizations of a source, according to the common dis-
tribution . We denote these outcomes as a vector

. The vector is observed at an
encoder (transmitter) which maps it onto a channel codeword

of length . The channel input
undergoes a random transformation to the output observed
at a decoder (receiver), for . The transformation
is characterized by the stationary, memoryless conditional
distribution .

If there is no feedback, the channel input is a function only
of , i.e.

(1)

for some , for . If feedback is avail-
able, we allow causal and perfect channel output feedback to the
encoder, i.e.

(2)

for some and , for
.

The task at the decoder is to generate an estimate of each
of the source realizations , for . These estimates
are functions of the channel outputs at the receiver, i.e.

(3)

where , for .
The decoder needs to ensure that the average distortion (given

by a function ) does not exceed a target level. At
the same time, at the encoder, the total average cost of transmit-
ting (as given by the cost function ), normalized
by , is restricted to be less than some cost constraint. Define
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a code to be a collection of encoding functions
and decoding functions that satisfy

(4)

and

(5)

for . Note that the cost restriction in (5) scales lin-
early in the number of observations rather than the number
of channel uses , which is unlike the usual formulation of clas-
sical joint source-channel coding problems. This allows us to
remove the constraints on for a given , and study the cost
per observation rather than in terms of channel uses.

Define the bandwidth ratio to be the ratio of channel uses
and the number of observations, i.e., . For a fixed distortion
target , we define the cost-distortion tradeoff function for the
given setup as

(6)

Note that the definition of does not impose any require-
ment on the bandwidth ratio, and, therefore, truly reflects the ul-
timate fundamental limit on the transmission cost incurred for a
given distortion. In this paper, we are interested in the Gaussian
channels where the “cost” of using the channel is the energy ex-
pended in transmission, thus turning the cost-distortion tradeoff
into energy-distortion tradeoff.

B. Characterization of the Cost-Distortion Tradeoff

The optimal cost-distortion tradeoff for a single source and
point-to-point channel can be achieved by source-channel sep-
aration. In the source-channel separation scheme, the source is
compressed into as few information bits as possible and then
those bits are transmitted reliably to the receiver with as little
cost incurred per bit as possible.

To state this result, we recall some well-known definitions.
For the communication channel characterized by , the ca-
pacity per unit cost is given by [18]

(7)

where is the capacity cost
function for the channel. For the particular case where cost is
the transmission energy, we define the minimum energy per bit

to be

(8)

Similarly, the rate-distortion function for the source is given
by

(9)

Theorem 1: The cost-distortion tradeoff function is equal to

(10)

regardless of whether channel output feedback is available at the
transmitter.

Proof: It readily follows from established results, as shown
in Appendix A.

Theorem 1 along with (8) immediately implies the following
result on energy-distortion tradeoff.

Corollary 1: The energy-distortion tradeoff function is equal
to

(11)

regardless of whether channel output feedback is available at the
transmitter.

C. Gaussian Source and Channel Under Quadratic Cost and
Distortion

For the AWGN channel and the memoryless Gaussian source,
let the source variance be denoted as and the communication
channel be characterized by where the noise
is i.i.d. Gaussian with variance . Furthermore, we define the
channel cost function as and the distortion function
as .

For this formulation, we have that

(12)

and

(13)

where if and 0 otherwise. Therefore,
Corollary 1 gives

(14)

Note that in order to achieve (14) for any , we cannot
use the uncoded scheme of Goblick [5] due to the restriction

. On the other hand, for an AWGN channel with perfect
channel output feedback, the optimal tradeoff can be achieved
by the simple uncoded Schalkwijk–Kailath (SK) scheme [9].
The SK scheme can also be adapted to joint source-channel
coding for the transmission of a Gaussian source over an AWGN
channel [17]. That modified joint source-channel coding SK
scheme does not require the compression of the source, yet
it achieves the optimal power-distortion tradeoff for any fixed
bandwidth ratio [17]. By using the modified SK scheme [17]
with high enough bandwidth ratio, we can approach (14) as
closely as desired.
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Fig. 1. Setup with two correlated memoryless Gaussian sources and an AWGN
MAC.

III. TWO-SOURCE SCENARIO: BASIC SETUP

We proceed to study the case of two correlated Gaussian
sources being communicated to a central receiver over a
Gaussian MAC. For this purpose, we need to extend the def-
inition of energy-distortion tradeoff to include the case of
multiple sources. To do so, we first introduce the notion of
energy-distortion tradeoff region in this section.

Consider a Gaussian MAC with two encoders and one de-
coder. The encoders observe i.i.d. realizations of a correlated
and jointly Gaussian source pair denoted by . Therefore,
the first encoder observes and the
second encoder observes . We let

for , 2 and , for
, where is the coefficient of correlation between

the two source components.
We focus our attention on the AWGN MAC. Hence, the

channel outputs at the receiver are given by

(15)

where are i.i.d., for . The receiver
(decoder) uses to generate estimates of :

(16)

where , for , 2 and . For the
case of no feedback, the encoders map their observation vectors
to channel inputs through the en-
coding functions , i.e.

(17)

for , 2 and . When perfect, causal feed-
back is available at the encoders, the channel inputs are
additionally dependent on the prior channel outputs

, i.e.

(18)

for some for , 2 and
(see Fig. 1).

Given , , , and , define a
code to be a collection of encoding and decoding functions that
satisfy

(19)

and

(20)

for , 2. We further assume that for .
For a fixed target distortion pair , we define

to be an achievable energy consumption point if , and a
code exist for all .

The energy-distortion tradeoff region (denoted by )
is defined to be the collection of all achievable energy consump-
tion points. We note that the set is closed and convex.

In the symmetric case in which we set ,
, and , the energy-distortion region is

completely characterized by

(21)

IV. TWO-SOURCE SCENARIO: NO FEEDBACK

In this section, we study the case in which no feedback is
available. In particular, we provide an outer bound (converse
result) and two inner bounds (achievability results) on the en-
ergy-distortion tradeoff region.

A. Converse

The following theorem provides a converse on the energy re-
quirements in the setup with no feedback.

Theorem 2: For the setup with no feedback, any
must satisfy

(22)

for , 2, and

(23)

for some , where is the minimum
sum rate needed to achieve both and at the receiver when
the encoders cooperate [see (76)–(77)].

Proof: See Appendix B.

Theorem 2 immediately implies the following corollary, by
setting , , and .

Corollary 2: For the symmetric setting, we have a lower
bound on given by

(24)

B. Achievability

For the achievability part, we analyze two different schemes.
The first one is separate source and channel coding. In this
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scheme, the source coding part relies on the Gaussian two-ter-
minal source coding problem which has been considered earlier
in [14] and [19]. In the first step, encoder encodes its obser-
vations using an average of bits per observation. In the next
step, these bits are transmitted to the receiver with minimum en-
ergy expenditure ( ) per encoded bit. Furthermore, we let
both encoders use the MAC orthogonally such that they do not
interfere with each other. Apart from the practical reasons due to
the modularity it provides, separate source and channel coding is
also motivated by its theoretical optimality in the point-to-point
scenario.

Theorem 3: Without feedback, any pair satisfying
the following conditions belongs to :

(25)

(26)

and

(27)

Proof: See Appendix C.

Theorem 3 immediately implies the following corollary, by
setting , , and .

Corollary 3: For the symmetric setting, we have an upper
bound on given by

(28)

Remark 1: There is a finite gap between the curves
and even as , given by

(29)

whereas both and go to infinity as .
Next, we turn our attention to another transmission scheme in

which the transmitters simply transmit scaled versions of their
observations (and thus, have a bandwidth ratio of unity). The
primary motivation for considering an uncoded scheme is its
optimality in related settings (see, e.g., [3], [5], and [10]). Since
the bandwidth ratio of the transmission scheme proposed in the
proof of Theorem 4 is unity, the results of Theorem 4 are also
directly available from [10] and [16] by replacing power con-
straints with energy constraints.

Theorem 4 ([10], [16]): Without feedback, any pair
satisfying the following conditions belongs to :

(30)

and

(31)

Proof: Available in [10, Th. IV. 3].

We note that unlike the separation-based achievability result
in which the bandwidth ratio approaches infinity, uncoded trans-
mission has unit bandwidth ratio. It is known that for the set-
ting in Fig. 1 for a unit bandwidth ratio, uncoded transmission
is optimal in terms of power-distortion tradeoff at low enough
powers [10].

Corollary 4: For the symmetric setting, we have an upper
bound on given by

(32)

for . If , then cannot
be achieved using the uncoded transmission scheme proposed
in the proof of Theorem 4.

Remark 2: We note that all the upper and lower bounds (viz.,
bounds given in Corollaries 2, 3, and 4) on presented
in this section decrease with . An intuitive explanation of this
fact is that less information needs to be transmitted from the
two encoders to the receiver when the correlation between the
observations is higher.

C. Numerical Examples

Using numerical examples, we first examine the reduction
in the energy consumption due to bandwidth expansion. Fig. 2
compares the lower bound on the energy requirements when the
bandwidth ratio is 1 [10, Corollary 4.1], and the upper bound ob-
tained from the separation-based scheme without any constraint
on the bandwidth ratio. As is clear from Fig. 2, for low distor-
tion, significant energy savings are possible by expanding the
bandwidth of transmission.

Next, we compare the two achievability schemes and the con-
verse bound. In Fig. 3, we show the lower bound on ,
i.e., , obtained from Corollary 2, for the source correla-
tion values of and 0.8, under the assumption that
and have unit variance. Also plotted are the upper bounds

and obtained from Corollary 3 and Corol-
lary 4, respectively. The -axis represents the distortion and
the -axis represents the energy requirement .

A couple of observations are worth pointing out.
1) At low correlation values ( ), the performance of

separation-based coding is very close to the lower bound
for all target distortion values. The gap is larger at high
correlation values ( ).
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Fig. 2. Upper bound (based on separate source and channel coding, bandwidth
ratio unrestricted) and lower bound (for ��������� 	���
 � �) on � 
��
for � � ��� and no feedback.

Fig. 3. Upper and lower bounds on � 
�� for � � ���� ���, and no feed-
back.

2) For any correlation, there are large enough distortion
values such that the uncoded transmission has lower en-
ergy requirements than the separation-based scheme. This
demonstrates the suboptimality of separate source and
channel coding (as proposed in the proof of Theorem 3) in
terms of the energy-distortion tradeoff.

V. TWO-SOURCE SCENARIO: FEEDBACK

In this section, we study the Gaussian MAC with noise-
less, causal feedback. We propose a converse as well as a
new uncoded transmission scheme which, unlike the one in
Section IV, makes use of the feedback link. We also note
that separate source-channel coding as proposed for the setup
without feedback also carries over to the feedback case.

A. Converse

Theorem 5: For the case when feedback is present, any
satisfies

(33)

for , 2, and

(34)

for some .
Proof: The proof is similar to the proof of Theorem 2 as

given in Appendix B, except that now there are no restrictions
on the correlations between the transmissions and .
Thus, Lemma 2 does not hold in the presence of feedback.

Remark 3: The only difference between the converses with
feedback (Theorem 5) and without feedback (Theorem 2) is that
the correlation between the transmissions is bounded by in
the case where feedback is absent.

Theorem 5 immediately implies the following corollary.
Corollary 5: For the symmetric setting, we have a lower

bound on given by

(35)

B. Achievability

Similarly to the setup with no feedback, we study two
different achievability schemes. However, since the separate
source and channel coding scheme proposed in Section IV-B
does not use the feedback link, it also works for the setting
with feedback. So, for the feedback case, whenever we mention
a separate source and channel coding scheme, it refers to
the scheme discussed in Section IV-B. Also proposed in this
section is an uncoded transmission scheme that makes use of
the feedback link, similar to the SK scheme for the single-user
case [2], [9], [17].

The basic idea of the uncoded transmission scheme is similar
to the SK scheme for a point-to-point channel. In every step,
using the perfect channel output feedback, each transmitter cal-
culates the “error” for its own source, i.e., the difference be-
tween the minimum mean-square error (MMSE) estimate at the
receiver and the actual source realization. These errors are then
scaled and transmitted simultaneously by both transmitters over
the MAC. The transmission power for every channel use is taken
to be fixed and very small (approaching zero). Based on the re-
ceived signals, the receiver updates its estimates for both the
sources, which is known at the transmitters as well. The scheme
is terminated as soon as the target distortions for both sources
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are achieved at the receiver. We note that the scheme proposed
here is similar to the channel-coding scheme proposed in [15],
with the main difference being the elimination of “quantization”
and “mapping” steps.

ALGORITHM Uncoded Transmission

1) Define: , , for ,
2, and .

2) Execute the following steps for every time until

(36)

for , 2:
1) Encoder 1 transmits

(37)

and encoder 2 transmits

(38)

where denotes the sign of and is taken to be
for ;

2) The received signal at the receiver is

(39)

where ; and
3) The receiver (and transmitters) update

(40)

and

(41)

where

(42)

(43)

(44)

(45)

(46)

and

(47)

The algorithm operates on individual source pairs ,
and aims to achieve a distortion of and in their respec-
tive reconstructions at the receiver. The algorithm takes as pa-
rameters the values of and , such that each transmission by
encoder 1 has energy and each transmission by encoder 2 has
energy . The internal variables/parameters are , and

. The variable tracks the best estimate of at the receiver
based on all the information (i.e., and ) available at the
receiver by time . The variable is the
“error” in the reconstruction at the receiver, and is what actu-
ally is transmitted by the encoders (up to a scaling factor). The
quantity evolves deterministically over time and denotes the
correlation between the two errors at time (and thus, between
the two transmissions at time ). Throughout the rest of the
discussion in this section, we treat as the distortion achieved
at the receiver at time . All the notation is kept as consistent as
possible with [15].

For a given target distortion pair , it can be shown
that the uncoded transmission algorithm terminates for some
choice of and any . Furthermore, the following result
provides an upper bound on the energy consumption of the al-
gorithm.

Theorem 6: For the setting with feedback, choose any
. Then, for for some , the uncoded transmission

scheme terminates within time

(48)
Furthermore, the energy consumption point

(49)

where

(50)

is achievable.
Proof: See Appendix D.

Remark 4: Note that by setting
, we get the achiev-

able energy consumption pair

(51)

which can also be achieved with orthogonal transmissions, i.e.,
by treating the system as two separate single source point-to-
point channels. However, also note that the achievability point
(49) in Theorem 6 is just an upper bound on the actual energy
consumption of the uncoded transmission scheme. An accurate
estimate of the energy incurred by uncoded transmission is dif-
ficult to obtain in the general case. Theorem 7 in the following
gives an analytical result concerning the energy consumption of
uncoded transmission for the symmetric setting.
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Theorem 7: For the symmetric setting with feedback, we have
an upper bound on given by

(52)

Proof: See Appendix E. The main idea of the proof is to
approximate the time evolution of , distortion ,
and energy , by the following set of differential equa-
tions obtained from (40)–(47) and letting

(53)

(54)

where , , and .

Remark 5: For the symmetric setup, the uncoded transmis-
sion scheme is exactly optimal when or . Further-
more, when , the separation-based scheme (as proposed
in the proof of Theorem 3) is also optimal though it has ex-
actly twice the energy consumption of the lower bound when

. On the other hand, when , another trivial
separation-based scheme in which both the encoders use ex-
actly the same code (within a factor of or , according
to whether or ) and transmit synchronously to the
decoder is optimal. In this case, the MAC effectively reduces
to a point-to-point channel with two transmit and one receive
antennas.

Remark 6: Using expression (52), it can be shown that there
is a finite gap between the curves and even as

, i.e.

(55)

whereas both and go to infinity as .
On the other hand, note that is different with and

without feedback, while is the same. However, the
asymptotic gap (as ) between the two curves is still the
same, and is given by (29).

We also note that the asymptotic gap (55) of the uncoded
transmission scheme is smaller than the asymptotic gap (29) of
the separation-based scheme.

C. Numerical Examples

We now compare the two achievability schemes and the con-
verse obtained in Sections V-A and V-B. Fig. 4 shows
obtained from Corollary 5, from Corollary 3, and

from Theorem 7. The two cases considered are low

Fig. 4. Upper and lower bounds on � ��� for � � ���� ��� when feedback
is present.

correlation ( ) and high correlation ( ). As earlier,
the -axis represents the distortion , and the -axis represents
the energy requirement , under the assumption that

.
At low correlation values (e.g., ), all the bounds are

close to each other. In particular, the gap in the energy require-
ments of the uncoded transmission scheme and the lower bound
is almost indistinguishable except at higher distortion values.
However, the bounds are not as tight for for which
the uncoded transmission scheme has a clear advantage over
the separation-based scheme. Comparing the figures with and
without feedback for the same correlation coefficient, we note
that the lower bound decreases slightly in the presence of feed-
back, while the separation scheme cannot benefit from the feed-
back. On the other hand, the uncoded scheme benefits greatly
from the availability of feedback which enables it to take advan-
tage of the available bandwidth, and its performance approaches
the lower bound for all correlation coefficient values.

While we have closed-form expressions for both
and , it is difficult to determine analytically whether
uncoded transmission always outperforms separate source and
channel coding. Numerical simulations suggest that this is in-
deed the case. For example, Fig. 5 shows the difference in en-
ergy requirements (i.e., ) for all values of
distortion and .

VI. CONCLUSION

We have considered the issue of minimal transmission energy
requirements in joint source-channel systems. In particular,
we have studied an information-theoretic notion of energy
efficiency for systems in which observations are communicated
from sensors to a central receiver over a wireless medium. We
have imposed no restrictions on the kind of signaling schemes
that can be employed or the amount of wireless resources (band-
width) available. In particular, we have defined and studied the
energy requirements in two different Gaussian settings: a single
source point-to-point channel, and two correlated Gaussian
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Fig. 5. Excess energy requirement of the separation-based scheme over the
uncoded transmission scheme.

sources communicating over a Gaussian MAC. Additionally,
for both single-source and two-source cases, we have studied
the setting in which noiseless, causal channel output feedback
is available at the transmitters.

For the single source point-to-point channel case, we have ex-
actly characterized the minimum transmission energy required
per source observation, for a wide class of sources and channels.
The minimum energy is given by the product of the minimum
energy per bit for the channel part and the rate-distortion func-
tion for the source part. As expected, separation is shown to be
optimal and the availability of feedback is shown not to decrease
the energy requirements.

For the case of two transmitters observing a bivariate mem-
oryless Gaussian source and transmitting over a memoryless
Gaussian MAC, we have provided upper and lower bounds
on the minimum energy requirement. The upper bounds are
obtained by analyzing a separate source and channel coding
scheme, and a multiaccess generalization of the SK scheme.
With feedback, numerical results suggest that uncoded trans-
mission always has lower energy consumption than separate
source and channel coding. We note that when the sources are
independent, the upper and lower bounds coincide, both with
and without feedback.

For the two-source case with channel feedback, the proposed
uncoded transmission scheme is motivated by the achievability
part in [15]. Its analysis, however, is complicated due to the fact
that the time evolution of the internal variables of the scheme
happens in a complex and mutually dependent fashion. We
have simplified the analysis by making approximations using a
system of differential equations. The solution to this system of
differential equations results in the energy-distortion tradeoff
achieved by uncoded transmission when the transmission
power vanishes.

One of the main points illustrated by this study is that simple
uncoded transmission schemes might be attractive in multiuser
systems from an energy efficiency perspective, extending
similar observations in [3] and [11] to the wideband regime.
Furthermore, besides lower computational complexity, uncoded

transmission schemes also benefit from their operation on a
per symbol basis, drastically reducing both coding delays and
storage requirements.

APPENDIX A
PROOF OF THEOREM 1

Proof: The achievability part is a direct application of sep-
arate source and channel coding. The main idea is to first com-
press the observation vector at a rate of information bits
per observation using a rate-distortion optimal source coding
scheme. Next, given large enough block lengths, each of the

bits can be transmitted at an average cost of units
per bit by employing an appropriate channel code that achieves
the maximum capacity per unit cost (see [18] and references
therein).

We now focus on the converse part. Fixing a distortion target
, for any , a code exists

for some . For any such code, we note that

(56)

from the data-processing inequality.
Next, we lower bound the left-hand side of (56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

where (57) holds since the right-hand side is the minimization
of the mutual information over all possible distributions of
so that the total distortion criterion (4) is satisfied; (58) and (59)
follow from the chain rule and nonnegativity of mutual informa-
tion; (60) follows because – – forms a Markov chain;
(61) follows from the memoryless source assumption; (62) fol-
lows from the convexity of mutual information in the
conditional distribution ; and finally, (63) follows from the
definition of the rate-distortion function.

We can also upper bound the right-hand side of (56):

(64)
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(65)

(66)

(67)

(68)

(69)

(70)

(71)

where (64) holds since the right-hand side is the maximization
of the mutual information over all distributions of ; (66) fol-
lows from the fact that – – forms a Markov chain;
(67) holds since depends on only through ; (68) fol-
lows from the concavity of mutual information in the
distribution of ; (69) follows from the definition of channel
capacity;(70) is obtained by setting ; and fi-
nally, (71) follows from [18, Th. 2]. Note that the arguments for
(64)–(71) hold regardless of whether feedback is available at the
encoder.

Substituting (63) and (69) into (56), we get

(72)

However, since (72) should hold for all and is a
continuous function in whenever is finite (see, e.g.,
[13]), we get that

(73)

immediately establishing the converse.

APPENDIX B
PROOF OF THEOREM 2

Define to be the minimum rate needed to achieve
distortion at the receiver when is available at both the first
encoder and the receiver. Similarly, we define . It is
known that

(74)

and similarly

(75)

Next, we define to be the minimum sum rate
needed to achieve both and at the receiver when the en-
coders cooperate to encode their observations. It is straightfor-
ward to show that (e.g., [21, Th. 6] and [10, Th. 3.1])

(76)

(77)

under the assumption that .
Before providing the proof of Theorem 2, we need a few

lemmas.

Lemma 1: If a code
exists, then it satisfies

(78)

(79)

and

(80)

regardless of whether channel feedback is available or not at
the transmitters, where and , for , 2 and

, are the transmissions from encoder and the re-
ceived signals at the decoder, respectively, at time .

Proof: The proof relies on considering different cut-sets
that separate at least one encoder with the decoder. Thus,
each cut-set then reduces the setting to a point-to-point
source-channel coding problem which admits the use of
source-channel separation.

First, consider (80). We note that

(81)

(82)

(83)

(84)

(85)
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(86)

(87)

where (81) follows from the data-processing inequality; (84)
follows by noting that, conditioned on channel inputs and

, the channel output is independent of and ;
(86) follows from the fact that – – is a Markov
chain; and (87) follows by noting that depends on the pair

only through . Note also that (81)–(87)
hold with or without feedback.

At the same time, we can also lower bound the left-hand side
of (81) in a manner similar to (57)–(63):

(88)

(89)

(90)

(91)

where (90) is due to convexity of the mutual information term in
the conditional distribution . Therefore, (81)–(87)
and (88)–(91) together imply (80).

Next, let us consider (78). As earlier

(92)

(93)

(94)

(95)

(96)

(97)

(98)

where (94) follows by noting that, conditioned on ,
– – is a Markov chain; (95) follows from the

data-processing inequality; (97) follows since is a function
of and possibly, ; and (98) follows from the fact that

depends on , , and only through and .

Also, we lower bound the left-hand side of (92) as follows:

(99)

(100)

(101)

(102)

(103)

(104)

(105)

where (101) is obtained by reducing the set of random variables;
in (102), we set where ;
(103) follows since the pair is independent of ; and
(104) is due to convexity of mutual information in conditional
distribution.

The inequalities (92)–(98) and (99)–(105) immediately imply
(79). The relation (80) can be obtained similarly.

We need another lemma which, given the correlated informa-
tion at the two encoders, puts a limit on the maximum correla-
tion that can be achieved among the transmissions from the two
encoders. This result, with Lemma 1, could then be used to pro-
vide a limit on the maximum information the two encoders can
convey to the receiver.

Lemma 2: For the given system model without feedback,
for any encoder pair, we have

(106)

where is the correlation between the random vari-
ables and .

Proof: The main idea of the proof is along the lines of the
proof of [10, Lemma C.1] and uses the following two lemmas.

Lemma 3 ([20, Th. 1]): For a sequence of pairs of indepen-
dent random variables , we have

(107)
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where for , 2. Also, the
supremum in (107) is over the functions and for ,
2 and satisfying

(108)

(109)

(110)

and

(111)

for , 2 and .
The other lemma employs the Hirschfield–Gebelein–Rényi

maximal correlation to upper bound the maximal correlation be-
tween the transmissions by the two encoders.

Lemma 4 ([22, Sec. IV, Lemma 10.2]): For jointly Gaussian
random variables and with coefficient of correlation ,
we have

(112)

where the supremum is over all functions and satisfying

(113)

and

(114)

for , 2.
Finally, the proof of Lemma 2 is by noting that the transmis-

sions and are functions ( and ) of the obser-
vation vectors and , respectively. Notice that

has zero mean and unit variance. There-
fore, for every

(115)

(116)

where (115) is directly from Lemma 3 and (116) is from Lemma
4 by noting that the observations and are correlated
with the coefficient for every . The inequality
(116) immediately implies the statement of Lemma 2.

Proof of Theorem 2: Let the correlation between and
be , for . We can upper bound the variance

of conditioned on , since the variance of cannot
exceed the MMSE of the linear estimate

(117)

of . This consideration immediately gives us that

(118)

We have a similar inequality, for . Furthermore

(119)

(120)

Also, define

(121)

and

(122)

for , 2. Note that

(123)

since for , 2 and , and
due to the restriction (20).

Let us first prove (22) for . Continuing from (78)

(124)

(125)

(126)

(127)

(128)

(129)

where (125) follows from the capacity of an AWGN channel
under the constraints on the variance of the channel input; (126)
follows by noting that for all , and from
(118); (128) follows by noting that

(130)
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due to the Cauchy–Schwarz inequality, which immediately
implies

(131)

and hence, (128); and (129) is from (123). The relation (22) is
now immediately implied by (129), since (129) should hold for
all values of . Relation (22) for is also proved
similarly.

Next, for (23), consider the following series of manipulations,
starting from (80):

(132)

(133)

(134)

(135)

(136)

where most of the arguments are similar to those used in
(124)–(129), while (134) follows from (120), and (136) follows
from the definition of in (121) and from (123). Since (136)
should hold for all , (23) follows immediately.

The proof of Theorem 2 can now be concluded by proving
that . To do so, we first note that

(137)

by the Cauchy–Schwarz inequality, which implies
from (121) and the fact that from Lemma 2.

APPENDIX C
PROOF OF THEOREM 3

Proof: We prove here that pairs satisfying the
conditions in (25)–(27) can be achieved by separate source and
channel coding. In the first step, both encoders separately en-
code their observations (at rates and , respectively) such
that the distortion targets and for the two sources are

achieved at the receiver. The conditions on and for the
achievability of are [14], [19]

(138)

(139)

and

(140)

Thereafter, the encoded information bits are communicated
to the receiver in separate time-slots by the encoders. Note
that this separate (orthogonal) operation reduces the MAC
to a point-to-point AWGN channel for each of the trans-
mitters. Thus, the energy requirement for transmitting each
information bit (by either of the transmitters) to the receiver
is . Thus, if is an achievable
rate pair for the source coding problem (see [14] and [19]),
then is an
achievable energy consumption pair. Therefore, the conditions
(25)–(27) on can be obtained by replacing with

in (138)–(140).

APPENDIX D
PROOF OF THEOREM 6

Proof: For given by (48), from (45) and the fact that
, we get

(141)

We can further bound the right-hand side of (141) as follows:

(142)

(143)

for all sufficiently small , where (143) follows by noticing
that for all sufficiently small . From (141),
(143), and the fact that for , we get

(144)

for all sufficiently small . Since represents the distor-
tion in the reconstruction of at the receiver at time , (48)
immediately implies that . A similar result can be
proven for the achievability of distortion for source .

The result for the achievable energy consumption point (49) is
straightforward after noting that the energy consumption at en-
coder/transmitter 1 is and at encoder/transmitter 2 is ,
and that the choice of in (48) is arbitrary.
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APPENDIX E
PROOF OF THEOREM 7

Proof: We analyze the uncoded transmission algorithm for
some (to be decided later) and . Furthermore,
without loss of generality, let us restrict , since if

we could replace with without affecting the
joint distribution (except changing the sign of ), the energy
requirements, or the distortion constraints.

Let the algorithm terminate in time slots. From Theorem 6,
it can be deduced that

(145)

Let us first focus on the analysis of the behavior of . Note
that . For the time being, let us additionally assume
that . Let

(146)

be the time (possibly infinity) before hits negative values. In
the definition of , we require the uncoded transmission al-
gorithm to keep operating regardless of the stopping condition
(36). Next, we show that decreases till time and then settles
at a value of (almost) zero.

From (47), satisfies

(147)

From (147), a Maclaurin series expansion of in terms
of the parameter leads to

(148)

where represents any term such that

(149)

Note that when for some

(150)

for some . Hence, from (148), for all sufficiently small
and , . This, along with (150),

implies that

(151)

for some constants and all sufficiently small , for
. Therefore

(152)

since the change in the value of is at least in every time
step.

Also, note that the function is uni-
formly differentiable over the interval . Thus

(153)

for some constants and and all , where we
have used (151) in obtaining (153).

From (148), for any , we get that

(154)

which implies

(155)

from (153). Since and [from (152)],
(155) yields the following relation:

(156)

which, by noting that is the energy expended (by each
transmitter) till time , gives us that

(157)
Here, is the energy requirement of taking from
to . Let be the energy spent in taking
from an initial value of to 0. Then

(158)

Next, we show that for every . First, we
recall that but . Furthermore, from (148), it
can be obtained that

(159)

for sufficiently small , regardless of the value of
. Now, suppose that for some ,

while . This implies, from (159), that
has the same sign as since two consecutive time values of
cannot differ by more that . However, from (148), notice
that if then the sign of should
be the opposite of for small. This, along with (159),
implies that

(160)
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for all which contradicts our assumption that
. Thus, if , then for all

.
Having understood a little bit about the behavior of over

time, let us turn our attention to the behavior of the distortion of
the estimates (i.e., for , 2) over time .

From (45) and the fact that , we immedi-
ately obtain

(161)

for , 2. However, since is also the average distortion
in the estimate of at time , we set to get

(162)

(163)

where (162) follows from (161), and (163) follows from the
Maclaurin series expansion of each of the summands in (162)
(in the parameter around ).

Next, let us assume that , i.e., the target distortion is
attained before falls below 0. From (163)

(164)

(165)

(166)

where we have used (148) and the fact that in obtaining
(164); and similar arguments as in (153)–(157) to obtain (165).
The equation (166) implies that

(167)

which along with (157) and by letting yields that

(168)

is achievable, when . The condition of can
alternately be written as

(169)

as , from (167). This demonstrates the first part of (52).
To show the second part of (52), let us assume that the termi-

nation time . Yet again, from (45) we have

(170)

(171)

(172)

where we have used (163) and (148) to obtain (170) and used
(160) and the Maclaurin expansion of in the parameter

to obtain the first and second terms in (171). Using (158) with
(172) and letting gives that

(173)
is achievable for as . This demonstrates
the second part of (52) for all .

Finally, for the case in which , note that
almost surely, for . Therefore, each encoder knows
the pair for , and, hence, could coop-
erate with the other encoder. This reduces the model to a two
transmit antennas and one receive antenna point-to-point system
with one source. From Section II, the energy-distortion tradeoff
function is given by

(174)

taking into account that given by Corollary 1 needs to be
divided by two to account for energy consumed at each trans-
mitter. Note that the expression (174) matches the expression
(52) evaluated at , and the expression (35) for the lower
bound. This establishes the second part of (52) for .
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