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Abstract—A two-way relay channel with independent parallel
Gaussian channels between the relay and the two terminals
is considered. Focusing on the decode-and-forward protocol,
the second phase of the communication, in which the relay
broadcasts the two messages to their respective receivers, is
studied. Precisely, the problem of computing the power allocation
among the parallel channels that maximizes the weighted sum
rate assuming arbitrarily distributed channel inputs (such as m-
QAM) is stated and shown to be convex. A numerical algorithm
is provided to solve the problem for the general case and, for the
particular cases of high and low power regimes, expressions for
the optimal power allocation are derived in closed form.

I. INTRODUCTION

We consider two-way communication between two termi-

nals where the connection is established over a relay terminal.

This can model a scenario such as wireless communication

between two mobile user terminals which have no direct

channel in between (see Fig. 1). In such a scenario, the relay

is essential to achieve any nonzero transmission rate in either

direction. The capacity region of this two-way relay channel

is open; however, there has been a considerable recent interest

in developing novel achievability techniques and tight outer

bounds for this model due to its practical relevance. Several

achievability schemes have been proposed in the literature

based on the type of coding used and the operation at the relay

terminal. The classical amplify-and-forward and decode-and-

forward (DF) schemes have been extended to this scenario in

[1]. The more advanced compress-and-forward (CF) scheme

is considered in [2] and [3] while structured codes, rather

than random coding, have been proposed in [4], [5]. Recently,

the capacity of the Gaussian two-way relay channel has been

computed to within 1/2 bit in [6].

While no single scheme dominates the others in all channel

conditions, schemes based on CF relaying or structured codes

are more complicated when it comes to practical applications

as the former requires the use of joint source-channel coding

for the broadcasting of the relay’s received signal, while the

latter requires perfect synchronization of the transmissions

from the two users. Hence, we focus here on the DF strategy,

in which both messages of the users are decoded at the relay

terminal, before being forwarded to their respective recipients.

Hence, the transmission can be divided into two phases, the
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Fig. 1. Illustration of the two-way relay channel model in which a base
station acts as a relay terminal helping two separate user terminals exchange
messages simultaneously.

first one is a multiple access channel from the users to the

relay, and the second stage is a special broadcast channel, in

which each receiver has access to the message that is to be

decoded by the other receiver.

In this work, we explicitly focus on the second stage of the

transmission, i.e., the broadcast phase. It can be seen, using the

result of [7], that, in the case of Gaussian channels, the relay

can transmit simultaneously to both users at the capacity of

each channel, as if each user is the sole receiver in the system.

In a way, the transmissions to the users do not interfere with

each other. This is due to the fact that the interfering message

is already known at the receiver, and each receiver receives at

a rate as if she is the sole receiver. This can be achieved by

transmitting a modulo sum of the coded bits from the relay

terminal rather than superimposing the signals or time-sharing

between the messages. This can be considered as an analog

network coding strategy.

In this paper we focus on the achievable rate region over the

two-way relay channel, i.e., the set of information rate pairs at

which the two users can exchange information simultaneously.

We study the problem of optimal power allocation to identify

the region of achievable rate pairs in the case of multiple

parallel channels from the relay to the users. Observe that

in many wireless applications nodes are connected through a

set of parallel channels over which the available power needs



to be allocated. MIMO systems or multicarrier schemes such

as OFDM or discrete multitone (DMT) are the most common

examples for such systems.

In the studied case of independent parallel channels, the

mutual information to each user is maximized by a Gaussian

input; however, the optimal power allocation among the sub-

channels is not a direct extension of the classical waterfilling

solution which achieves the highest mutual information for

a given power constraint [8]. Here our focus is on practical

applications, and hence, we allow arbitrary input constellations

at the relay input rather than simply focusing on the case of

Gaussian input distributions. Our goal is to find the optimal

power allocation strategy that achieves a specific point on the

boundary of the achievable rate region with DF relaying over

independent parallel Gaussian channels with arbitrary input

constellations.

The rest of the paper is organized as follows. We introduce

the system model in Section II. The optimization problem that

solves for the optimal power allocation strategy is presented

in Section III and its necessary and sufficient conditions are

characterized. Section IV and Section V focus on the low and

high power regimes, respectively. Finally, in Section VI we

present some simulation results and we close the paper with

the conclusions.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider n parallel broadcast channels from the relay

to the two receivers (see Fig. 2). The input-output relationship

of the ith channel from the relay to the kth user, k = 1, 2, is

Yk,i = hk,iXi +Wk,i, (1)

where Xi is the relay transmitted signal at the ith channel,

Wk,i is a zero-mean unit variance complex Gaussian random

variable independent of the noise at the other user or at the

other channels, and hk,i is the complex channel gain. We

assume that the two receivers perfectly know their own channel

gains, while the relay knows the magnitudes of the channel

gains to both receivers.

The transmission power at the relay is constrained by

n
∑

i=1

E[|Xi|2] ≤ P. (2)

Then, the transmitted signal Xi can be expressed as a scaled

version of a unit-power zero-mean arbitrarily distributed input

signal Si according to

Xi =
√

piPSi, (3)

where pi allocates the power among the channels satisfying

n
∑

i=1

pi ≤ 1. (4)

Now, defining the normalized mutual information Ii(ρ) as

Ii(ρ) = I(Si;
√
ρSi +W ), (5)
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Fig. 2. Bidirectional broadcast channel with n parallel channels.

the mutual information between the ith input signal, Si, and

the ith output of user k is simply given by

I(Si;Yk,i) = Ii
(

|hk,i|2piP
)

. (6)

Now the goal is to maximize a weighted average of the

information flow to each receiver:

2
∑

k=1

n
∑

i=1

αkI(Si;Yk,i) =
2

∑

k=1

n
∑

i=1

αkIi
(

|hk,i|2piP
)

, (7)

where α1, α2 ≥ 0 and α1 + α2 = 1.
With this formulation, we can characterize the whole rate

region by considering all possible weight pairs. For a fixed

weight pair (α1, α2), the optimal power allocation problem

can be expressed as follows

max
{pi}

2
∑

k=1

n
∑

i=1

αkIi(piγk,i) (8a)

s.t. p1, . . . , pn ≥ 0 (8b)
n
∑

i=1

pi = 1, (8c)

where we defined the received signal-to-noise ratio of user k
on channel i as γk,i, i.e., γk,i , P |hk,i|2 and where we have

written the inequality constraint in (4) as an equality in (8c)

as the optimal {p⋆i } will make use of all available power.

III. OPTIMAL POWER ALLOCATION

A. Preliminaries

In order to study and solve the optimization problem in (8),

we will make use of the results that stem from the relation



between the minimum mean-square error (MMSE) and the

mutual information, [9], [10]. Consequently, we will now

briefly review them.

Consider the generic scalar Gaussian channel Y =
√
ρSi +

W . Given an observation of the channel output y, the MMSE

estimation of Si is given by the conditional mean

Ŝi(ρ, y) = E[Si|y =
√
ρSi +W ], (9)

where we have explicitly indicated the dependence of Ŝi on

the channel gain ρ and the channel output y. For the sake of

notation, this dependence will be dropped in the following.

We now define the following two quantities

Φi(ρ, y) = E
[

|Si − Ŝi|2
∣

∣y
]

, (10)

Φi(ρ, y) = E
[

(Si − Ŝi)
2
∣

∣y
]

. (11)

It is straightforward to check that the corresponding mean-

square error of the estimation in (9) is given by

MMSEi(ρ) = E[Φi(ρ, y)], (12)

where the expectation is with respect to the statistics of the

channel output y. Note that MMSEi(ρ) ∈ [0, 1] due to the

unit power assumption on Si.

Now we can recall the result, which will be instrumental

in solving the optimal power allocation problem for non-

Gaussian channel input distributions.

Lemma 1: For any input distribution of Si we have

İi(ρ) = E[Φi(ρ, y)] = MMSEi(ρ), (13)

Ïi(ρ) = −E
[

(Φi(ρ, y))
2 + |Φi(ρ, y)|2

]

, (14)

where we have used ḟ(ρ) = df(ρ)/dρ.
Proof: Equation (13) is derived in [9] and (14), in [10,

Eq. (110), arXiv version].

Corollary 2: For the particular case of low power (ρ = 0),
the derivatives of the mutual information in Lemma 1 read as

İi(0) = İ(0) = 1, (15)

Ïi(0) = −
(

E
[

|Si|2
])2 −

∣

∣E
[

S2
i

]
∣

∣

2
(16)

= −1−
∣

∣E
[

S2
i

]∣

∣

2
. (17)

Proof: The proof follows from Lemma 1 and by noting

that Ŝi(0, y) = E[Si] = 0, ∀y. In (15) and (17) we have used

the unit power assumption for Si, E
[

|Si|2
]

= 1.
It must be highlighted that the first derivative in (15) is a

constant value and that the value of the second derivative

in (16), which can be easily computed, depends only on the

distribution of the input Si.

Proper complex constellations (i.e., those that are quadra-

ture symmetric, such as QPSK, 8-PSK or 16-QAM) fulfill

E
[

S2
i

]

= 0, as given in [11], which, from Corollary 2

implies that Ïproper
i (0) = −1. Alternatively, for real valued

constellations (for example BPSK and m-PAM) we have that

E
[

S2
i

]

= E
[

|Si|2
]

= 1 and, thus, Ï real
i (0) = −2. Observe

that both cases agree with the results given in [12]. Since

E
[

|Si|2
]

≥
∣

∣E
[

S2
i

]∣

∣, for general (not necessarily proper)

complex input distributions we will thus have

−2 ≤ Ïi(0) ≤ −1. (18)

B. Problem solution

We are now ready to solve the problem stated in (8). First,

we equivalently put it into the standard minimization form

min
{pi}

−
2

∑

k=1

n
∑

i=1

αkIi(piγk,i) (19a)

s.t. − pi ≤ 0, i ∈ [1, n] (19b)
n
∑

i=1

pi − 1 = 0. (19c)

From (14), it can be easily seen that the mutual information

is a concave function, Ïi(ρ) < 0, ∀ρ, which, together with the

fact that the constraints in (19b) and (19c) are linear, implies

that (19) is a convex optimization problem [13].

Introducing the Lagrange multipliers λi for the inequality

constraints on each power pi in (19b) and η for the equality

constraint on the sum power in (19c), the Karush-Kuhn-Tucker

conditions give us necessary and sufficient conditions for the

optimal power allocation, which is denoted by {p⋆i }, as
−p⋆i ≤ 0, i ∈ [1, n], (20a)

n
∑

i=1

p⋆i − 1 = 0, (20b)

λi ≥ 0, i ∈ [1, n], (20c)

−λip
⋆
i = 0, i ∈ [1, n], (20d)

2
∑

k=1

αkγk,iMMSEi(p
⋆
i γk,i) + λi − η = 0, i ∈ [1, n]. (20e)

Here, λi’s act as slack variables and, thus, can be eliminated.

The remaining following conditions can be rewritten as

p⋆i

[

η −
2

∑

k=1

αkγk,iMMSEi(p
⋆
i γk,i)

]

= 0, i ∈ [1, n], (21a)

n
∑

i=1

p⋆i − 1 = 0, (21b)

−p⋆i ≤ 0, i ∈ [1, n], (21c)

2
∑

k=1

αkγk,iMMSEi(p
⋆
i γk,i)− η ≤ 0, i ∈ [1, n]. (21d)

Unfortunately, the optimal power allocation policy for this

problem cannot be expressed in a simpler closed-form using

a threshold value as in the case of waterfilling or mer-

cury/waterfilling [14]. This is true even in the case of Gaussian

inputs. Hence, we are not able to provide an intuitive graphical

interpretation for the optimal power allocation in the general

case and, rather, provide numerical results (see Section VI).

Nonetheless, in the special cases of low and high power

regimes, the MMSE function can be approximated using a

series expansion and closed form solutions for the optimal

power allocation exist as shown in the following two sections.



IV. LOW POWER REGIME ( P → 0)

Using a first order Taylor expansion and applying Corollary

2, the low power behavior of the MMSE function is given by

MMSEi(ρ) = İi(0) + Ïi(0)ρ+O(ρ2) (22)

= 1 + Ïi(0)ρ+O(ρ2), (23)

similarly as it was done in [10], [14], [15]. We recall that, Ïi(0)
is a constant value that depends only on the input distribution

used in the ith channel (see (17)).

With the approximation in (23), the optimal power alloca-

tion {p⋆i } that solves (19) can be put into the simpler form

p⋆i= 0, if γw
i ≤ η, (24)

γw
i + Ïi(0)p⋆i (α1γ

2
1,i + α2γ

2
2,i)= η, if γw

i > η, (25)

where γw
i denotes the weighted channel quality defined as

γw
i , α1γ1,i + α2γ2,i = P (α1|h1,i|2 + α2|h2,i|2). (26)

In the case of a single receiver, as studied in [14], the

optimal policy in the asymptotic low power regime is to

allocate all the power to the channel with the highest gain.

If there are multiple channels with the strongest channel gain,

then the power is allocated equally among them in the case

of Gaussian inputs (waterfilling), or inversely proportional to

the second derivative of the mutual information at zero power

in the case of constrained input constellations.

A similar argument applies to the two-way relay channel

model studied here as well. However, in our case we compare

the weighted averages of the channel strengths of the two users

as in (26) to determine the channel (or channels) to which

positive power is allocated. All the power is allocated to the

channel with the highest value for α1|h1,i|2 + α2|h2,i|2. If
multiple channels have the same maximum value, indexed by

i ∈ M, then the power is divided as

p⋆i = θ

Ïi(0)
, i ∈ M,

p⋆i = 0, i /∈ M,
(27)

with θ =
(
∑

i∈M(Ïi(0))−1
)−1

being the normalization factor

such that
∑n

i=1 p
⋆
i = 1.

Note that the channels to which non-zero power is allocated

depend on the objective function, i.e., α1 and α2. Hence,

different channels can be chosen for different operating points

on the boundary of the rate region. Once the channels for

which the power is to be allocated are chosen, the power

allocation is the same as in the case of a single receiver, and

depends only on the constellation used in those channels.

V. HIGH POWER REGIME (P → ∞)

In the limit of high power, MMSEi(ρ), in the case of

Gaussian inputs, expands as [14]

MMSEG
i (ρ) =

1

ρ
+O(1/ρ2).

Plugging this expansion in the KKT conditions in (21), we

can see that the optimal power allocation behaves as

pG⋆i =
1

n
+O(1/P ),

which is the same behavior as in the case of a single receiver:

for Gaussian inputs, in the high power regime, power is

allocated uniformly among the channels.

In the case of discrete m-ary constellations, the high power

behavior of MMSEi(ρ) depends on the minimum distance,

di, between any two points of the constellation used in ith
channel. Then MMSEi(ρ) decays exponentially as [14]

MMSEi(ρ) = Ki(ρ) exp

(

−d2i
4
ρ

)

, (28)

with O(1/
√
ρ) ≤ Ki(ρ) ≤ Ci, where Ci is a constant value.

It can be shown that, in the high power regime, power is

allocated to all the channels, i.e., p⋆i > 0, ∀i, which further

implies that the condition in (21d) is fulfilled with equality.

With this result and plugging (28) into (21d) we obtain

2
∑

k=1

αkγk,iKi(p
⋆
i γk,i) exp

(

−d2i
4
p⋆i γk,i

)

= η, ∀i. (29)

It is now easy to see that, as P → ∞ and with α1, α2 > 0,
the term with the smallest γk,i dominates the sum in (29)

obtaining, thus, the new condition, ∀i,

α
k
(i)
min

γ
k
(i)
min,i

Ki(p
⋆
i γk(i)

min,i
) exp

(

−d2i
4
p⋆i γk(i)

min,i

)

= η, (30)

where we have used k
(i)
min = argmink{γk,i}. Observe that, if

either α1 = 0 or α2 = 0, one of the terms in the summation

in (29) disappears obtaining a similar expression as in (30).

We now apply the similar operations as in [14] to the

expression in (30) and we obtain the optimal power allocation

in the high power regime with discrete constellations:

p⋆i =
θ

d2i mink |hk,i|2
+O

(

logP

P

)

, (31)

with θ =
(
∑n

i=1(d
2
i mink |hk,i|2)−1

)−1
.

Observe that the expression in (31) has been obtained as-

suming that both α1 and α2 are different from 0. Interestingly,

under this assumption, the expression for the optimal power

allocation in the high power regime in (31) is independent of

the actual values of α1 and α2.

However, for the case where one of the αk is equal to zero,

the expression in (31) is no longer valid and is replaced by

p⋆i =
θ

d2i |hk̄,i|2
+O

(

logP

P

)

, (32)

where k̄ is such that αk̄ > 0. Note that (32) agrees with [14].

VI. SIMULATIONS

A. Numerical algorithm

Since the optimization problem in (19) is convex, various

standard algorithms can be used to compute its optimal solu-

tion [13]. However, we believe that it will be useful to provide

the actual numerical algorithm used in our simulations.

We have numerically solved the non-linear system of equa-

tions in (21a) and (21b) using Newton’s method and projecting

the solution obtained at each iteration so that the inequalities



in (21c) and (21d) were fulfilled. Precisely, we have defined

the vector argument z ∈ Rn+1 such that its elements fulfill

zi= pi, i ∈ [1, n], (33)

zn+1= η. (34)

Similarly, we have defined the vector function f(z) ∈ Rn+1:

fi(z)= pi

[

η −
2

∑

k=1

αkγk,iMMSEi(piγk,i)

]

, i ∈ [1, n],

fn+1(z)=

n
∑

i=1

pi − 1.

Starting with a given z(0) and, until convergence is met, the

iteration update is given by

z(l+1) = z(l) − (∇zf(z
(l)))−1f(z(l)), (35)

z(l+1) = Proj(z(l+1)), (36)

where Proj projects its argument into the feasible set defined

by (21c) and (21d).

The computation of ∇zf can be done applying the results in

Lemma 1 and elementary differentiation techniques. Observe

that, as opposed to other methods proposed in [13], the main

advantage of using Newton’s method is that convergence is

very fast as we are able to directly compute the gradient ∇zf .

B. Results

Firstly, we consider the case with n = 3 parallel channels

with the following channel gains

|h1,1|2 = 2, |h1,2|2 = 1.2, |h1,3|2 = 0.2, (37)

|h2,1|2 = 0.8, |h2,2|2 = 3, |h2,3|2 = 1.2, (38)

and we assume that the input to each channel is from a

QPSK constellation. For this scenario, we study the evolution

of {p⋆i }i=3
i=1 as a function of the available power, P , and

for different choices of αk. The corresponding {p⋆i }i=3
i=1 are

plotted in Figs. 3(a), 3(b), and 3(c) together with the limiting

distribution as P → ∞, given by (31). It can be seen that the

limiting distribution for the power allocation does not depend

on the specific values of αk as long as both of them are

nonzero (see Figs. 3(a) and 3(b)). It can also be observed that,

whenever one αk = 0, the limiting distribution changes as it

is now given by (32). Finally, from Figs. 3(a), 3(b), and 3(c)

it is also clear that, as P → 0 all the power is allocated to the

channel with highest γw
i = P (α1|h1,i|2 + α2|h2,i|2), which,

for this particular case, corresponds to channel 2 in Figs. 3(a)

and 3(a) and to channel 1 in Fig. 3(c).

Secondly, we consider the following two configurations:

|h1,1|2 = 4, |h1,2|2 = 0.1, |h1,3|2 = 0.1, (39)

|h2,1|2 = 2.1, |h2,2|2 = 1.9, |h2,3|2 = 0.1, (40)

which will be referred to as balanced configuration because

the best channel for the two users is the same (channel 1), and

|h1,1|2 = 0.1, |h1,2|2 = 0.1, |h1,3|2 = 4, (41)

|h2,1|2 = 2.1, |h2,2|2 = 1.9, |h2,3|2 = 0.1, (42)

−10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

Available power P (dB)

F
ra

c
ti
o
n
 o

f 
tr

a
n
s
m

it
te

d
 p

o
w

e
r

Power allocation evolution for α
1
 = α

2
 = 0.5

 

 

Channel 1
Channel 2
Channel 3

(a) Case where α1 = α2 = 0.5. This implies that γw
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which will be referred to as unbalanced configuration because

the best channels for the two users are different (channel 3

for user 1 and channel 1 for user 2). Observe that the only

difference between the two channels is that, in the unbalanced

case, the values of |h1,1|2 and |h1,3|2 are swapped.

For the unbalanced configuration, we plot, in Fig. 4, the

achievable rate regions for the case of Gaussian and QPSK

inputs and for different P values. It can be observed that,

as P increases, the Gaussian rate region is always larger

and grows faster than the QPSK region. Moreover, it can be

observed that as P → ∞ the QPSK region saturates as the

mutual information with an input with 3 QPSK constellations

is upper bounded by log 26 ≈ 4.16 nat. At low power,

both regions coincide providing yet another evidence of the

excellent performance of QPSK in the low power regime.

In Fig. 5, we compare the achievable rate regions for the

balanced and unbalanced configurations. It can be seen that

the unbalanced region is always included inside the balanced

region. Moreover, it must be highlighted that the borders of

both regions coincide near the axes because this situation

corresponds to the case where the information flow to only

one of the users is maximized, thus, the achievable rate is a

function of the channel gains of that user, independently of

the order of these channels (since the input is QPSK for all

the channels).

VII. CONCLUSIONS

We have considered DF relaying in a two-way relay channel

with independent parallel Gaussian links from the relay to

the users. Focusing on the second phase of transmission, we

have studied the optimal power allocation policy at the relay

terminal to achieve the boundary points of the rate region by

considering arbitrary input constellations. We have identified

the necessary and sufficient conditions for the optimal power

allocation policy and provided numerical solutions. Unfor-

tunately, the well-known waterfilling or mercury/waterfilling

interpretations do not apply in this setup due to the weighting

in the objective function. We have also considered the low

and the high power regimes. In the low power regime, all the
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Fig. 5. Achievable rate regions for different power constraints for QPSK
input distribution and two different channel configurations: balanced (red,
solid) and unbalanced (black, dashed).

power is allocated to the channels with the highest weighted

channel quality, whereas in the high power regime, the power

is allocated uniformly in the case of Gaussian inputs, and

according to the minimum distances and the minimum of the

channel qualities in the case of discrete constellations.
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