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Abstract—The energy-distortion tradeoff for lossy transmission
of sources over multi-user networks is studied. Theenergy-
distortion function E(D) is defined as the minimum energy
required to transmit a source to the receiver within the target
distortion D, when there is no restriction on the number of
channel uses per source sample. For point-to-point channels,
E(D) is shown to be equal to the product of the minimum energy
per bit Ebmin and the rate–distortion function R(D), indicating
the optimality of source-channel separation in this setting. It
is shown that the optimal E(D) can also be achieved by the
Schalkwijk–Kailath (SK) scheme, as well as separate coding, in
the presence of perfect channel output feedback.

Then, it is shown that the optimality of separation in terms of
E(D) does not extend to multi-user networks. The scenario with
two encoders observing correlated Gaussian sources in which the
encoders communicate to the receiver over a Gaussian multiple-
access channel (MAC) with perfect channel output feedback is
studied. First a lower bound onE(D) is provided and compared
against two upper bounds achievable by separation and an
uncoded SK type scheme, respectively. Even though neither of
these achievable schemes meets the lower bound in general, it
is shown that their energy requirements lie within a constant
gap of E(D) in the low distortion regime, for which the energy
requirement grows unbounded. It is shown that the SK based
scheme outperforms the separation based scheme in certain
scenarios, which establishes the sub-optimality of separation in
this multi-user setting.

I. I NTRODUCTION

The fundamental problem in communications is to transmit
a message from a source terminal to a destination over a noisy
channel such that the destination can reconstruct the source
message with the highest fidelity. In general, we can associate
a cost for using the channel and also define the fidelity of
the reconstruction by a distortion function. Naturally, there
is a tradeoff between the available budget for transmission
and the achievable distortion at the destination. In classical
models, it is assumed that the system designer is given a
certain average budget per each use of the channel as well as a
fixed bandwidth ratio that specifies the number of channel uses
per source sample. Then the problem is to find the minimum
budget (per channel use) required to achieve a target distortion
requirement for the fixed bandwidth ratio. The solution char-
acterizes thepower-distortion tradeofffor the given system
at the fixed bandwidth ratio. In this work, we introduce an
energy-distortion tradeoff. The ‘energy’ refers to the total cost
of using the communication channel per source sample. Thus,
rather than constraining the cost of each channel use for a
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fixed bandwidth ratio, we constrain the total budget used over
the channel. We capture the corresponding tradeoff by the
fundamental information-theoretic functionE(D) which is the
minimum energy required per source sample to achieve an
average distortionD, for a large number of source samples.
We note that, in this model, no restriction has been placed on
the bandwidth ratio, thus allowing us to maximize the energy
efficiency over unlimited bandwidth.

A potential application for our model is sensor networks,
in which various physical phenomena observed at the sensor
nodes are to be reconstructed at the fusion center. Ultra-
wideband has been considered as a viable communication
strategy for sensor networks because of several benefits in-
cluding high performance in the low power regime [3]. In
our model, by removing the bandwidth ratio constraint, we
basically identify the fundamental performance limits forthe
energy-distortion tradeoff in the wideband limit.

In a point-to-point communication system, separate source
and channel coding is known to be optimal in terms of the
power-distortion tradeoff. Naturally, the separation optimality
applies to the energy-distortion tradeoff as well: the optimal
E(D) is achieved by lossy compression (at rate R(D) per source
sample) followed by channel encoding in the most energy
efficient manner, i.e., by operating in the wideband regime
such that the transmitter uses minimum energy per bitEbmin.
We also consider the scenario in which perfect channel output
feedback is available at the transmitter. We show that, similarly
to the power-distortion tradeoff, energy-distortion tradeoff also
remains the same despite the additional feedback link.

It is yet another well-known fact that the optimality of
source-channel separation does not extend to multi-user sce-
narios other than in a number of special cases [1], [4]. We
focus on the case with multiple sources, in which two sensors
observing correlated sources want to transmit their observation
to a fusion center over a multiple access channel (MAC). In
particular, we consider two encoders/transmitters observing
Gaussian sources which are correlated. The communication
channel from the transmitters to the receiver is assumed
to be an additive white Gaussian noise (AWGN) channel.
Moreover, we assume the availability of perfect channel output
feedback at both transmitters. The power-distortion tradeoff
for this model is studied in [8] in the case of matching
source and channel bandwidths. We are interested in obtaining
the minimum energy requirement for reconstructing both the
sources at the receiver within a target distortion without any
restrictions on the source and channel bandwidths. For the
sake of simplicity of analysis we restrict our attention to the
case of symmetric sources, energies, channel gains and target
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Fig. 1: Bivariate Gaussian source model with perfect channel
output feedback.

distortions.
The rest of the paper is organized as follows. After introduc-

ing the general system model for two users in Section II, we
present the results for a point-to-point system in Section III.
For the two-user model, we provide a converse bound similarly
to [8] by simply extending their analysis to the bandwidth
mismatch case in Section IV. For achievability, in Section V
we analyze a separate source and channel coding scheme, in
which the feedback information is used only to improve the
channel transmission rates of the transmitters. Then in Section
VI we study an uncoded transmission scheme motivated by
the analog transmission technique introduced by Schalkwijk
and Kailath in [6] and applied to the MAC with feedback
by Ozarow in [10]. We characterize the energy-distortion
tradeoff for both of these schemes. Section VII is dedicated
to the comparison of these bounds for some chosen values of
correlation coefficient; and finally Section VIII concludesthe
paper.

II. SYSTEM MODEL

We consider a MAC with two transmitters in which perfect
channel output at the receiver end is available as feedback
to both of the transmitters. The sourceSM

i at transmitteri
is anM -length random vector of independent and identically
distributed (i.i.d.) real-valued Gaussian random variables with
zero means and variancesσ2

Si
, i.e., Si ∼ N (0, σ2

Si
) for i =

1, 2. We assume that the sources are correlated , and the joint
bivariate Gaussian distribution has the covariance matrix

[

σ2
S1

ρσS1
σS2

ρσS1
σS2

σ2
S2

]

, (1)

where−1 ≤ ρ ≤ 1 is the correlation coefficient. Without loss
of generality,ρ can be taken to lie within[0, 1] as otherwise,
if the sources are negatively correlated, we can replaceS2 by
−S2 to obtain a non-negative correlation coefficient.

Transmitters encode their observations and transmit them
over a MAC. Denoting the input sequence at transmitteri as
XN

i , and the corresponding channel output vector asY N , the
channel is characterized by

Yn = X1,n + X2,n + Zn for n = 1, . . . , N, (2)

where ZN = (Z1, ..., ZN ) is the vector of i.i.d.N (0, σ2
Z)

channel noise variables. In this work, we focus on the sym-
metric scenario in which the source statistics are the same,i.e.,
σ2

S1
= σ2

S2
, σ2

S . See Fig. 1 for an illustration of the system
model. We denote this system the(σ2

S , σ2
Z , ρ) network.

Moreover, we assume that perfect causal channel output
feedback is available at both of the transmitters, hence the

encoding function at each transmitter depends not only on
the source vector but also on the previous channel outputs.
Considering block encoding from anM -length source vector
to an N -length channel vector, the encoder at transmitteri

is described by a sequence of encoding functionsf
(M,N)
i,n :

R
M × R

n−1 → R where Xi,n = f
(M,N)
i,n (SM

i , Y n−1), for
i = 1, 2 and n = 1, . . . , N . The decoder is described by
a pair of decoding functionsg(M,N)

i : R
N → R

M where
ŜM

i = g
(M,N)
i (Y N ), for i = 1, 2.

Definition 2.1: For a (σ2
S , σ2

Z , ρ) network, an energy-
distortion pair(E,D) is said to beachievableif there exists
a sequence (overM ) of encoding functions

{f
(M,N)
1,n }N

n=1 and{f (M,N)
2,n }N

n=1

satisfying the energy constraint

E

[

N
∑

n=1

X2
i,n

]

≤ ME for i = 1, 2, (3)

and a sequence of decoding functions

g
(M,N)
1 andg

(M,N)
2

such that the corresponding distortion sequence satisfies

lim sup
M→∞

1

M

M
∑

m=1

E

[

(Si,m − Ŝi,m)2
]

≤ D, for i = 1, 2.

Definition 2.2: We define theenergy-distortion functionfor
the (σ2

S , σ2
Z , ρ) network as

E(D) , inf{E ≥ 0 : (E,D) is achievable}. (4)

Note that we do not impose any constraints on the band-
width ratio, and hence, it is possible to transmit as many
channel symbols per source observation as desired as long as
the total energy constraint is satisfied. Our goal in this paper
is to determineE(D) for a (σ2

S , σ2
Z , ρ) network.

III. S INGLE SOURCESCENARIO

We first treat the single user scenario without feedback, in
which a single Gaussian sourceS is to be transmitted over
a point-to-point AWGN channel with noise varianceσ2

Z . To
present our result we first defineEbmin as theminimum energy
per bit [12] for the underlying communication channel, and
R(D) as the rate-distortion function for the given source, that
is, the minimum rate (bits per source sample) of encodingS
required to achieve an average distortionD.

Lemma 3.1:For the single source scenario, we have

E(D) = Ebmin × R(D), (5)

which can be achieved by separate source and channel coding1.
Lemma 3.1 holds in considerable generality, including sta-

tionary sources and channels with memory. For the AWGN
channel and the Gaussian source, we have

Ebmin = 2σ2
Z loge 2, (6)

and

R(D) =
1

2
log+

2

(

σ2
S

D

)

, (7)

1Proofs are not included due to space limitations.



wherelog+(x) = log(x) if x ≥ 1 and0 otherwise. Therefore,
we have

E(D) = σ2
Z log+

e

(

σ2
S

D

)

. (8)

We remark next that the optimality of separation in terms
of the power-distortion tradeoff holds even in the presenceof
perfect channel output feedback, and moreover, the tradeoff
remains the same since the point-to-point channel capacity
is not improved by feedback. However, in the case of an
AWGN channel, perfect channel output feedback can be
used to achieve the optimal tradeoff by the simpler uncoded
Schalkwijk-Kailath (SK) scheme [6]. In the SK scheme for
a point-to-point channel, the transmitter transmits a scaled
version of the estimation error at the receiver in an uncoded
manner in each step; hence, it achieves the channel capacity
without incurring any coding delay. The SK scheme can be
adapted to joint source–channel coding, i.e., no compression
of the source, and it achieves the optimal power-distortion
tradeoff in the point-to-point setting for any fixed bandwidth
ratio [11]. So, the SK scheme extends the optimality of un-
coded transmission in point-to-point systems to the bandwidth
mismatch case.

It is possible to prove that similar arguments hold for the
energy-distortion tradeoff as well. Lemma 3.1 can be extended
to show that (5) holds even when perfect channel feedback is
available at the transmitters. Since feedback does not change
Ebmin, E(D) also remains the same, and this can also be
achieved by the SK scheme.

For the rest of the paper, we study the scenario with two
correlated sources. We provide lower and upper bounds on
E(D).

IV. L OWER BOUND ON E(D)

Here, we present a lower bound onE(D) for the(σ2
S , σ2

Z , ρ)
network. First assume perfect cooperation between the two
encoders. This reduces the model to that of a single vector
source and a2 × 1 multiple input - single output point-
to-point channel with individual distortion requirementson
the components of the vector source. We can directly apply
Lemma 3.1 with

Ebmin = σ2
Z loge 2, (9)

which is the minimum energy per bit for this channel. The
rate–distortion function under individual distortion constraints
is given by [14]

R(D) =

{

1
2

log+
2

“

σ4
S(1−ρ2)

D2

”

if 0 ≤ D ≤ σ2
S(1 − ρ)

1
2

log+
2

“

σ2
S(1+ρ)

2D−(1−ρ)σ2
S

”

if σ2
S(1 − ρ) < D ≤ σ2

S .

(10)
Theorem 4.1:In a (σ2

S , σ2
Z , ρ) network, E(D) is lower

bounded byElb1(D) where

Elb1(D) =



















σ2
Z

4 log+
e

(

σ4
S(1−ρ2)

D2

)

if 0 ≤ D ≤ σ2
S(1 − ρ)

σ2
Z

4 log+
e

(

σ2
S(1+ρ)

2D−(1−ρ)σ2
S

)

if σ2
S(1 − ρ) < D ≤ σ2

S .
(11)

This lower bound can be tightened by following the argu-
ments in [7, Section 3]. This bound considers separate channel
encoding at the transmitters, and bounds the amount of cor-
relation that can be created among the channel codewords by
using the available correlation among the source vectors. This
allows us to improve the lower bound by better accounting for
the limited beamforming gain over the channel.

We define the conditional rate-distortion functions
RS1|S2

(D) and RS2|S1
(D) as the minimum rate required

to achieve a distortion ofD for one source when the other
source is available at both the encoder and the decoder. It can
be shown that

RS1|S2
(D) = RS2|S1

(D) =
1

2
log+

2

(

σ2
S(1 − ρ2)

D

)

. (12)

Theorem 4.2:In a (σ2
S , σ2

Z , ρ) network, E(D) is lower
bounded byElb2(D) as given in (13).

SinceElb1(D) ≤ Elb2(D), we restrict our attention to the
tighter boundElb2(D) for the rest of the paper.

V. SEPARATE SOURCE AND CHANNEL CODING

Apart from the practical motivation due to the modularity it
provides, separate source and channel coding is also motivated
by its theoretical optimality in the point-to-point scenario.
Almost all practical communication systems operate based on
separate source and channel coding. In this section, we outline
a separation based scheme and analyze its energy-distortion
tradeoff.

In separate source and channel coding, the encoders first
quantize their sources at identical rates through distributed
compression (see [9] or [13]) and then transmit the quantized
information bits over the MAC with perfect feedback, oper-
ating on the boundary of the capacity region for this channel
which was characterized by Ozarow in [10].

The rate-distortion functionRsep(D) to achieve symmetric
distortionD for each source is given as [9], [13]

Rsep(D) =

max

{

1

2
log+

2

(

σ2
S(1 − ρ2)

2D

(

1 +

√

1 +
4Dρ2

σ2
S(1 − ρ2)2

))

,

1

4
log+

2

(

σ4
S(1 − ρ2)

2D2

(

1 +

√

1 +
4D2ρ2

σ4
S(1 − ρ2)2

))

}

.

(14)

Elb2(D) =







min0≤ρ̂≤1 max
{

σ2
Z

(1−ρ̂2) log+
e

(

σ2
S(1−ρ2)

D

)

,
σ2

Z

2(1+ρ̂) log+
e

(

σ4
S(1−ρ2)

D2

)}

if 0 ≤ D ≤ σ2
S(1 − ρ)

min0≤ρ̂≤1 max
{

σ2
Z

(1−ρ̂2) log+
e

(

σ2
S(1−ρ2)

D

)

,
σ2

Z

2(1+ρ̂) log+
e

(

σ2
S(1+ρ)

2D−(1−ρ)σ2
S

)}

if σ2
S(1 − ρ) < D ≤ σ2

S

(13)



However, in the case of energy-distortion tradeoff, it is
sufficient for each transmitter to transmitRsep(D) bits to the
receiver in a separate, orthogonal band, i.e., without interfering
with the other transmitter. Note that the feedback signal is
not used in this scheme. This is because, despite the fact
that feedback enlarges the capacity region of a MAC under
average power constraints at the users, it does not improve
the minimum energy per bit which is achieved by orthogonal
transmissions. The achievable energy-distortion tradeoff of the
separation schemeEsep(D) is given in the next theorem.

Theorem 5.1:In a (σ2
S , σ2

Z , ρ) network, E(D) is upper
bounded byEsep(D), where

Esep(D) =

max

{

σ2
Z log+

e

(

σ2
S(1 − ρ2)

2D

(

1 +

√

1 +
4Dρ2

σ2
S(1 − ρ2)2

))

,

σ2
Z

2
log+

e

(

σ4
S(1 − ρ2)

2D2

(

1 +

√

1 +
4D2ρ2

σ4
S(1 − ρ2)2

))

}

.

(15)

Remark 5.1:For ρ = 0, it can be easily checked that the
lower boundElb2(D) and upper boundEsep(D) match. This is
expected since separation is optimal for independent messages.
For ρ = 1, Esep(D) is twice the lower boundElb2(D). From
this extreme case of identical sources, we can conclude that
one of the reasons for the suboptimal performance of separate
source and channel coding is the independence of channel
codewords, i.e., no beamforming gain can be exploited in
separation despite the available correlation among the sources.

While separation is not optimal in general, the next proposi-
tion states that it has only a finite energy gap with the optimal
performance even asE(D) diverges to infinity in the low
distortion regime. Hence, separation can be a viable alternative
for real-world applications when the source correlation islow.
Note that the gap betweenEsep(D) and Elb2(D) diverges as
ρ → 1.

Proposition 5.2: In a (σ2
S , σ2

Z , ρ) network, the following
holds:

lim
D→0

Esep(D) − Elb2(D) =
σ2

Z

2
loge

(

1

1 − ρ2

)

, (16)

whereas

lim
D→0

Esep(D) = ∞ and lim
D→0

Elb2(D) = ∞. (17)

VI. U NCODED TRANSMISSION

While separation is optimal for point-to-point systems and
for a MAC with independent sources, this is not the case when
the sources are correlated. In this section, we describe an alter-
native achievability scheme with uncoded transmission based
on the Schalkwijk-Kailath (SK) scheme [6]. The advantage of
uncoded transmission in multi-user scenarios has been shown
previously. In Gaussian sensor networks, when the source
and channel bandwidths match, it is known that the uncoded
transmission is exactly optimal [2]. In [5], we showed that
an SK based uncoded transmission scheme has better energy-
distortion performance than the separation based scheme in
certain cases. In fact, in the case of a MAC with perfect
feedback the channel coding part of the separation based

transmission of correlated sources inherently uses uncoded
transmission since the achievability of the capacity region
is based on the SK scheme [10]. Here, we basically extend
the transmission scheme of [10] to the scenario of correlated
sources.

The basic idea is similar to the SK scheme for a point-to-
point channel. In each step, each transmitter calculates the
‘error’ for its own source, i.e., the difference between the
estimate at the receiver and the actual source realization at
the transmitter. These errors are then scaled and transmitted
simultaneously by both transmitters over the MAC. The power
of these transmissions at every channel use is taken to be fixed
and very small (approaching zero). Based on the received
signals, the receiver updates its estimates for both of the
sources. The scheme is terminated once the target distortions
for both sources are achieved at the receiver. Note that, as
mentioned above, the achievability part (channel coding) of the
separation scheme uses a similar uncoded scheme at its core.
The main difference of the scheme proposed here from the
separation based scheme is that now we eliminate the ‘quan-
tization’ step and deal directly with the source realizations at
the transmitters.

Theorem 6.1:In a (σ2
S , 1, ρ) network, E(D) is upper

bounded byEu(D), where

Eu(D) =



















1
4 loge

(

(1+ρ)σ2
S

2D−(1−ρ)σ2
S

)

+ 1
2

(

D
2D−(1−ρ)σ2

S

− 1
1+ρ

)

if D ≥ σ2
S(1 − ρ)

1
4 loge

(

1+ρ
1−ρ

)

+ 1
2

(

ρ
1+ρ

)

+ loge

(

(1−ρ)σ2
S

D

)

if 0 ≤ D ≤ σ2
S(1 − ρ).

(18)

Similarly to Proposition 5.2, we can bound the energy gap
between the energy requirement of the uncoded scheme and
the optimal one.

Proposition 6.2: In a (σ2
S , 1, ρ) network, the following

holds:

lim
D→0

Eu(D)−Elb2(D) =
ρ

2(1 + ρ)
−

1

4
loge

(

(1 − ρ)(1 + ρ)3
)

,

(19)
whereas

lim
D→0

Eu(D) = ∞ and lim
D→0

Elb2(D) = ∞. (20)

VII. N UMERICAL RESULTS AND DISCUSSIONS

In Figs. (2a) and (2b), we plot the lower and upper bounds
on E(D) for σ2

S = σ2
Z = 1 and ρ equal to 0.2 and

0.8 respectively. We observe in both cases that the uncoded
transmission scheme performs better than separation at all
distortion requirements plotted in the figures. Forρ = 0.2, all
the bounds are close to each other. However, the gap between
the performance of the uncoded transmission scheme and
the lower bound is almost indistinguishable except at higher
values of distortion. The curves are more separated when
ρ = 0.8. In this case, the uncoded transmission scheme has a
clear advantage over the separation based scheme. Note that
the finite energy gap identified for the uncoded transmission
scheme in Prop. 6.2 is smaller than the one for the separation
scheme in Prop. 5.2; however, this does not directly lead to
the superiority of the uncoded scheme.
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Fig. 2: E(D) bounds for a(1, 1, ρ) network, forρ = 0.2 andρ = 0.8.

Moreover, the uncoded transmission scheme is exactly op-
timal whenρ = 0 or ρ = 1. Furthermore, whenρ = 0, the
separation based scheme is also optimal though it has exactly
twice the energy consumption of the lower bound whenρ = 1.
This also implies that the energy consumption of the uncoded
transmission scheme is half as much as that of the separation
based scheme whenρ = 1.

VIII. C ONCLUSIONS

We have studied the fundamental energy-distortion tradeoff
functionE(D) in networks with one or two Gaussian sources
and a single receiver when there is no constraint on the
available channel bandwidth per source sample. We have
considered the scenario in which the perfect channel outputis
available at the transmitters causally. Using separation,E(D)
has been established for the point-to-point scenario. For the
case of two sources, we have first provided a lower bound
on E(D). This lower bound represents the absolute minimum
energy (in Joules) that is required to reconstruct the sources
within the target distortion at the receiver, regardless ofthe
communication/reconstruction strategies used in the system.
The lower bound is tight when the sources are independent.
Besides the lower bound, we have also studied two different
upper bounds based on separation and uncoded transmission,
respectively. Simulation results suggest that uncoded transmis-
sion can beat the separation based scheme in many situations,
proving the suboptimality of separation in this model. This
also illustrates that uncoded transmission might be attractive
in multi-user systems from an energy efficiency perspective,
extending a similar observation in [8] to the wideband regime.
Moreover, we have shown that both the separate and the
uncoded schemes require at most a finite amount of extra
energy than the minimal one, even in the limit of zero
distortion, in which case the energy requirement diverges.
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