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Certifying coherence

A defining feature of quantum mechanics is the ability for a system to be in a 
coherent superposition of states. One method of determining the number of 
states coherently superposed is state tomography. This however scales 
poorly with the size of the quantum system. It also relies on having 
confidence that the tomographic procedure can be performed accurately.

The existence of a superposition of two states can be verified if an 
interference fringe is produced in a Ramsey type experiment, without 
needing full tomography. For superpositions of k>2 states, it is possible to 
produce a certifier based on a generalized interference pattern that verifies 
that k-coherence is present [1].

If we consider a qubit that can be coupled to the state under study, we can 
produce an interference pattern by combining a period of free evolution of 
the state (providing a phase evolution) with a mapping operation, then 
measuring the qubit:

Our certifier is then defined in terms of the moments of this interference 
pattern:

It can be shown that C has the property that it can only be greater than 1.25 
for a 3-coherent state and greater than 1.86 for a 4-coherent state.
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Conclusion

Multilevel coherence can be certified efficiently using an 
interference-type experiment.

The certification theory makes very few assumptions about the 
processes used to manipulate the state, meaning it is reliable 
even in the case of imperfect or unreliable control, unlike state 
tomography.

We demonstrate this in a trapped ion system, certifying that a 
given quantum state must be in a superposition of three 
motional Fock states.

Trapped ion realisation

We use these methods to certify the existence of three coherence in the 
motional state of a single trapped calcium ion.

An optical qubit can be defined between a  Zeeman substate in the S1/2
ground state and a substate in the metastable D5/2 state. A laser is then used 
to drive either carrier transitions, which affect only the qubit state, or 
sideband transitions, which also affect the motional state. Since the ion is in 
the Lamb-Dicke regime, only 1st order sideband transitions are available.

After sideband cooling the ion to initialize it to the motional ground state, the 
state to be studied is prepared using carrier and sideband pulses. This 
sequence is designed to leave the qubit in the ground state at its conclusion.
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can certify the existence of multilevel coherence, but not prove
its absence.

A. Interference-Pattern Methods

To be most useful, a certifier must be achievable with few,
easily accessible measurements. Interference patterns are a ba-
sic tool for verifying quantum coherence between two states.
Any evidence of oscillatory behaviour in the well known Ram-
sey experiment on a quantum system is su�cient to verify 2-
coherence. It is desirable to continue in this vein; interference
patterns are a function of only one control parameter and are
produced by simple projective measurements onto one basis
state, so are easily experimentally achievable.

The particular interference patterns considered here are
higher order extensions of the Ramsey experiment. An in-
put state d to be tested for coherence undergoes free evolution
of a controlled duration, either by waiting an amount of time or
phase-shifting the control fields, before a predetermined pulse
sequence is applied to map the coherent basis of interest back
to the measurement basis. The dynamics of this measure-
ment with varying time or phase determine the interference
pattern. Here, as the system under consideration is a harmonic
oscillator, the free-evolution dynamics Ûf are periodic, so the
time parameter can be replaced by the phase q of this period.
Explicitly, the interference pattern is

?(q) = hj | ÛmÛf (q)d Û
†

f (q)Û
†

m |ji (2)

where Ûm is the operation mapping the coherent basis to the
measurement basis, and |ji is the basis state whose population
is measured. In the special case of the two-state Ramsey
sequence, an optimal measurement mapping is the adjoint of
the operation used to create the initial superposition.

The certifier ⇠ used here is a function of normalised mo-
ments

"= =
1

2c

π 2c

0
?(q)=3q, (3)

of this interference pattern. No single moment is suitable taken
alone, however the ratio

⇠ =
"3

"2
1

, (4)

satisfies the requisites [18]. It requires the pattern to be
evaluated at only a few di�erent free-evolution phases for
good statistics, as it relies only on low-order moments. Ob-
taining a value of ⇠ greater than 1 requires 2-coherence,
greater than 5/4 = 1.25 requires 3-coherence, and greater
than 179/96 ⇡ 1.86 is necessary to certify 4-coherence in a
Hilbert space of arbitrary dimension [18]. While the metric
can certify the presence of coherence, this threshold system
does not provide the completely tight bounds needed to unam-
biguously certify the absence of coherence above a given level.
For example, many 3-coherent states can exhibit values of ⇠
lower than the 5/4 threshold if the state distinguishability is

low or if the measurement-mapping operation is implemented
poorly.

This coherence metric is resilient in the face of imperfect
realisation of coherent operations during the measurement-
mapping procedure, however the analysis of ref. [18] is valid
only when the actual measurement is a projection onto a single
basis state. In order to be used for coupled systems, it must first
be shown that the same hierarchical structure of the threshold
values applies for general measurements.

B. General Measurements

The interference pattern in eq. (2) can be generalised to

?(q) = Tr
⇥
ÂÛmÛf (q)d Û

†

f (q)Û
†

m
⇤
, (5)

where Â is an element of a positive operator-valued measure
(POVM). In ref. [18], the only forms of Â considered are
projectors of rank 1, where Â = |jihj |, for a measurement-
basis state |ji. The only measurement available in the ion
trap is a projective measurement on the qubit state only, such
as Â = |6ih6 | ⌦ Îmot, where Îmot is the identity operator on
the motional space. This is a type of higher-rank projective
measurement, but it will be shown that the same method is
applicable for general measurements.

As in ref. [18], the analysis is performed in terms of a
harmonic oscillator with eigenstates {|=i}. Any periodic free-
evolution can be modelled as such by inserting non-interacting
states with the otherwise-absent intermediate energy levels.
Using the decompositions d =

Õ
=,< d=< |=ih< | and Â =Õ

=,< �=< |=ih< |, the interference pattern can be written as

?(q) =
’
=

d==�== + 2
’
=><

|d<=�=< | cos
�
(= � <)q + \=<),

(6)
where \=< is the complex phase of d<=�=<.

In this form, the value of the first moment of the interference
pattern "1 is the sum of the q-independent terms. The only
nonzero terms of the moment "3 are of the form : cos(\=1 ,<1±

\=2 ,<2±· · · ), so the certifier⇠ will reach a maximal value when
all the \ are zero, and d and Â can be taken as real-symmetric
matrices without loss of generality in determining threshold
values.

The maximum achievable value of ⇠ for a 2-coherent state
under these general measurements can be verified analytically.
To be less than 3-coherent, d may have at most two nonzero
diagonal elements in the coherence basis, one upper-triangular
o� -diagonal entry. The value of ⇠ is not dependent on partic-
ular energy levels, so for simplicity these are labelled 0 and 1.
The convexity of ⇠ is una�ected by the general measurement,
so it is su�cient to consider only pure states. The state can be
parametrised by a real value 0  G  1 as

p
G |0i +

p
1 � G |1i.

The value of the certifier is then

⇠ = G�00 + (1 � G)�11 +
6G(1 � G)�2

01

G�00 + (1 � G)�11
. (7)

In order for the measurement operator to be a valid POVM
value, the two diagonal elements must individually be between
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where Â is an element of a positive operator-valued measure
(POVM). In ref. [18], the only forms of Â considered are
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as Â = |6ih6 | ⌦ Îmot, where Îmot is the identity operator on
the motional space. This is a type of higher-rank projective
measurement, but it will be shown that the same method is
applicable for general measurements.

As in ref. [18], the analysis is performed in terms of a
harmonic oscillator with eigenstates {|=i}. Any periodic free-
evolution can be modelled as such by inserting non-interacting
states with the otherwise-absent intermediate energy levels.
Using the decompositions d =

Õ
=,< d=< |=ih< | and Â =Õ
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[1] Dive, Benjamin, et al. "Characterization of multilevel quantum coherence without ideal measurements." Physical Review Research 2, 013220 (2020).
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We use a macroscopic linear Paul trap, holding a single 40Ca+ ion. Hollow endcaps allow a 729nm laser, used to address the 
qubit transition, to be coupled to only the axial mode of motion. Other lasers fields are used for Doppler cooling, state 
preparation, and detection. The ion is imaged from above onto a PMT for detection of the qubit state.

A series of four pulses are used to prepare the state                                         . To certify this state, five pulses are then used to implement the mapping operation 
before the qubit state is measured. Rather than using a period of free evolution, equivalently a phase offset is applied to all the sideband pulses during the 
mapping stage. The optimal mapping operation is found using numerical methods. The red line is a simulation of the process - the high frequency oscillations 
are due to off-resonant carrier excitation during the sideband pulses

As the phase of the sideband pulses is changed, an interference pattern is 
produced. From this, a value for the certifier of 1.54 is obtained. Since 
this is greater than 1.25, the state in question must have been in a 
superposition of (at least) three basis states.
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FIG. 4. Time evolution of state
�
|6, 0i + |6, 1i + |6, 2i

�
/
p

3, while driving the blue-sideband transition. The data points (black crosses) are the
measured excitation probabilities with Wilson binomial 1-f confidence bounds indicated by error bars. The best fit (darker blue line) was found
by maximum-likelihood estimation, and the 95% confidence region (lighter blue shaded region) was found by bootstrapping the measured data
14 000 times. The fit was made over the sideband Rabi frequency, sideband detuning, motional dephasing rate, and a reduced density matrix
including correlations only between directly coupled elements. The Rabi frequency coupling the |6, 0i state was estimated at 6.94(3) kHz,
with oscillation from |6, =i increased by a factor of

p
= + 1. The populations in |6, 0i, |6, 1i and |6, 2i were 33(2)%, 30(2)% and 33(2)%,

respectively, with 4.7(14)% outside the desired basis elements, where the errors denote the 1-f confidence region from bootstrapping. These
values all have significant negative covariance, as expected. All appreciable undesired population was in the |4i excited qubit state; the motional
state |3i was included in the fit, but found to have a population consistent with zero with a standard error of 9 ⇥ 10�3 percentage points.

State creation Measurement mapping

Transition carrier red carrier red red carrier red carrier red
Pulse length 0.50 0.70 0.73 0.71 0.71 0.50 1.42 1.59 0.72
Phase o�set /c 0 �0.50 �1.00 0.50 0 �2.20 0.91 �0.30 1.60

TABLE I. Pulse sequence for creation and measurement mapping of target state
�
|6, 0i + |6, 1i + |6, 2i

�
/
p

3. Only carrier and red sideband
transitions are used. The pulse length is scaled relative to the oscillation frequency of the coupled pair that includes the motional |0i state, so
that a value of 1 is the time taken to exchange |6, 0i $ |4, 0i on the carrier and |6, 1i $ |4, 0i on the red sideband. The given phase is applied
as an o�set, so that the set laser phase at the beginning of a pulse is o�set relative to where it would have been had it oscillated freely at its
transition frequency since the beginning of the experiment. The interference pattern is constructed by adding a varying phase o�set on the red
sideband pulses during the measurement mapping.

no additional states can become populated during the wait pe-
riod. The aim of tailoring a measurement-mapping operation
for each state is to maximise the visibility of the interference
pattern. Any certifier is valid for any state within the same pop-
ulated subspace, however a poorly designed map will generally
produce inconclusive tests.

A sequence of sideband pulses producing dynamics satis-
fying eq. (12) was found for each target state presented here.
The error in such a map is the total probability that a mea-
surement taken after the map is applied to one of the states in
eq. (12) would not produce the desired value. The sequences
were found by numerical minimisation of this error over the
duration and phase of each pulse in a variety of candidate
sequences. In practice, many sequences exist that result in a
probability consistent with zero to a tolerance of 10�10, usually
by alternating a motion-modifying sideband with the carrier.
The sequences used here do not increase the total motional
excitation considered by the system. The first pulse is typi-
cally the inverse of the last step of the corresponding creation
sequence, reducing the highest-occupied phonon state by one.
All subsequent red and blue sideband pulses except the last

are then a single period of the dynamics of this greatest cou-
pled motional pair with varying phases, so the phonon count
never rises above its initial maximum, though the interspersed
carrier pulses may be of any duration.

The particular sequence of pulses used to create the target
state

�
|6, 0i + |6, 1i + |6, 2i

�
/
p

3 is shown in table I, along with
the subsequent measurement-mapping sequence. The specifi-
cations of sequences for other states are presented in Appendix
A, and in machine-readable format in the Supplemental Infor-
mation [35]. For the example target state, the simulated (line)
and experimentally realised (points) dynamics are shown in
fig. 5. This depicts how the population of the qubit |4i state
varies over the duration of the sequence, with no phase evo-
lution. The fast oscillations caused by the o�-resonant carrier
excitation are clearly visible during sideband pulses in simula-
tions, with a second distinct frequency component as a result
of the Stark-shift compensation pulse.

To produce the interference pattern, a period of phase evo-
lution Ûf (q) under the system Hamiltonian eq. (1) must be
implemented. In any reference frame, this evolution manifests
itself as a phase o�set to the applied laser field producing the


