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Abstract

This thesis presents work aimed towards achieving sideband cooling of 40Ca+ ions in

a Penning trap.

The observation of an increase in the number of quantum jumps as a function of the

trapping magnetic field is first presented. This observation is explained by the ion falling

into a long-lived D 5
2
state, out of which the ion is not being re-pumped. The ion can fall

into this state due to mixing of the fine structure components with the same mJ quantum

number induced by the applied magnetic field. A calculation of the mixing and shelving

rate as a function of magnetic field strength is presented. This theory matches well with

the experimental results observed. This work has been presented in a publication in which

a perturbative analysis was used. An alternative analysis is presented here in which the

full Hamiltonian is diagonalised. The essential conclusions however remain unchanged.

This ‘J-state mixing’ effect means re-pumping from each of the six D 5
2
state sub-levels

of our ion is required for efficient laser cooling. This is achieved by the addition of a system

comprising an 854 nm laser and a fibre EOM to provide the radiation required to re-pump

these levels. The same EOM is then used to re-pump out of the four sub-levels of the

D 3
2
state using a single 866 nm laser. This is a great simplification of the experimental

setup required to cool a 40Ca+ ion in a Penning trap which would otherwise require ten

separate lasers to independently address each of the D sub-states.

Achieving efficient repumping leads to the ability to perform pulsed spectroscopy on

the quadrupole S 1
2
→ D 5

2
transition in 40Ca+ . Preliminary results of this spectroscopy

in a radio-frequency trap are presented.
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Chapter 1
Introduction and Motivation

In 1995 Cirac and Zoller proposed performing quantum computations in ion traps [1]. The

ideas presented in this seminal paper have since developed into a major research area. The

goal is to create a quantum computer which has both enough quantum bits (qubits) and

small enough computational errors such that it could perform computations which even

the most powerful classical computer could not achieve within a reasonable period of time.

The vast majority of this work has been focused on linear chains of ions in Paul traps.

These traps use a combination of static and RF electric fields to confine the ions. Penning

traps which use a combination of static electric and magnetic fields have not been used for

this purposei (see chapter 2 for a description of ion traps). One of the reasons for Penning

traps having been neglected is the more complex ion motion which leads to difficulties in

cooling the ions. There are also larger experimental overheads leading to greater expense.

Generally more lasers are required (due to the Zeeman splitting of the energy levels) as

well as a magnet with a large and stable field. The magnet causes spatial restrictions

affecting the imaging of the ions and the paths which the laser beams can take. It will

be seen that higher trap frequencies are advantageous (§ 3.2). In the Penning trap these

are limited by the magnetic field strength. As fields of greater than ≈ 10 tesla are very

difficult and expensive to create this sets an upper limit to the trap frequencies achievable.

On the other hand an advantage of the Penning trap is the lack of large RF voltages

applied to the trap electrodes. These may cause heating of the ions which we will see

would lead to computational errors (§ 3.4.3). The aim of the Ion trapping group at

Imperial College when I joined was to try to measure heating and decoherence rates in a

Penning trap and compare them to those seen in a Paul trap. The most sensitive method

iExperiments in Penning traps have in general focused on precision mass [2] and g-factor [3] measure-
ments. There has however been some work towards quantum computation and simulation experiments
using large crystals of ions in a Penning trap [4].
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Chapter 1

to measure heating rates requires the ion to be cooled near to the ground state of its

motionii. The first step in performing heating and decoherence rate measurements is thus

to cool the ion to its ground state. This has not been achieved in a Penning trap by

any group at the time of writing. The work described in this thesis will describe progress

towards this end.

In parallel to this goal other work has been performed by the group to demonstrate the

suitability of a Penning trap for quantum computation with small numbers of ions. Before

I joined the group a single 40Ca+ ion had been trapped and observed. Doppler cooling

(§ 3.1) had been performed and axialisation (§ 3.1.2) was used to cool the magnetron

motion. Work had been conducted to manipulate 2-ion crystals [6]. Using axialisation the

2-ions could be aligned along the axis of the magnetic field.

During my first year in the group I worked on the controlled movement of ions per-

pendicular to the trapping magnetic field [7]. The movement of ions between different

trapping regions (in at least 2 dimensions) has developed into a major field in the Paul

trap community and is seen as a necessity in most scalable quantum computation schemes

in ion traps [8]. A proton has been moved between trapping zones along the magnetic

field in a Penning trap [9]. Our work was the first to move ions between trapping regions

perpendicular to the magnetic field. Though I was involved in this work it formed the

basis of another student’s PhD (D.Crick) and so is not included in this thesis.

There has been great progress towards performing useful quantum computations in

Paul traps (see § 3.4). Theoretical work has estimated the maximal computational error

allowed while experimental work has been performed to assess the size and source of the

current computational errors. Since our group has embarked on this work it has become

clear that the heating rate is not the factor which causes the largest errors (§ 3.4.3).

Methods have been found which could be used to reduce the heating rate further such

that the error caused is below the maximum allowed computational error (§ 3.4.3).

With these developments in mind the Imperial College Ion Trapping group’s focus has

shifted to other applications of small numbers of ions cooled to the motional ground state

in a Penning trap. These will be discussed in § 3.5.

The focus of the remainder of this chapter will be the general idea of quantum com-

putation. This will not be specific to ion traps. Its purpose is to provide an idea of its

power and so provide a motivation for achieving it experimentally. It will also contribute

to providing a framework in which the quantum computation experiments in ion traps can

be discussed.

iiThis method uses the difference in the absorption strength on the first red and blue motional sidebands.
See § 3.2 for a calculation of the Rabi frequency as a function of the motional states on these sidebands.
See reference [5] for an example of an experimental implementation.
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Chapter 1 My Role in the Work Presented

Chapter 2 will provide details of how Paul, Penning and combined traps can confine

ions. In chapter 3 the methods of Doppler and sideband cooling will be described. These

are the processes by which an ion can be cooled to the ground state of its motion. Also in

this chapter the methods by which the electronic and motional state of a trapped ion can

be manipulated using lasers will be presented. This will be required for the subsequent

review of quantum computation in ion traps and allows the experiments described in later

chapters to be placed in context. Some other uses of ions in the motional ground state in

Penning traps will then be described.

Chapter 4 will provide an overview of the current state of the Imperial College setup

focusing on the equipment used for the experiments described in chapters 5, 6 and 7.

Chapter 8 will give a conclusion and future outlook.

Chapter 5 describes the observation of magnetic field induced J-state mixing in our

system. It will be shown that an otherwise forbidden transition becomes weakly allowed at

our trapping magnetic field strength. The effect on the Doppler cooling efficiency as well

as the read-out fidelity of our electronic qubit is discussed. Chapter 6 describes the use of

a high bandwidth fibre electro-optic modulator (EOM) to generate the laser frequencies

required to repump out of the D 5
2
and D 3

2
sub-levels of a 40Ca+ ion. This technique is

used to see a quantum jump free signal of a 40Ca+ ion in a Penning trap at 1 tesla for

the first time. The D 3
2
state repumping is performed with a single 866 nm laser instead

of the four 866 nm lasers previously used. This greatly simplifies the experimental setup.

The D 5
2
state repumping provides the possibility to perform pulsed spectroscopy on the

S 1
2
→ D 5

2
quadrupole transition in 40Ca+ . Preliminary results of this spectroscopy are

provided in chapter 7.

1.1 My Role in the Work Presented

An overview of my role in the work presented in this thesis will be given. During the

majority of my time in the group there were two or more people working on the experiment

and so many tasks were shared.

Another student (D.Crick) and I took the data presented in chapter 5 where the effect

of J-mixing in our system is detailed. To observe this effect an ion was confined in one of

the three trapping zones of a trap designed to transport ions perpendicular to the trapping

magnetic field [7]. I was involved in the process from initial trap construction to trapping

a single ion in it for the first time. The program used for the data analysis described in

this chapter was written by D.Crick. He also did the original theoretical work (published

with the experiment in reference [10]) to find the expected shelving rate using perturbation

theory. In this thesis I have detailed another method to calculate the mixings and shelving

13



Chapter 1 Introduction to Quantum Computation

rate which is valid at higher magnetic field strengths.

I led the inception of the scheme detailed in chapter 6 to repump out of the ten sub-

levels of the D states (at 850 nm, 854 nm and 866 nm) using four lasers and a single fibre

EOM with two RF frequencies applied. I ran simulations to find the optimal RF powers to

put on the EOM with and without a controllable phase between the two applied signals.

I performed the work detailed to calibrate the EOM and RF sources. I led the repumping

experiments where the 854 nm and 866 nm laser powers required were found. I wrote the

program to perform the data analysis in this chapter.

The narrow-linewidth 729 nm laser used to perform pulsed spectroscopy on the S 1
2
→D 5

2

quadrupole transition described in chapter 7 was developed by D.Crick. I worked on the

digital electronics required to obtain the presented spectra. This included writing the soft-

ware which the microcontroller uses to perform the pulse sequence. S.Mavadia, D.Crick

and I performed the experiment on a single trapped ion in an RF trap.

A number of improvements to the experiment are described in chapter 4. This included

the introduction of a scanning cavity to lock the 397 nm Doppler cooling lasers. A number

of people worked on this project. The cavity itself was designed and developed by another

student (J.Goodwin). The majority of my input was developing the digital electronics and

writing the software to lock both the cavity and the 397 nm lasers to the HeNe reference

laser.

Much of my time was spent making improvements to the experimental setup. This

included creating a more optimised layout of the optical table such that less laser power is

lost. This also included the addition of acousto-optic modulators (AOMs) and an electro-

optic modulator (EOM) as well as a 60 m fibre link to another laboratory so as their

wavemeter could be used.

1.2 Introduction to Quantum Computation

A classical bit can have a value of either 0 or 1. There is a lot more scope for a qubit. The

system could either be in the |0〉 or |1〉 state or in a superposition of these states written

as

ψ = a |0〉+ b |1〉 . (1.1)

The coefficients a and b are complex and can take any value as long as they satisfy the

normalisation condition |a|2 + |b|2 = 1.

Now let us compare two qubits with two classical bits. The classical bits can take the
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Chapter 1 Introduction to Quantum Computation

values 00, 01, 10, 11. The state of the qubits however is

ψ = (a |0〉x + b |1〉x)
(

c |0〉y + d |1〉y
)

(1.2)

= ac |0〉x |0〉y + ad |0〉x |1〉y + bc |1〉x |0〉y + bd |1〉x |1〉y .

In the classical case two binary digits are required to specify the state while 4 complex

amplitudes are required to specify the 2 qubit state. In the general case of n bits or qubits,

n binary digits are required to specify the classical system while to specify a quantum sys-

tem would require 2n complex amplitudes. There is thus a lot more information contained

in a quantum system of the same size. This would suggest that a computation with the

quantum system could be more efficient.

The phases in the complex amplitudes a and b rotate at the frequencies corresponding

to the energies of their respective eigenstates. Factoring out the phase of a we find that

there is a phase difference between the two states which rotates at a frequency correspond-

ing to their energy difference. The global phase has no observable effect as we measure the

modular square of the wavefunction and can thus be disregarded. As the only condition

on the amplitudes is that they obey the normalisation condition we can write the qubit

in the form

ψ (t) = cos

(

θ

2

)

|0〉+ e−iφ sin

(

θ

2

)

|1〉 . (1.3)

The angle φ = ω0t, where h̄ω0 is the energy difference between the state |0〉 and |1〉.
Writing the qubit in this way lends itself to being displayed as a vector which points to

the surface of a sphere. This sphere is called the Bloch sphere and is used extensively to

keep track of the state of a qubit as it is manipulated during a quantum computation. The

Bloch sphere is shown in figure 1.1. In this picture the ψ = |0〉 state will be represented

by a vector (the Bloch vector) touching the sphere at the north pole (θ = 0) while ψ = |1〉
will be denoted by a vector that touches the sphere at the south pole (θ = π). When

θ = π/2 the qubit is an equal superposition. The Bloch vector will quickly rotate around

the z axis of the Bloch sphere at the frequency corresponding to the energy difference of

the two states. We will consider the Bloch sphere in a frame rotating at this frequency,

this is useful as the external interaction will also be rotating at this frequency. A change

in the angle φ will then correspond to a phase change between the external interaction

and the qubit.

A rotation in the θ direction requires an external influence. We will see in § 3.2 when

we introduce Rabi oscillations that the rotation can be caused by a laser beam which for

a constant intensity produces a rotation θ which is linear with time. It is noticed that it
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θ

φ

|1〉

|0〉

|0〉−i|1〉√
2

|0〉+i|1〉√
2

|0〉+|1〉√
2

|ψ〉

x

y

z

Figure 1.1: The Bloch sphere representation of a qubit. The angles θ and φ are required
to represent the state up to a global phase.

takes two rotations around the sphere to obtain the original state with the same phase.

This is not evident in the Bloch sphere picture and needs to be added in by hand.

1.2.1 Quantum Gates

In theory to perform any quantum computation it should be possible to subject the qubits

to a time varying interaction whose Hamiltonian will evolve them into the final states which

can then be read out. However the required interaction would be very difficult to engineer

in practice. Instead a computation is broken down into a series of operations called gates

analogous to the gates of classical computation. If a ‘universal set’ of gates is available

any possible computation can be done. There are a number of known universal sets of

quantum gates. One such set consists of an arbitrary rotation around any axis of the

Bloch sphere together with the Controlled-Not (C-NOT) gate [11].

A single-qubit rotation gate performs a rotation around the x, y or z axis of the Bloch

sphere. The rotation can be of any angle. A rotation is drawn schematically in figure 1.2.

The input to the gate is on the left and the output is on the right. One can imagine a

series of gates drawn like this which are then combined to produce the whole computation.

The Hadamard gate is a very useful gate in quantum computation. It is often used in

quantum algorithms to create a superposition of states. Its action is
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X

H

π/2

Figure 1.2: Representation of a π/2 rotation around the x axis and a Hadamard gate.
This representation is used in diagrams of quantum algorithms.

|x〉|x〉

|y〉 |x⊕ y〉

Figure 1.3: Representation of a Controlled-Not gate. |x〉 is the control qubit and |y〉 is
the target qubit.

|0〉 → |0〉+ |1〉√
2

,
|0〉+ |1〉√

2
→ |0〉 (1.4)

|1〉 → |0〉 − |1〉√
2

,
|0〉 − |1〉√

2
→ |1〉 (1.5)

The Hadamard gate can be thought of as a π/2 rotation around the y-axis of the Bloch

sphere followed by a π rotation around the x-axis. In a quantum circuit the Hadamard

gate is represented as in figure 1.2.

The C-NOT gate has two qubits as both the input and output. The input qubits are

called the ‘control’ and ‘target’ qubits. The state of the control qubit does not change

during the operation. The target qubit is flipped if the control qubit is in state |1〉; if it
is in the state |0〉 then it is left alone. The truth table for the C-NOT gate is shown in

table 1.1. It can be represented schematically as in figure 1.3. The implementation of this

gate using trapped ions will be described in detail in § 3.4.1.
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Initial State Final State

|0〉x |0〉y |0〉x |0〉y
|0〉x |1〉y |0〉x |1〉y
|1〉x |0〉y |1〉x |1〉y
|1〉x |1〉y |1〉x |0〉y

Table 1.1: Truth Table for the C-NOT Gate. x is the control qubit and y is the target
qubit. The target is flipped only if the control is in the |1〉 state.

H

H

H|0〉

|1〉

Qubit x

Qubit y y ⊕ f (x)

Measure

Figure 1.4: A schematic of the Deutsch algorithm. The ‘oracle’ is shown as y ⊕ f (x).
Only the top qubit is measured.
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1.2.2 Quantum Algorithms

The first quantum algorithm was proposed by Deutsch in 1985 [12]. The algorithm involves

testing the action of a function, f which has a single bit as both its input and output.

The function could obey four different equations,

f1 (α) = 0 (1.6)

f2 (α) = 1

f3 (α) = α

f4 (α) = 1⊕ α,

where ⊕ represents addition modulo 2. The first two functions obey f (0) = f (1) (f

is constant) while the last two do not. The algorithm tells us whether the function is

constant by evaluating the function only once. It will not tell us the exact form of the

function, only whether it is constant. A classical algorithm could only ever obtain this

information with a minimum of two function calls.

The algorithm is displayed schematically in figure 1.4. The inputs are shown on the

left. The qubits are then put through a number of gates before a measurement is made

on one of the qubits. For 2-qubit gates a solid circle signifies that that qubit is the control

which controls the outcome of the target qubit (as in the C-NOT gate).

The part of the circuit which calculates the value of the function is called a standard

quantum oracle. Quantum processes must be reversible. The function f cannot be eval-

uated directly on a single qubit as the value of the input cannot be known with certainty

from the value of the output. By using two qubits there is enough information to reverse

the procedure. It has been shown that the evaluation of a function can be done at least

as efficiently using a quantum computer as a classical computer [11]. So without worrying

how the function is evaluated we can see how efficient the algorithm is by how many times

the oracle is called.

We can now go through the Deutsch algorithm and look at the wavefunction of the

qubits after each gate to see how we can find out if the function is constant. First the

qubits are prepared in the state |ψ〉 = |0〉x |1〉y. Both qubits are then put through a

Hadamard gate to create the state

|ψ〉 =

[ |0〉x + |1〉x√
2

] [ |0〉y − |1〉y√
2

]

(1.7)

=
1

2

[

|0〉x |0〉y − |0〉x |1〉y + |1〉x |0〉y − |1〉x |1〉y
]

.

The oracle is then consulted. Qubit x is not changed while qubit y is added modulo 2 to
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the function call of x obtaining

|ψ〉 = 1

2

[

|0〉x
(

|0〉y ⊕ f (0)
)

− |0〉x
(

|1〉y ⊕ f (0)
)

+ |1〉x
(

|0〉y ⊕ f (1)
)

− |1〉x
(

|1〉y ⊕ f (1)
)]

.

(1.8)

By evaluating the state at this point for each of the possible functions of equation 1.6. It is

seen that the wavefunctions in the two cases where the function is constant only differ by

a global phase. This is also the case for the two cases when the function is not constant.

There is however a relative phase in the x qubit which is flipped if the function is balanced

to if it is not

|ψ〉f(0)=f(1) = ±
[ |0〉x + |1〉x√

2

] [ |0〉y − |1〉y√
2

]

(1.9)

|ψ〉f(0) 6=f(1) = ±
[ |0〉x − |1〉x√

2

] [ |0〉y − |1〉y√
2

]

. (1.10)

Finally a Hadamard gate is applied to the first qubit to obtain either

|ψ〉f(0)=f(1) = ± |0〉x
[ |0〉y − |1〉y√

2

]

, (1.11)

or

|ψ〉f(0) 6=f(1) = ± |1〉x
[ |0〉y − |1〉y√

2

]

. (1.12)

Measuring the first qubit will now tell us whether the function is constant. We have only

evaluated the function once to obtain this result.

In practice Deutsch’s algorithm isn’t very useful as it only provides a factor of 2 speedup

of a classical algorithm. In any case the classical algorithm only requires 2 function calls

which would be performed very quickly on a classical computer.

Shor’s algorithm [13] in contrast is one of the main reasons there is now so much

interest in quantum computation. It is used to find the prime factors of a number. It

provides an exponential decrease in computation time compared to classical algorithms.
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Chapter 2
How to Trap an Ion

The operation of the different types of trap used for the results in this thesis will be

described. Much of the general theory is based on that of references [14] and [15]. First a

description of the electrostatic potential and its creation which is common to all the trap

types will be detailed.

It is optimal to create a purely quadrupole potential well to trap ions. This would result

in a force towards the centre of the trap which is proportional to the ion’s distance from

the centre and hence leads to harmonic motion. The general form for a three dimensional

quadrupole potential is

φ = Vscaled(ax
2 + by2 + cz2). (2.1)

Vscaled will be defined for real traps later. For now it is considered as a proportionality

constant.

It would be ideal to use an electrostatic field to create a 3D potential well to trap ions.

This however can not be achieved as stated in Earnshaw’s theorem [16]. For zero charge

in the field the above potential must obey the Laplace equation,

∆2φ = 0 = 2Vscaled(a+ b+ c). (2.2)

To satisfy the above equation it is required that the sum of the constants a, b and c must

equal zero. Thus if a potential minimum is achieved in two dimensions then it is required

that there be a maximum in the third direction as adding three numbers of the same sign

cannot equal zero.

The shape of the quadratic potential that is achievable using static electric fields is

known as a ‘saddle point’. This is shown in figure 2.1 and is achieved by setting (a, b, c) =
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rr zz

φφ

Figure 2.1: Trap potential achievable using a static electric field. There is a potential hill
in either the radial or axial directions depending on the sign of the potential applied.

(−1,−1, 2) giving

φ = Vscaled(2z
2 − y2 − x2)

= Vscaled(2z
2 − r2), (2.3)

where r2 = x2 + y2. The potential varies quadratically in both the axial and radial

directions but in one of the directions it must be a potential hill. Although this only

constitutes a trap in either the radial or axial directions it turns out to be a good starting

point. Strategies for 3D trapping based on a quadrupole potential will be discussed in the

next section. To create such a potential, electrodes must be constructed which follow the

equipotential surfaces. These surfaces are hyperboloids of revolution which obey

r2

r20
− z2

z20
= ±1, (2.4)

where the positive and negative sign refer to the ‘ring’ and ‘endcap’ electrodes respectively.

A diagram of the electrodes is shown in figure 2.2. It is impossible to create electrodes of

infinite size and so the potential created is always an approximation to a true quadrupole.

Many electrode geometries differ wildly from that shown in figure 2.2. It turns out that

by careful optimisation of the electrode geometry or the voltage on extra ‘compensation’

electrodes the potential can be made to be very close to quadratic near the centre of the

trap where the ions will be once they have been cooled. See reference [17] for examples of
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x̂

ŷ

ẑ

Figure 2.2: Hyperbolic trap electrodes used to produce a 3D quadrupole potential. Part
of the ring electrode (light grey) has been removed so that the trap centre can be seen.
Only one of the endcaps has been drawn (dark grey). The constants z0 and r0 are from
the centre of the trap to the nearest point of the endcap and ring respectively. To create
a perfectly quadrupole potential the electrodes would have to extend to infinity.

traps with electrodes very unlike the hyperbolic ones shown.

We can now define Vscaled in terms of the potential applied to the trap electrodes as

Vscaled =
V

2z20 + r20

=
V

R2
0

, (2.5)

where R2
0 = 2z20 + r20 and V is the endcap voltage w.r.t the ring voltage.

A positive ion will feel a potential well in the axial direction and a potential hill in

the radial plane if V is made positive. Defining Vscaled removes the dependency of the

potential curvature on the trap size. Note that it has units of Vm−2.

We have seen that it is impossible to create a static electric field which gives a potential

well in all three dimensions. It is however still possible to trap ions. Penning trap uses

an additional magnetic field to confine the ions in the radial plane. Alternatively the
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+

+

ab

B

EFelectric

Felectric

E×B

Figure 2.3: The origin of the E×B drift in uniform E and B fields. In the radial plane the
ion feels a force in the Q (v×B) direction resulting in a cyclotron orbit with a rotational
direction which obeys a right-hand or left-hand rule for a positively or negatively charged
ion respectively. During this orbit the ion feels a force due to the trapping electric field
Felectric = QE. For a uniform electric field pointing in a single direction as shown the
positive ion is accelerated between b and a and then decelerated between a and b. It is
thus moving faster at point a than point b and so drifts in the E×B direction.

Paul trap oscillates the confining axis of the saddle potential between the axial and radial

directions at a frequency Ω. For ions with charge-to-mass ratios similar to 40Ca+ this

oscillation turns out to be at a radio frequency.

2.1 Penning Trap

The Penning trap uses both static electric and magnetic fields to confine an ion. The same

electrode geometry is used (that of figure 2.2). Trapping in the axial direction is achieved

via the electric field by putting a bias on the endcaps relative to the ring of the same sign

as the ion’s charge. The magnetic field is applied in the z direction. The Lorentz force on

the ion due the electric and magnetic fields is written as

F = Felectric + Fmagnetic (2.6)

= QE+Q(v×B).

The magnetic field thus does not affect the motion in the z direction (v × B = 0). The

axial motion is therefore just due to the quadratic potential and so the ion undergoes

harmonic motion with frequency

ωz = 2

√

Q

m
Vscaled. (2.7)

The applied bias results in the same saddle shaped potential in the radial plane as

seen previously in figure 2.1 and so the ion will begin to move outwards from the centre

of the trap in the radial direction. Thus as the ion gains a velocity in the radial direction
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Ring Electrode

E×B

E

B

Figure 2.4: The origin of the magnetron motion in a Penning trap. The direction of the
E×B drift at different points shows that the ion will travel in an orbit. The diagram is
for a positive ion and so the ring is negatively biased. The E × B motion has the same
rotation direction as the cyclotron motion.

it will experience a force perpendicular to this direction and the magnetic field. The ion

will begin to move around the magnetic field lines in a cyclotron orbit (with frequency

ωc = QB/m in the absence of an electric field). The force on the ion due to the B field,

Q (v×B) is directed towards the centre of the cyclotron orbit. The motion is however

complicated by the fact there is an electric field present. There is a drift of the centre of

the cyclotron orbit around the trap centre. This is called the E × B drift. This drift is

explained for a uniform, unidirectional electric field in figure 2.3. The electric field exerts

a force, which for a positive ion is in the direction of the field. This results in a positive

ion moving faster at point a than at point b. There is thus a net movement in the E×B

direction.

In the Penning trap the electric field is not uniform. In the radial plane it points

out from the trap centre to the ring. The E × B drift is thus not always in the same

direction. Its direction at four points is shown in figure 2.4. It is seen that the drift results

in a circular motion around the centre of the trap with the same rotation direction as the

cyclotron orbit.

From these simple arguments we would expect the radial motion to consist of two

circular orbits. One due to the cyclotron orbit and one due to the E × B drift. The

presence of an electric field also modifies the frequency of the cyclotron motion. To find

the radial motional frequencies we substitute the radial electric and magnetic fields into

the equation for the Lorentz force (equation 2.6) assuming circular motion at a frequency

ω as suggested in [18]. Figure 2.5 gives the coordinate system used.
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+

r

r̂

v̂
ω̂

Figure 2.5: The coordinate system used in the derivation of equation 2.8. Circular motion
is assumed. Three unit vectors are displayed. v̂ is in the direction of the ion’s velocity
(i.e. a tangent to the circle). r̂ is a unit vector from the ion to the centre of the orbit. ω̂
is a unit vector coming out of the page in the diagram. It obeys a left-hand-rule w.r.t the
positive ion’s motion.

The total force on the positive ion is F = −mrω2
r̂. The force due to the magnetic field

is Q (v ×B) = QBωr (ω̂ × r̂ × ω̂) = −QBωrr̂. The radial electric field, Er = − ∂
∂rφr̂ =

∂
∂rVscaled

(

r2 − 2z2
)

r̂ = 2Vscaledrr̂. Substituting these parts into the Lorentz equation we

obtain a quadratic equation,

mω2 −QBω + 2VscaledQ = 0. (2.8)

Which has two solutions for the frequency which we can write as

ω′
c =

ωc
2

+

√

ω2
c

4
− ω2

z

2
(2.9)

ωm =
ωc
2

−
√

ω2
c

4
− ω2

z

2
. (2.10)

We now call ωm the magnetron frequency and ω′
c the modified cyclotron frequency.

These expressions for the magnetron and modified cyclotron frequencies introduce

a trapping condition. The expression in the square root should be positive so that the

frequencies remain real. The consequences of a violation of this inequality will be described

below. We have

ω2
c − 2ω2

z ≥ 0. (2.11)

Or substituting in for the cyclotron frequency or both the cyclotron and axial frequencies
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x̂
x̂

ŷ

ŷ

ẑ

Rm

Rc′

Figure 2.6: The motion of an ion in a Penning trap. The left plot shows the magnetron
and modified cyclotron motions in the radial plane. The plot on the right shows the
3 dimensional motion. The modified cyclotron frequency was set to ω′

c = 0.95ωc (i.e.
typical working conditions). The magnetron and axial frequencies were then calculated
using equations 2.14 and 2.15.

we can write a condition for the axial frequency or the scaled trap voltage as

ωz ≤ QB√
2m

(2.12)

Vscaled ≤ QB2

8m
. (2.13)

As the trap voltage is increased the curvature of the potential is increased in the axial

direction resulting in a larger force towards the centre of the trap in that direction and a

higher axial frequency. To obey Gauss’ law the potential hill in the radial direction must

also become steeper. There is thus a greater outwards force in the radial plane which has

to be overcome by the magnetic force inwards. For a fixed magnetic field, when the trap

voltage is increased so that equality is reached in equation 2.13, the inward and outward

forces balance and the ion is no longer trapped.

By substitution into equations 2.9 and 2.10 it can be shown that

ωc = ω′
c + ωm (2.14)

ω2
c = ω′

c
2
+ ω2

m + ω2
z . (2.15)

In typical working conditions we have ωc > ω′
c > ωz > ωm. The typical trajectory in

the radial plane of an ion in this situation is shown in figure 2.6.

The energies of the modified cyclotron and magnetron orbits are given by the sum of
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their respective kinetic and potential energies,

Etotal = Ekinetic + Epotential (2.16)

=
1

2
mω2r2 −Qr2Vscaled.

Ekinetic is of course always positive and as there is a potential hill in the radial plane

Epotential is always negative. From equations 2.9 and 2.10 the maximum ω′
c and the

minimum ωm for stable trapping is ωc

2 . It can be seen from equation 2.16 that when

ω = ωc

2 the total energy is zero. This means that for stable trapping parameters the

energy of the modified cyclotron orbit is always positive while the energy of the magnetron

orbit is always negative. This has to be considered when performing laser cooling in a

Penning trap. To reduce the radius of the respective orbits, energy must be taken out of

the cyclotron motion but put into the magnetron motion. This can be achieved by correct

positioning and detuning of the laser beam or by using a technique called axialisation

(§ 3.1).

2.2 Paul Trap

The other method to trap ions is in a Paul trap. Here both DC and AC voltages are put

on the electrodes of figure 2.2. To find the equations of motion of ions in a trap where

both a DC and AC voltage is applied, we first find the force on the ion in the axial and

radial direction due to a potential of the form of equation 2.3 and substitute in for Vscaled

using equation 2.5. For example in the axial direction we have Fz = −Q∂φ
∂z ẑ = −4 Q

R2
0
V zẑ.

Equating this force to the ion’s mass times its acceleration we find

d2z

dz2
+ 4

Q

MR2
0

[VDC + VAC cos (Ωt)] z = 0

d2r

dr2
− 2

Q

MR2
0

[VDC + VAC cos (Ωt)] r = 0, (2.17)

where the same method has been used in the radial direction. We now follow the example of

references [14] and [15] and make a change of variables to convert the differential equations

into a solvable form. We make the definitions

az =
4QVDC

MR2
0Ω

2
= −2ar

qz = − 2QVAC

MR2
0Ω

2
= −2qr

τ =
Ω

2
t. (2.18)
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Here az and ar are dimensionless parameters proportional to VDC while qz and qr are di-

mensionless parameters proportional to VAC. These definitions allow us to write equations

for the radial and axial motion in the form of Mathieu equations as

d2 (r, z)

dτ2
+ [ar,z − 2qr,z cos (2τ)] (r, z) = 0. (2.19)

The equation has stable solutionsi for certain combinations of ar,z and qr,z. When the ion

is stable its motion can be described by a sum of motions at different frequencies as

(r, z) = Ar,z

∞
∑

n=−∞
C2n cos

[

(βr,z + 2n)
Ω

2
t

]

+Br,z

∞
∑

n=−∞
C2n sin

[

(βr,z + 2n)
Ω

2
t

]

.

(2.20)

So βr,z is a number which defines the set of frequencies which the ion can have,
∞
∑

n=−∞
(βr,z + 2n) Ω

2 . It is a function of ar,z and qr,z and can be written to a good approxi-

mation as [19]

β2r,z = ar,z −
ar,z − 1

2 (ar,z − 1)2 − q2r,z
q2r,z −

5ar,z + 7

32 (ar,z − 1)3 (ar,z − 4)
q4r,z. (2.21)

When |a| , q << 1 a simpler approximation can be used,

β2r,z = ar,z +
q2r,z
2
. (2.22)

The combinations of ar,z and qr,z which are stable are also governed by βr,z. The stability

region with the lowest ar,z and qr,z values is defined by 0 < βr,z < 1. This region is shown

in figure 2.7.

When the approximation given in equation 2.22 is valid the ion’s position can be

written as

(r, z) = C0

√

Ar,z +Br,z

(

1− qr,z
2

cos (Ωt)
)

cos

(

βr,z
Ω

2
t

)

, (2.23)

where C2
C0

= C−2

C0
= − qr,z

4 has been used which is valid in the limit of equation 2.22 [15].

So the motion is a combination of oscillations at βr,z
Ω
2 which we call the secular fre-

quency and Ω which we call the micromotion frequency. We are considering the limit of

small βr,z and so the secular frequency is much lower than the micromotion frequency.

Let us thus examine the micromotion by approximating the ion’s position in its secular

iA solution is defined as stable if it results in a periodic motion in both the axial and radial directions.
The ion has a maximum displacement from the trap center when parameters corresponding to these
solutions are used.
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a
z

qz

Figure 2.7: Stability diagram for the Paul and combined traps. The blue and red lines
define the boundary of stability for the axial and radial directions respectively. The dashed
line shows the new radial boundaries for the case of a combined trap for a 40Ca+ ion with
B = 1 tesla and the RF applied, Ω = 2.27 MHz.

oscillation to remain constant during a single micromotion oscillation. Considering just

the axial motion we can write

z = G−H cos (Ωt) , (2.24)

where G and H are constant on the timescale of the micromotion. We define H as the

amplitude of the micromotion. The force on the ion can be found via the second derivative

of z time its mass or from the trap potential. In the absence of a DC field we have

Fz =M
d2z

dt2
=MHΩ2 cos (Ωt) = 4

Q

R2
0

VAC cos (Ωt) z. (2.25)

Rearranging for the micromotion amplitude we find

H =
4QVAC

Ω2MR2
0

z. (2.26)

So the amplitude of the micromotion increases linearly with the distance from the trap

centre. The micromotion is generally something which adds complication to experiments

and so is to be minimised. The ion’s equilibrium position can be moved away from the

trap centre by stray electric fields and so extra compensation voltages are usually applied
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on the trap and/or extra electrodes installed near the trap electrodes to move the ion back

to the trap centre and hence minimise the micromotion.

Let us try and obtain a better physical understanding of the trapping action of a Paul

trap. If Fz at a single position z is considered then the time averaged force over one RF

period is equal to zero. However Fz has the action of moving the ion. We can think of the

ion’s micromotion sampling the trapping field. As the force exerted on the ion is larger

the further the ion is from the trap centre there is a time averaged force towards the trap

centre.

We can find this time averaged force by integrating Fz over a single RF period using

equation 2.24 for the ion’s position (with the micromotion amplitude substituted from

equation 2.26). We find a force directed towards the trap centre which is proportional to

z. Simple harmonic motion (SHM) thus results. The frequency of which given by [18]

ωz =
2
√
2QVAC

mΩR2
0

z =
Ω

2
√
2
qz. (2.27)

This is the same frequency found when using the small qz approximation for βz (equa-

tion 2.22 with az = 0). The effective potential which creates this SHM is called the

pseudopotential.

2.3 Combined Trap

A combined trap results when both an AC electric field and a static magnetic field (applied

in the axial direction as in the Penning trap) are used trap ions with the option of also

applying a static electric field. The force due to the magnetic field acts perpendicular to the

magnetic field direction and so does not affect the ion’s motion in the axial direction. The

magnetic field acts like an extra DC trapping force in the radial plane and can be included

in the above analysis for a Paul trap by increasing the ar parameter by a factor
(

ωc

Ω

)2
[20].

The shift in the stability diagram (figure 2.7) has been shown for the parameters used in an

experiment in this thesis (§ 5.3). In the experiment an ion is trapped at different magnetic

field strengths (from 0 tesla up to ≈ 1 tesla). It is important to note the combined trap

is stable for all these fields.
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Chapter 3
Interaction of light with a trapped Ion -

Coherent Dynamics and Laser Cooling

3.1 Doppler Cooling

Doppler cooling was first proposed in 1975 by Wineland and Dehmelt [21] and Hansch and

Schawlow [22]. It is now used extensively to cool atoms and ions. A simple overview will

be given here to find an approximate rate and final temperature of a trapped ion. The

motional frequency of the ion will be assumed low enough such that it can be ignored.

The fact that the ion is already trapped by non-optical means does however result in only

a single laser being required as the ion will keep coming into resonance as it oscillates.

The idea is to use the momentum transfer from photons to the ion when absorption

occurs to reduce the ion’s temperature. Reducing the temperature of an ion means to re-

duce the spread of its Maxwell-Boltzmann distribution. This requires a velocity dependent

absorption. We will see that this is achieved via the Doppler effect.

First let us note that there is also a heating effect. Before a second photon can be

absorbed a photon has to be emitted. This can occur via stimulated or spontaneous

emission. A photon emitted via stimulated emission will have a velocity in the same

direction as the absorbed photon. There will thus be no net momentum transfer and thus

no cooling. A spontaneously emitted photon’s direction however is uncorrelated to the

absorbed photon’s direction. It is governed by the transition’s radiation pattern which has

the same emission probability for a direction, r̂ as −r̂. For a finite number of emissions

there is however a momentum increase which causes a heating effect which we shall discuss.

Following reference [23] let us first consider the cooling force, Fcooling = dpab
dt where

pab is the momentum gained from absorbing photons. This force is equal to the rate of
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absorption, R multiplied by the momentum gained by an absorption, h̄k (where k = 2π
λ

is the magnitude of the photon’s wavevector). The rate can be broken down into the

probability of being in the upper electronic level, Pe times the spontaneous emission rate,

Γ. The probability of being in the upper level is a tradeoff between the rates of absorption,

spontaneous emission and stimulated emission and can be written as

Pe =
Ω2
R

2Ω2
R + 4∆2 + Γ2

, (3.1)

where ΩR is the on-resonant Rabi frequency and ∆ is the laser detuning. The ion moving

towards the laser with velocity, v will see a different detuning due to the Doppler effect

given by ∆ → ∆ − kv. Expanding the expression for Fcooling and looking at the term

proportional to v we see that a friction force results for a negative detuning,

Fcooling =
8h̄k2ΓΩ2

R∆
(

2Ω2
R + 4∆2 + Γ2

)2 v. (3.2)

This force is maximal for ∆ = −Γ
2 and ΩR = Γ. The rate that energy is removed,

dE
dt cooling

= −Fcoolingv so the maximum energy reduction isi

dE

dt cooling
=

1

4
h̄k2v2. (3.3)

We have noted that there is a heating effect via the momentum gained by the recoil

from spontaneous emission. The ion can be thought of as taking a random walk through

momentum space with a step size given by h̄k. The average momentum increase after

N scattering events is
√
Nh̄k. The number of spontaneous emissions is Rt so that the

average momentum increase is h̄k
√
Rt. Converting this momentum into an energy and

differentiating we find

dE

dt heating
=
h̄2k2

8m
Γ. (3.4)

The rate of cooling is thus h̄k2

8

(

2v2 − h̄
mΓ

)

and when equilibrium is reached the ion should

have a final temperature of

TDoppler =
h̄Γ

2kB
. (3.5)

This is the Doppler limit temperature and shows that the narrower the transition used

iThe reader might expect that this cooling force should depend on Γ. Taking the Taylor expansion
assumes v ≪ ∆

k
= Γ

2k
. So it is assumed that the ion’s Doppler spread is small compared with the transition

linewidth. Thus the rate is only achieved when Γ is large enough.
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the lower is the temperature that can be reached.

3.1.1 Doppler Cooling in the Penning Trap

In a Paul trap the Doppler cooling laser is set red-detuned from the transition frequency.

This results in the ion being more likely to absorb a photon when it is travelling towards

the laser as required. As the ion oscillates back and forth in the trap it will keep coming in

resonance with the laser. Having a red-detuned laser with a component in both the axial

and radial directions is therefore enough to cool an ion in a Paul trap. In a Penning trap

the axial motion is harmonic and thus can be cooled in the same way with a component

of a red-detuned laser beam along that direction. The situation in the radial plane is

complicated by the magnetron motion. Energy must be put in to this motion to reduce

the radius of the magnetron orbit. The cyclotron motion on the other hand behaves

normally requiring a reduction in its energy to reduce its orbit size. It is impossible to

meet both of these criteria via a choice of laser frequency alone.

The typical motion in a Penning trap is shown in figure 2.6. The magnetron orbit

is generally much larger than the cyclotron. The laser beam can be offset such that it

points in the same direction as the magnetron motion but still covers the whole of the

cyclotron orbit. If the laser is red-detuned absorption is most likely to occur on the part

of the cyclotron orbit where the ion is moving towards the laser. Due to the spatial offset

absorption is more likely to occur during the part of the magnetron orbit when the ion is

moving away from the laser. This meets the criteria to cool the ion towards the centre of

a Penning trap.

3.1.2 Axialisation

It is not ideal to require the cooling laser to be spatially offset to Doppler cool in a Penning

trap. The laser spot size would limit the minimum magnetron orbit radius and the lowest

temperatures would not be achievable. A method called axialisation has been developed

which can be used. This involves using a small amplitude rotating quadrupole drive to mix

the magnetron and cyclotron motions. A simple picture of axialisation can be obtained by

considering the quantised cyclotron and magnetron orbits. The ion can have an integer

number of phonons of each of these motions. The ion’s energy due to its radial motion is

shown in figure 3.1. The energies associated with the cyclotron and magnetron motions

increase and decrease respectively as the phonon numbers are increased. As shown in the

diagram if an RF photon is absorbed at the sum of the magnetron and cyclotron frequencies

then the cyclotron phonon number will increase by 1 while the magnetron phonon number

will decrease by 1. A red-detuned laser can then cool the cyclotron motion. If this laser is
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Figure 3.1: Axialisation description in terms of quantised cyclotron and magnetron mo-
tions.

not spatially offset it will have a relatively small effect on the lower frequency magnetron

motion. The net effect of the RF drive and Doppler cooling laser is thus to increase

the magnetron energy while reducing the cyclotron energy and so the ion will be cooled

towards the centre of the trap.

3.2 Coherent Dynamics

Trapped ions have both electronic and vibrational states. We will see in § 3.4 that quantum
computation schemes use both of these sets of states. We need to investigate the dynamics

of a trapped ion’s electronic and motional wavefunction as it interacts with a laser pulse.

The analysis in this chapter is applicable to any trapped ion with two electronic states.

In § 4 the actual states of a 40Ca+ ion used throughout this thesis will be described.

First let us consider a simplification where an ion is not trapped and so only has a set

of electronic states. Let us also ignore all other electronic states apart from the two which

we are coupling with the laser. We will also make the assumption throughout this section
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that the electronic excited state is long lived compared with the dynamics described.

Note that these states are not linked to the Doppler cooling transition described in the

previous section but are associated with a much narrower ‘forbidden’ transition which

can nonetheless be driven coherently with a laser. The interaction of a classical oscillating

electric field interacting with a 2-level system can be solved exactly for the time dependence

of the amplitude in each state. The total state of this system |ψ〉, can be written at a

time t, as a superposition of the individual electronic states which we label as the ground

|g〉, and excited |e〉, states with amplitudes Ag and Ae respectively and a relative phase

between the states rotating at the transition frequency, ωE as

|ψ〉 = Ag |g〉+ e−iωEtAe |e〉 . (3.6)

This is the state introduced in the introduction when describing a qubit, the quantum

analog of a classical bit. If at t = 0 the amplitude is entirely in the ground state then it

can be shown that the laser causes the amplitude to oscillate as [24]

Ae =
ΩR
Ω

sin

(

Ωt

2

)

Ag =
ΩR
Ω

cos

(

Ωt

2

)

, (3.7)

where ΩR is the Rabi frequency for a laser on resonance. It depends on the matrix element

of the interaction between the ion (an electric quadrupole transition is used in 40Ca+ )

and the electric field of the laser between the ground and excited electronic states. Ω

is generalised for a laser with a detuning from the transition ∆ = ωL − ωE such that

Ω =
√

Ω2
R +∆2. It is therefore noted that the Rabi frequency of a transition is increased

as the laser is detuned. The evolution of the state under the interaction of the laser is

equivalent to the evolution of the qubit of equation 1.3 with θ = Ωt and with ∆ = 0. Thus

a laser can rotate the state around the Bloch sphere at a frequency given by Ω.

The probability of being in the ground or excited state is the square of the correspond-

ing amplitude,

Pe =

(

ΩR
Ω

)2

sin2
(

Ωt

2

)

Pg =

(

ΩR
Ω

)2

cos2
(

Ωt

2

)

. (3.8)

The probability of being in either the ground or excited state at any time is always equal

to 1. It is noted that when the laser is detuned it is not possible to achieve a 100%

population transfer to the excited state (see figure 3.2).

So far we have considered a classical electric field interacting with a two level system.

An ion trapped in a harmonic potential has a set of motional states as well as the 2

electronic states. We will now consider this case, following the treatment of reference [25].

The Hamiltonian, H = H0 + H1 for a classical, single mode laser of wavevector k and
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ΩR

2π t

P
e

Figure 3.2: Rabi oscillations for different laser detunings. The plots are for ∆ = 0 (black,
solid), ∆ = ΩR

2 (red, dash) and ∆ = ΩR (blue, dot). It is noted that Ω is defined as the
frequency at which the population oscillates so Ω

2 is the frequency at which the amplitude
oscillates.

angular frequency ωL interacting with an ion of mass m trapped in a harmonic potential

with an oscillation frequency ωT is given by

H0 =
p2

2m
+

1

2
mω2

Tx
2 +

1

2
h̄ωE σ̂z (3.9)

H1 =
1

2
h̄Ω

[

ei(kx−ωLt+φ)σ+ + e−i(kx−ωLt+φ)σ−
]

, (3.10)

where σ̂z = |e〉 〈e| − |g〉 〈g|, σ+ = |e〉 〈g| and σ− = |g〉 〈e|. H0 gives the energy of the

trapped ion with no laser field present. The three terms in H0 correspond to the kinetic,

potential and electronic energy of the ion. H1 is the interaction energy between the laser

and ion. Now Ω has been defined to be a measure of the strength of the interaction. We

will see that this definition leads to Ω governing the frequency of the oscillation between

the states but the frequency is only the same (and only to first order) for transitions which

do not change the phonon number.

The position and momentum can be written in terms of creation and annihilation

operators which operate on a motional state of the ion with n phonons and create a

normalised state with one extra or one less phonon respectively â† |n〉 =
√
n+ 1 |n+ 1〉

and â |n〉 = √
n |n− 1〉,

x̂ =

√

h̄

2ωTm

(

â+ â†
)

(3.11)

p̂ = i

√

h̄mωT
2

(

â− â†
)

. (3.12)
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Substituting these into the Hamiltonian and using
[

â, â†
]

= 1 we obtain

H0 = h̄ωT

(

â†â+
1

2

)

+
1

2
h̄ωE σ̂z (3.13)

H1 =
1

2
h̄Ω

[

eiη(â+â
†)e−i(ωLt+φ)σ+ + e−iη(â+â

†)ei(ωLt+φ)σ−
]

, (3.14)

where η = k
√

h̄
2ωTm

is the Lamb-Dicke parameter and can be shown to be given by the

extent of the motional ground state wavefunction of the ion relative to the wavelength of

light projected along the axis of the ion’s motion. It is noted that even when the ion has

no phonons it still has a motional energy given by 1
2 h̄ωT . It is instructive to now go into

the interaction picture where the interaction Hamiltonian is defined as HI = U †HU where

U = e
iH0t
h̄ and we move some of the time dependence into the creation and annihilation

operators a† = â†eiωT t and a = âe−iωT t. We find

HI =
1

2
h̄Ω

[

eiη(a+a
†)σ+e−i∆teiφ + e−iη(a+a

†)σ−ei∆te−iφ
]

. (3.15)

Substituting this into the Schroedinger equation, ih̄dψdt = HIψ and solving the resulting

equations we can find the time dependence of the amplitude in the ground and excited

states. We find a sinusoidal oscillation when the ion is initially in a state with a definite

number of phonons and the laser couples to an excited electronic state, again with a set

phonon number. This oscillation is similar to that described by equations 3.7 and 3.8. The

Rabi frequency is now however a function of the initial and final motional states which

the laser is coupling. By detuning the laser from the carrier transition by ±mωT (where

m is an integer) it can couple to states with m more or less phonons. The ion’s spectrum

thus has gained a set of sidebands separated by the trap frequency. The Rabi frequency

for a given sideband is changed by a matrix element between the motional states which

are being addressed by the laser,

Ωn+m,n = Ω
∣

∣

∣
〈n+m | eiη(â†+â) |n〉

∣

∣

∣
. (3.16)

Note that if Ω is to be modified by a detuning then the detuning should be relative to

the sideband. This Rabi frequency between any two motional states for any value of the

Lamb-Dicke parameter can be calculated in full using the expression

Ωn+m,n = Ω

[

n!

(n+m)!

]

sign(m)
2

η|m|e−
η2

2 L|m|
n

(

η2
)

, (3.17)

where L
|m|
n

(

η2
)

are the associated Laguerre polynomials. An important situation is when

η ≪ 1. It will be explained that in conventional sideband cooling which is used to put the
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ion in the motional ground state with high probability uses this condition. If η is small

then we can expand the exponential in equation 3.16,

eiη(â
†+â) = 1 + iη

(

â† + â
)

− 1

2
η2

(

â† + â
)2

+ ... (3.18)

= 1− 1

2
η2

(

â†â+ ââ†
)

+ iη
(

â† + â
)

− 1

2
η2

(

â†â† + ââ
)

.

Using the parts of equation 3.18 that lead to a non-zero matrix element by changing the

motional state by the correct number of phonons we can find simple expressions for the

Rabi frequencies. We find to terms in η2,

Ωn,n = Ω

[

1− 1

2
η2 (n+ 1)

]

(3.19)

Ωn+1,n = Ωη
√
n+ 1

Ωn−1,n = Ωη
√
n

Ωn+2,n = −1

2
Ωη2

√

(n+ 2) (n+ 1)

Ωn−2,n = −1

2
Ωη2

√

n (n− 1).

The probability of a transition is proportional to the square of the relevant Rabi frequency.

From now on we will assume that η is small enough so that we can ignore the terms in

η2 which would lead to transition probabilities proportional to η4. The Rabi frequency

is now only non-zero for transitions on the carrier or those which increase or decrease

the motional state by one phonon which we will call the first blue and red sidebands

respectfully. On the carrier transition we have Ωn,n = Ω.

Now let us look at the interaction Hamiltonian of the system when η ≪ 1. We expand

the exponential containing η in equation 3.15. If we look at the three cases when the

detuning is such that we are resonant with the carrier and first red and blue sidebands

and we neglect the terms which are oscillating at ω or 2ω we find

HI,carrier =
1

2
h̄Ω

(

σ+ + σ−
)

(3.20)

HI,red =
1

2
ih̄ηΩ

(

âσ+ − â†σ−
)

(3.21)

HI,blue =
1

2
ih̄ηΩ

(

â†σ+ − âσ−
)

. (3.22)

On the carrier there is no interaction which changes the motional state as would be ex-

pected. On the red sideband the terms describe the amplitude moving from the state

with n phonons to that with n − 1 phonons as the excited electronic state amplitude is

increased. On the blue sideband the amplitude moves from the state with n phonons to
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Figure 3.3: Simplified 40Ca+ electronic energy levels. The red dashed arrow shows the
quadrupole transition to be used for sideband cooling and coherent dynamics. The blue
arrows indicate the dipole-allowed transition used for Doppler cooling. This is also used
to detect whether the ion is in the ground, |g〉 or excited, |e〉 state. As it does not couple
to |e〉 the ion will only scatter photons on this transition if it is in the ground state. The
transition shown in purple is used to repump the ion from |e〉 back to the ground state.

that with n+1 phonons as the excited electronic state amplitude is increased. The inter-

action on the red sideband is called the Jaynes-Cummings interaction while on the blue

it is called the anti-Jaynes-Cummings. The Jaynes-Cummings interaction has been much

studied in the context of cavity QED where â† and â create and destroy photons of the

electromagnetic field [24]. An experiment has been conducted [26] where the predictions

of the anti-Jaynes-Cummings interaction have been demonstrated on the first blue side-

band of a trapped ion which was in number, thermal, coherent and squeezed states. After

Doppler cooling the ion is in a thermal state, we will thus concentrate at the dynamics

of this state. We wish to look at the dynamics via the probability of being in the excited

electronic state as a function of the interaction time with the laser. This is done exper-

imentally using pulsed spectroscopy which will be described in detail later when initial

results are given in chapter 7.

The 40Ca+ ion has an electric-dipole allowed transition which is used for Doppler

cooling and detection of the ion’s state after coherent manipulation. There is also an

electric-quadrupole allowed transition that is to be used for sideband cooling (see § 3.3)

and performing the coherent dynamics described in this section. These two transitions

share the same ground state, |g〉 which is the lowest electronic state of the ion. A simplified

electronic energy level diagram of 40Ca+ is shown in figure 3.3. The ion is first pumped

out of the excited state of the quadrupole transition, |e〉 into the ground state via a higher

lying state. A laser can then address the quadrupole transition for a given interaction

time. The laser addressing the Doppler cooling transition is then switched on and it is
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noted if the ion emits photons. If it emits a number of photons above a set thresholdii then

it can be concluded that the ion was in the ground state after the interaction period. If it

does not then the ion must have been in the excited state of the quadrupole transition to

which the laser cannot couple. To find the probability of excitation for a given interaction

time the experiment is repeated a number of times after which the interaction time is

stepped and the process is repeated. If the ion is initially in the state with n phonons

with 100% probability then the probability of being in the excited state as a function of

the interaction time should be sinusoidal with a Rabi frequency given by equation 3.17. A

thermal state is however a mixed state with a probability of being in a range of states with

different phonon numbers. The full probability is thus weighted by the thermal probability

distribution defined by the average number of phonons n̄. We have

P (e) =
∞
∑

n=0

P (n) sin2
(

Ωn+m,nt

2

)

=
∞
∑

n=0

(

n̄

1 + n̄

)n

sin2
(

Ωn+m,nt

2

)

, (3.23)

where the probability distribution has not been normalised. Instead of seeing pure Rabi

oscillations a thermal state will thus be the sum of Rabi oscillations at lots of different

frequencies. The range of different Rabi frequencies included depends both on n̄ and η.

Figure 3.4 is a plot of the Rabi frequency on the carrier and first red and blue sidebands as

a function of the number of phonons the ion has. This has been drawn for three different

trap frequencies. Namely an estimated modified cyclotron frequency for a magnetic field of

1 tesla (in which the Penning trap experiments in this thesis were conducted) and 2.5 tesla

(in which future experiments in the group will be done) and also the estimated frequency

in a RF trap where some preliminary pulsed spectroscopy results were taken (100 kHz).

Using equation 3.23 the predicted oscillations of the amplitude in the excited state

when the laser is interacting on the carrier and first red and blue sidebands can be plotted

(3.5). It is seen that on the carrier transition when most of the thermal distribution is

below the point when the Rabi frequency goes to zero the oscillations last longer the lower

n is. It is also noted that as the carrier Rabi frequency is maximised when n = 0 the

oscillation period is therefore longer for any other n or distribution of n.

3.3 Sideband Cooling

It was discussed in the introduction that to measure the temperature of an ion and hence

its heating or decoherence rate it first needs to be cooled to close to its ground state of

motion. Many quantum computation implementations also require ground-state cooled

iiA threshold is required as there is a background photon count, predominately from laser scatter from
the trap electrodes.
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Figure 3.4: Rabi frequencies as a function of the ion’s motional state on the carrier and the
first and second sidebands. The red and blue sidebands of the same order are very similar
on this scale and so only the blue have been displayed. The bar charts are unnormalised
thermal state distributions at the respective Doppler limits. The plots are for 1

2πωT of
816 kHz, 326 kHz and 100 kHz. This results in Lamb-Dicke parameters of 0.11, 0.17 and
0.31 and thermal states with n̄ at the Doppler cooling limit of 8.6, 21.5 and 70.0.

42



Chapter 3 Sideband Cooling

t/Ω

Pe

Figure 3.5: The predicted probability of being in the excited state as a function of the laser
interaction time. The trap frequencies for the top to bottom rows of plots are 100 kHz,
326 kHz and 816 kHz respectively. These frequencies result in the same parameters as
those in figure 3.4. Plots are shown for the laser interacting with the first red sideband
(red), the carrier (black) and the first blue sideband (blue).
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ions. Sideband cooling is the technique most often used to put a trapped ion into its

motional ground state with a high probability. Its first implementation was in 1989 [5].

Conventional sideband cooling requires the Rabi frequency on the carrier to be larger than

that on the first order sidebands and much larger than that on the second order sidebands.

From figure 3.4 this requires both n̄ and η to be small. This is called the Lamb-Dicke

regime. Sideband cooling outside of this regime has been studied theoretically [27] but

has not been done experimentally. Cooling close to the Doppler limit with high trap

frequencies is thus a prerequisite for this technique. The analysis in this section is valid

in the Lamb-Dicke regime and is based on that of reference [28].

When a change in the motional quantum number accompanies excitation or sponta-

neous emission, matrix elements of the form in equation 3.16 are involved. In the Lamb-

Dicke regime these result in the factors of equation 3.19 which are a function of the ion’s

motional state. The probability of a transition is proportional to the square of the relevant

factor. To include the fact that an off-resonant photon can be absorbed the lineshape of

the transition is included in any absorption process. We write this as

P (∆) =
Ω2

2Γ2

(Γ/2)2

(Γ/2)2 +∆2
. (3.24)

When a photon is emitted via spontaneous emission the probability that it is emitted in

a given direction is dependent on the radiation pattern of the transition involved. The

recoil momentum on the ion is more likely to excite a phonon if it has a larger component

along the mode of motion under question. For instance if the photon is always emitted

perpendicular to the motion being cooled a phonon can never be lost or gained. The

radiation pattern is included in this analysis as α. For α = 0 the photon is always emitted

perpendicular to the motion while for α = 1 the photon is emitted along the axis of the

motion.

The transitions shown in figure 3.6 have rates given by

T1 = η2nP (∆− ν)× Γ (3.25)

T2 = η2 (n+ 1)P (∆ + ν)× Γ

T3 = P (∆)× η2nαΓ

T4 = P (∆)× η2 (n+ 1)αΓ

T5 = η2nP (∆ + ν)× Γ

T6 = η2 (n+ 1)P (∆− ν)× Γ

T7 = P (∆)× η2nαΓ

T8 = P (∆)× η2 (n+ 1)αΓ,
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T1

T2

T3
T4

T5
T6

T7

T8

|e〉

|g〉

n− 1
n

n+ 1

h̄ωT

h̄ωE

Figure 3.6: The possible transitions in sideband cooling to terms in η2 in the Lamb-Dicke
regime. The solid lines represent absorption from the laser on the carrier (black), the
first blue sideband (blue) and the first red sideband (red). The dashed lines represent
spontaneous emission processes.

where we have included the factors discussed. Γ is the spontaneous emission rate on the

carrier.

Let us now set up an equation governing the probability that the ion is in the state n,

P (n). Contained in this equation will be the transitions T1 to T8. Writing the probability

that the ion is in the state n + 1 or n − 1 as P (n+ 1) and P (n− 1) we multiply by the

rate of the transitions which would move the ion into the n state. These are thus terms

describing the increase in P (n). Similarly we get terms describing the decrease in P (n)

by multiplying by the probability of being in the n state by the rate of the transitions out

of this state. We obtain

d

dt
P (n) = (n+ 1)A−P (n+ 1)− [(n+ 1)A+ + nA−]P (n) (3.26)

+nA+P (n− 1) ,

where we have defined A± = Γη2 [αP (∆) + P (∆± ν)].

The aim of sideband cooling is to reach the ground motional state with as high a

probability as possible. We are thus interested in the final state reached after a long time,

once the system has reached equilibrium. Here there is no probability transfer between
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any of the motional states. Setting d
dtP (n) = 0 we find

A+P (n− 1) = A−P (n) (3.27)

A+P (n) = A−P (n+ 1) .

The solution of this is a thermal state, P (n) =
(

1− A+

A−

)(

A+

A−

)n
which has been nor-

malised so that
∞
∑

n=0
P (n) = 1. We are interested in the average motional state occupation,

〈n〉 =
∞
∑

n=0
nP (n) which can be shown to be, in the equilibrium situation,

〈n〉final =
A+/A−

1−A+/A−
=

αP (∆) + P (∆ + ν)

P (∆− ν)− P (∆ + ν)
. (3.28)

So we see that the final state achieved is higher the greater the probability of an off-

resonant photon being absorbed on the carrier or blue sideband relative to that on the

red sideband. There is also the factor α on the carrier as would be expected. In the limit

that the transition and laser linewidths are much smaller than the trap frequency the

probability of exciting on the carrier or blue sideband tends to zero and the ground state

population after sideband cooling tends to 100%. Another important factor is the rate

at which cooling occurs. The sideband cooling rate must be significantly bigger than the

rate of any heating processes. The rate of change of the average motional state is given

by d
dt 〈n〉 =

∞
∑

n=0
n d
dtp (n). Substituting equation 3.26 into this it can be shown that

d

dt
〈n〉 = − [〈n〉 (A− −A+)−A+] . (3.29)

So for large 〈n〉 we can approximate the cooling rate by

A− −A+ = Γη2 [P (∆− ν)− P (∆ + ν)] . (3.30)

A high sideband cooling rate thus requires fast scattering on the red sideband as would

be expected. In practice the final temperature reached will only follow equation 3.28 if

the cooling rate is faster than the heating rate in the trap. For a negligible heating rate

the final temperature will be limited by the amount of coupling to the carrier and blue

sideband. This means low transition and laser linewidths and high trap frequencies are

ideal.

An effective transition rate of the sideband cooling transition can be chosen by using

a laser to couple its upper state to another level which quickly decays to the ground state.

The detuning and intensity of this laser can be used to set the rate [29].
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3.4 Quantum Computation in Ion Traps

Quantum computation with trapped ions was first proposed by J.I Cirac and P. Zoller in

1995 [1]. They envisaged a chain of ions along the axis of a linear Paul trap. The ions

would first be laser cooled to the ground state of motion. Their electronic and motional

state would be manipulated by individually addressing, focused laser beams.

Pulses from the laser beams are used to implement rotations around the Bloch sphere

(see figure 1.1). The interaction time and Rabi frequency define the rotation θ while the

phase of the laser relative to the ion’s polarisation defines φ.

Each ion in the trap has an internal qubit consisting of two long lived electronic states,

|0〉 and |1〉. There is also a common qubit which is the motion of the center of mass of

the trapped ions. The first two quanta of this motion (|n = 0〉 and |n = 1〉) are used as

the lower and upper levels of the qubit. We will see how this additional qubit can be used

to let the ions talk to each other and hence create operations on one ion conditional on

another ion’s electronic state.

To perform a computation the data needs to be input into the computer and the results

need to be read out. The qubits can be initialised using optical pumping. When the result

of the computation needs to be read out a laser is used to drive an allowed dipole transition

between one of the qubit states and another level. If the ion is in this qubit state then

light will be seen which can be viewed using a photo-multiplier tube or a CCD camera. If

the ion is in the other qubit level then it will remain dark.

3.4.1 Cirac-Zoller C-NOT Gate Protocol

We will now see how to perform a C-NOT gate using trapped ions. In the original Cirac

and Zoller proposal the control and target qubits were the electronic energy levels of two

separate ions in a trap. It is however possible to perform a C-NOT gate on a single ion

where the control and target qubits are its vibrational and electronic levels respectively.

Firstly we will look at the procedure using a single ion. This was performed experi-

mentally by the Wineland group at NIST in 1995 [30]. The resulting wavefunctions after

each operation are shown in table 3.1. Comparing this to the truth table for a C-NOT

gate (table 1.1) we see that the motional qubit is the control and the electronic qubit is

the target.

The two π/2 pulses do not change the state unless there is an interaction occurring

between them. The control procedure works by only interacting with the 2π pulse if the

ion is in the excited motional state.

We can see how the state changes in each step by looking at the rotations on the Bloch
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Initial State
π
2 Pulse on
Carrier

2π Pulse on BSB
of |1〉 → |aux〉
transition

π
2 Pulse on Carrier
(dephased by π)

|0〉 |n = 0〉 |0〉−i|1〉√
2

|n = 0〉 |0〉−i|1〉√
2

|n = 0〉 |0〉 |n = 0〉

|1〉 |n = 0〉 |0〉+i|1〉√
2

|n = 0〉 |0〉+i|1〉√
2

|n = 0〉 |1〉 |n = 0〉

|0〉 |n = 1〉 |0〉−i|1〉√
2

|n = 1〉 |0〉+i|1〉√
2

|n = 1〉 |1〉 |n = 1〉

|1〉 |n = 1〉 |0〉+i|1〉√
2

|n = 1〉 |0〉−i|1〉√
2

|n = 1〉 |0〉 |n = 1〉

Table 3.1: The laser pulses required to perform the C-NOT gate on a single ion.

sphere (figure 1.1). The first π/2 pulse acts to rotate the Bloch vector down to the x-y

plane from the north pole around the x-axis if the ion is initially in the |0〉 state ending

up in the |0〉−i|1〉√
2

state. If the ion is initially in the |1〉 state it moves up to the x-y plane

(again around the x-axis) ending up in the |0〉+i|1〉√
2

state. Next a 2π pulse is implemented

between the |1〉 and |aux〉 states. This is on the blue sideband (BSB) and so only affects

the states which are motionally excitediii. The result of a 2π pulse is to change the sign

and so the |1〉 components of the superpositions have their sign swapped. The final pulse

is applied when the laser is π out of phase with ion relative to the original pulse. This

phase can be thought of as a φ = π rotation on the Bloch sphere. The π/2 pulse then

leads to the final states shown in table 3.1.

The two-ion C-NOT gate was first implemented in 2003 by the Blatt group in Inns-

bruck [31]. The group held two 40Ca+ ions in a linear Paul trap. The electronic transition

used as the internal qubit was the same quadrupole D 5
2
→ S 1

2
transition discussed in this

thesis (see § 4.1). The transition was addressed using a laser at ≈ 729 nm which could be

individually focused onto each of the ions. The laser pulses used to implement the gate are

shown in table 3.2. Initially the common motional state of the ions is in the ground state.

The laser is focused onto one of the ions (ion a) and a π pulse on the first blue sideband

is performed. This effectively maps the internal state of the ion onto the motional state.

If ion a is in the ground state then the motional mode of the two ions is excited while if

the ion is in the excited state the motional state is left in the ground level. The laser is

iiiIt is the blue and not the red sideband as the auxiliary state used has a lower energy than the electronic
states used for the qubit.
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Initial State

π Pulse on the
Blue Sideband
of Ion a

Single Ion
C-NOT Gate
(Ion b)

π Pulse on
the Blue Side-
band of Ion a
(φ = π)

|0〉a |0〉b |n = 0〉 |1〉a |0〉b |n = 1〉 |1〉a |1〉b |n = 1〉 |0〉a |1〉b |n = 0〉

|0〉a |1〉b |n = 0〉 |1〉a |1〉b |n = 1〉 |1〉a |0〉b |n = 1〉 |0〉a |0〉b |n = 0〉

|1〉a |0〉b |n = 0〉 |1〉a |0〉b |n = 0〉 |1〉a |0〉b |n = 0〉 |1〉a |0〉b |n = 0〉

|1〉a |1〉b |n = 0〉 |1〉a |1〉b |n = 0〉 |1〉a |1〉b |n = 0〉 |1〉a |1〉b |n = 0〉

Table 3.2: The laser pulses required to perform the C-NOT gate on a two ions. Note that
the target qubit is flipped if the control qubit is initially in the ground |0〉 state.

then directed onto the other ion (ion b) and a single ion C-Not gate between the ion and

the motional state is then performed. Finally a π pulse on the BSB of ion a maps the

motional state back onto the internal state.

Looking at the truth table that this process performs we see that ion a is the control

and ion b is the target qubit. The control qubit however becomes the motional state after

the first mapping pulse. In the experiment performed in 2003 by the Blatt group the 2π

BSB pulse to an auxiliary state used in the single ion C-NOT gate at NIST was replaced

by four separate pulses on the BSB of the same D 5
2
→ S 1

2
transitioniv.

The Blatt group has also implemented the Deutsch algorithm using a pair of ions [32].

ivA single 2π BSB pulse cannot be used on the D 5

2

→ S 1

2

transition as there would be coupling from

the |0〉 |n = 1〉 state to the |1〉 |n = 2〉 state. This would mean the 2π BSB pulse would act on both the
|0〉 |n = 1〉 and |1〉 |n = 1〉 states and so only a global phase shift would result which would not have an
observable affect. The solution NIST employs is to use a transition to an additional state whose frequency
only matches the |1〉 |n = 1〉 → |aux〉 transition. Innsbruck does not use an additional state. Instead they
take advantage of the motional state dependence of the Rabi frequency. From equation 3.19 there is a
factor of

√
2 difference between the two Rabi frequencies. Using a composite pulse sequence it is possible

to selectively perform the 2π pulse on the |1〉 |n = 1〉 population. The |0〉 |n = 1〉 population is returned to
its original state.
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3.4.2 Geometrical-Phase Gate

A set of possible ion trap, two-qubit gates different to the Cirac-Zoller 1995 scheme were

discussed around the year 2000. The two most widely used gates are those proposed

by Molmer and Sorensen [33] and Milburn [34]. The geometric phase gate discussed by

Milburn and implemented by the group at NIST [35] will be described here.

Two ions are trapped along the axis of a linear Paul trap. In the NIST implementation

these were 9Be+ ions with two ground state hyperfine levels split by ωq as the internal

qubit. Transitions between the two levels of the qubit could be driven by 2-photon Raman

transitions. The two lasers had a frequency difference of close to ωq + ωT where ωT is the

frequency of the ‘breathing’ mode. This is a motional mode of the ions where the ions

move in opposite directions. The lasers were detuned from the P1/2 and P3/2 levels which

mediated the transition. The lasers create a ‘walking’ wave at their difference frequency.

The axial trap potential was changed such that the equilibrium distance between the

two ions is equal to a multiple of the wavelength of the walking wave. This results in each

ion feeling the same phase of the laser field.

There is an AC Stark shift and associated dipole force on each ion due to the Raman

lasers. The direction, polarisation and detuning of the Raman lasers was chosen such that

the dipole force on the ion is in a different direction dependent on its electronic state and

is twice as large if the ion is in the upper electronic state. To excite the breathing motional

mode, a force is required which has an opposite direction for each ion. Thus it can only

be excited via the Raman lasers if the ions are in different levels of the electronic qubit.

Excitation of the breathing mode leads to a time dependent Coulomb potential between

the two ions as their separation is changed. An energy change results in a phase change of

the ion’s wavefunction. Thus a phase has been introduced which depends on the electronic

states of both ions.

The frequency difference of the Raman lasers is not chosen to exactly hit the breathing

mode sideband but is offset slightly by δ. By choosing a pulse time of 1
δ the driving of

the ions during the second half of the pulse will cancel that of the first half. The motional

state is thus left unchanged by the operation. The motional excitation of the ions can

be described by a closed loop in phase space. It can be shown that the phase introduced

is independent of the path taken by the ion and only depends on the area of the loop.

This makes the gate more robust to intensity noise of the laser beams. There are also less

stringent conditions placed on the ion temperature compared to the Cirac-Zoller scheme.

No longer must the motional state be cooled to the ground state but only into the Lamb-

Dicke regime.
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3.4.3 Decoherence and Recent Advances

A quantum computer would ideally provide the correct answer to a computation 100%

of the time. Errors can be generated via the ions interacting with their environment in

an uncontrolled way thereby changing the state of the qubit. This is called decoherence.

There will always be some small unknown interaction occuring and so a perfect quantum

computation would seem impossible. The invention of quantum error correction schemes

in the mid-1990s changed this [36] [37]. In the schemes a number of extra qubits are

required per logical qubit. The number of extra qubits required depends on the fidelity

of the gate operations. The fidelity is a measure of the overlap of the obtained state with

that of the expected state. It is a number between 0 and 1 where 1 means there is no

error. Infidelities of towards 10−4 are required for reasonable qubit numbers [38].

In ion traps the major reduction in fidelity is due to the two-qubit gates. In the

geometrical-phase gate by the NIST group the largest error was due to spontaneous emis-

sion from the P states used for the Raman transition leading to a fidelity of 0.97(2). While

in Cirac-Zoller type gates off-resonant excitations on the incorrect sideband, laser intensity

and frequency noise, stray magnetic fields and unwanted AC stark shifts all contribute.

The 2-qubit C-NOT gate had a fidelity of 0.71(3).

In the introduction, ground-state cooling of an ion in a Penning trap was motivated by

measuring its heating rate. However at the moment heating rates have a small contribution

to the gate fidelity. The heating rate would still have to be reduced before fidelities of

10−4 could be obtained. However experiments have shown a reduction in the heating rate

by 6 orders of magnitude by cooling down the trap electrodes from room temperature to

6 K [39]. This would provide a solution to the motional heating issue and thus makes a

Penning trap quantum computer less desirable.

There have also been advances in reducing the decoherence due to the other factors

other than the motional heating. One of these is the demonstration of microwave gates

by the group at NIST [40]. Here the electronic qubit consists of two hyperfine levels of

the ground state of 25Mg+ and is manipulated directly using microwaves instead of lasers

via a Raman transition. The type of gate used is similar to the geometrical phase gate

described previously. The small Lamb-Dicke factors inherent to using long wavelength

microwaves leads to a small coupling between the electronic and motional states of the

ion. This can be overcome by using magnetically sensitive states and applying a magnetic

field gradient [41] or using the oscillating magnetic field gradients in the near-field of

microwave currents [42]. Decoherence due to the spontaneous emission from the upper

state mediating the Raman transition is removed using this method. Frequency stability

is easier for a microwave source than it is for lasers and so decoherence due to this error
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will also be reduced.

Equivalently to reducing the decoherence rate, the time taken to perform the gate can

be reduced. This was the approach taken by the group of Monroe which has used a fast

laser pulse to implement a π pulse on a single ion in less than 50 ps [43]. It has been shown

theoretically that 2-qubit gates can be performed using a sequence of fast laser pulses [44].

So far we have discussed performing gates with two ions in a trap. To perform useful

quantum computations many more ions are required. In the Cirac-Zoller scheme one could

imagine many ions being trapped in a line along the axis and gates between any two could

be achieved via the centre of mass motional mode of the ions using focused laser beams.

This however becomes more difficult the more ions there are in the trap. The more ions

the more motional modes exist and so the sideband spectrum can become very complex.

Also the ions equilibrium positions in the trap get closer to each other as the number of

ions increases making it difficult to individually address them using laser beams. To date

a maximum of 14 ions have been entangled in a single trap [45]. To overcome this problem

a scheme has been invented which consists of multiple trapping zones. Ions are held in

many separate memory regions. Voltages are applied to electrode segments to move any

two ions from the memory regions to a trap in which the gate is implemented. The ions

are then separated and moved back to a memory region. Much progress has been made

in this technology, with very low heating introduced during the ion transport. Arrays of

up to 150 trapping zones have been created [8]. One of the most difficult steps in this

procedure is the separation of ions in the same trap. This requires very small electrodes

and high voltages to create a potential between the ions. Recent work has reported the

coupling of the motional state of ions in separate traps [46] [47]. This could remove the

need for the tricky ion separation procedure.

3.5 Quantum Simulation in Penning Traps

The possible advantages of using a Penning trap over a Paul trap for building a universal

quantum computer are no longer clear. With this in mind some other examples of using

ground-state cooled ions in a Penning trap will be provided. These involve quantum sim-

ulation experiments. A universal quantum computer calculates what any given quantum

system would do. Instead in a quantum simulator a quantum system is created which can

simulate a specific system or set of systems. Ideally this created system will have well

controlled parameters and the behavior of the system as a function of these parameters

can be experimentally found.

The first example is the creation of a double well potential from different spatial

configurations of a chain of ions. This is based on the proposal of reference [48]. With
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x̂x̂

ẑẑ

Figure 3.7: The two different possible zigzag configurations for 3 ions.

strong radial confinement the ions can be made to lie in a line along the axial trap axis.

If the confinement along one axis (x̂) in the radial direction is decreased below a critical

value then another spatial configuration becomes more energetically favorable. This is the

so called ‘zigzag’ configuration (see figure 3.7). It is seen that at least 3 ions are required to

make this configuration. There are two different configurations depending if the direction

of the ‘kink’ is in the x̂ or −x̂ direction. The two configurations have the same energy but

the ions cannot readily flip between the configurations as they have to pass through the

higher energy state of the linear chain. This results in a double-well potential. Symmetric

and anti-symmetric combinations of the ion being in each configuration are the eigenstates

of the system; the symmetric combination having the lower energy. Investigations into

tunneling rates between the two eigenstates as a function of the barrier height could be

conducted.

To create the symmetric or anti-symmetric wavefunctions first a linear chain with

either 0 or 1 phonons in the radial direction is created. The confinement in the x direction

is then decreased to adiabatically move to the symmetric or anti-symmetric case (for zero

or one phonon respectively).

To move between the symmetric and anti-symmetric wavefunctions, sidebands at their

frequency difference on an electronic transition can be addressed. The transition could

also be addressed directly with resonant RF. Another option is to adiabatically move the

ions back to a linear chain and then address sidebands on the electronic transition at the

trap motional frequencyv before moving back to the double-well potential.

This experiment could be performed in either a Paul or Penning trap and each has

advantages and disadvantages. In a Paul trap there will certainly be micromotion as the

scheme requires the ions to be displaced from the axial trap axis. This will lead to higher

decoherence effects. In a Penning trap there is no micromotion and so this source of

decoherence will not be present. However the experiment is made more complex. The

asymmetrical potential in the radial plane must be achieved with an axialisation drive

vThese sidebands are more easily resolvable from the carrier transition as the trap frequency is higher
than the frequency corresponding to the difference between the symmetric and anti-symmetric eigenstates.
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(see § 3.1.2) instead of a simple DC potential. The crystal will also be rotating at close

to the magnetron frequency. The difference of the two zigzag configurations can only be

easily observed by a camera observing the crystal in the axial direction which is triggered

at the rotation frequency.

The double well potential is a paradigm in quantum mechanics. It has been studied

in other systems [49] but this ion trap realisation may prove to be a particularly clean

system in which to explore the relevant physics.

Another proposal is to create an effective molecule in a Penning trap using Rydberg

ions [50]. First two ions of the same species are trapped along the magnetic field axis

of a Penning trap. Removing an extra electron from one of the ions results in a crystal

made from one singly and one doubly charged ion. An electron from the singly charged

ion is then excited into a Rydberg state. If the trap parameters are such that the inter-ion

distance is comparable to the size of the Rydberg orbit then there will be some overlap of

the electron’s wavefunction with the available Rydberg state of the other ion. It is shown

that it is possible to create states where the electron is delocalised between the two ions.

Imagine the situation from the viewpoint of the electron in the Rydberg state. It will

feel the attraction of the two doubly positively charged ions as well as the anti-trapping

potential of the trap (as the trap is set up to trap positively charged ions). If the electron

is in too high a Rydberg state then the magnitude of the trap potential at the electron will

be greater than that from the ions and the electron will be lost. If the electron is in too low

a Rydberg state then it will not feel the potential from the second ion. Calculations show

that with reasonable trap parameters there are a range of Rydberg states which create a

delocalised electron.

The potential which the electron sees is similar to that of a double well. The eigenstates

are symmetric and anti-symmetric pairs which have slightly different energies. An electron

which is definitely in one of the wells has a wavefunction which is a superposition of a

symmetric and anti-symmetric pair. As the two parts of the wavefunction do not have the

same energy there will be an oscillation in the amplitudes at a frequency corresponding

to the energy difference. By coupling the Rydberg state of the singly ionised ion to a fast

transition the probability of the electron being in one of the ions can be observed as a

function of time.

An advantage of conducting this experiment in a Penning trap is the absence of the

strong RF fields used for confinement in a Paul trap. These can result in ionisation of the

Rydberg electron. Therefore higher lying Rydberg states can be used in the Penning trap.

This effective molecule can be used as a clean way to implement simulations of Hubbard

models.
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Chapter 4
Experimental Setup

This chapter will describe the setup used for the experiments presented in this thesis.

The experiments investigating the J-mixing effect described in chapter 5 were conducted

towards the beginning of the author’s work while those showing new repumping schemes

(chapter 6) and pulsed spectroscopy of the S 1
2
→ D 5

2
quadrupole transition (chapter 7)

were done towards the end. A lot of the experimental setup was improved during this

time. The setup for the early work has been described extensively elsewhere [51] [52] and

so will only briefly be described here. Attention will mostly be given to the new equipment

and improvements that have been made.

4.1 Electronic Energy Levels of a 40Ca+ Ion

First we will consider the 40Ca+ ions that are to be trapped. The parameters of the laser

systems required are specified by the available electronic states that the ion possesses. The

low energy states of a 40Ca+ ion are shown in figure 4.1.

The states are labeled by the orbital, L and total angular momentum, J as LJ . As

there is only 1 electron in the ion’s outer shell the total spin angular momentum, S = 1
2

for all states and is not noted. The transitions indicated by the solid arrows in figure 4.1

are all electric-dipole allowed resulting in transition linewidths of 0.2 - 24 MHz. First

let us consider the transitions before a magnetic field is applied. The S 1
2
→ P 1

2
397 nm

transition is used for Doppler cooling. After the ion is excited up to the P 1
2
state it can

spontaneously emit down to the S 1
2
or D 3

2
states. The branching ratio for going to the

D 3
2
state is ≈ 0.065 [53]. This means an average of only 15.4 photons are scattered on the

Doppler cooling transition before the ion is shelved in the D 3
2
state which has a lifetime of

≈ 1 s. It is obviously unacceptable for the ion to be out of the cooling cycle for this time
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Figure 4.1: Low energy states of a 40Ca+ ion. The states are shown before (bold lines) and
after an external magnetic field is applied. The numbers labelling the states indicate the
projection of J along the quantisation axis, mJ . The solid arrows indicate electric-dipole
allowed transitions while the dashed arrow shows the electric-quadrupole transition which
is to be used as a qubit.
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State gJ ∆ν (GHz T−1)

S 1
2

2 27.99

P 1
2

2/3 9.33

P 3
2

4/3 18.66

D 3
2

4/5 11.20

D 5
2

6/5 16.80

Table 4.1: The gJ factors and splittings of the low energy electronic states in 40Ca+ . The
splittings are between states with a difference of 1 in their mJ quantum number.

resulting in it scattering only ≈ 15 photons per second. The solution is to have a 866 nm

repumping laser addressing the D 3
2
→ P 1

2
transition to move the ion back into the cooling

cycle.

When an external magnetic field, B0 is applied the orientation of J can take 2J + 1

values whose energies relative to the zero field case obey

∆EZeeman = µBgJmJB0, (4.1)

where µB = eh̄
2me

is the Bohr Magnetron, gJ = 1+ j(j+1)−l(l+1)+s(s+1)
2j(j+1) is the Landé g-factor

and mJ is the projection of J along the magnetic field axis. The gJ factors and resulting

splittings are shown in table ??.

In the case of a Penning Trap the magnitude of the applied magnetic field is such that

the splitting of the individual mJ states is larger than the laser and transition linewidths

and so separate lasers are required to excite the ion out of each individual mJ state. Thus

two separate frequencies near 397 nm and four near 866 nm are required. In the present

setup the π (∆mJ = 0) transitions are used at 397 nm while the σ (∆mJ = ±1) transitions

are used at 866 nm.

Although the P 1
2
→ D 5

2
transition is strongly forbidden it is still possible for the

ion to end up in this state at high magnetic fields due to the D 3
2
state mixing with the

D 5
2
state and the P 1

2
state mixing with the P 3

2
state. This is explained and experimentally

investigated in chapter 5. Repumping out of the D 5
2
states is thus required. It is shown

in chapter 6 that this can be achieved using a fibre EOM to create sidebands on a single

854 nm laser at the required transitions. It is also demonstrated that repumping without
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the EOM is achievable with enough laser power.

The dashed red arrow in figure 4.1 indicates the transition to be used for coherent

manipulation (§ 3.2) and for sideband cooling (§ 3.3). The S 1
2
→ D 5

2
transition is electric-

dipole forbidden and has a natural linewidth of 0.14 Hz. It has a lifetime of 1.17 s and

is electric-quadrupole allowed. The narrow linewidth is required so motional sidebands at

the trap frequency can be resolved as described in chapter 3.3. The transition frequency

has been measured to be 411 042 129 776 393.2(1.0) Hz using a trapped 40Ca+ ion [54].

The first step to using this transition for the applications described in chapter 3 is to

perform pulsed spectroscopy on it. The results of this are presented in chapter 7. The

use of this quadrupole transition creates a need for another laser at 854 nm. This laser

is used to repump out of this excited state when performing pulsed spectroscopy on the

quadrupole transition. It will also be used in future experiments to shorten the D 5
2
state

lifetime during sideband cooling (§ 3.3).

4.2 Laser Systems and Optical Setup

4.2.1 Diode Lasers

We have seen that two lasers are required to address the two Doppler cooling transitions at

≈ 397 nm. Four repumping lasers are required at ≈ 866 nm and one is required to repump

at ≈ 854 nm. Another laser is required to address the quadrupole S 1
2
→ D 5

2
transition at

729 nm.

A simple and relatively inexpensive method to derive the light required at 397 nm,

729 nm, 854 nm and 866 nm is via laser diodes. Here a p-n junction is created in a

semiconductor. A current source is used to inject electrons and holes into the depletion

region at the junction. When the electrons and holes recombine a photon is emitted

which is designed to be at the required wavelength. To produce coherent laser light the

electron and hole recombination needs to be stimulated by one of the created photons

rather than by simply being in the vicinity of each other. To do this the laser diode needs

to be in a cavity where a percentage of the created photons are directed back into the

diode. As the laser diode current is increased more holes and electrons are moved into the

depletion region and both the spontaneous and stimulated recombination rate is increased.

The stimulated rate however increases more quickly and so at a high enough current the

stimulated rate dominates and when the gain in a round trip of the cavity is greater than

unity the diode will lase. The back facet of the diode acts like a mirror, the front facet

is often anti-reflection coated to varying degrees. Depending on the percentage of light

reflected from this surface the diode may or may not lase when it is not in an extended

58



Chapter 4 Laser Systems and Optical Setup

cavity.

The diode lasers used in the experiment are all placed in extended cavities. They

are described as ‘extended’ as they extend the cavity created between the diode’s facets.

The extended cavity serves two purposes; to reduce the laser linewidth and to help to

tune the wavelength of the light emitted. The cavity design is based on a grating in the

Littrow configuration [55]. The idea is to have the grating at an angle such that the

first order diffracted light will be directed back into the laser diode. The zeroth order

light from the grating will then be emitted and can be used for the experiment. The

grating angle required depends on the wavelength of light and the density of the lines

ruled on the grating. The grating angle and the distance from the back facet of the diode

to the grating are both tunable. The tuning is achieved via a stable optical mount with

manual control of the grating angle and a piezo-electric transducer (PZT) respectively.

There are a number of different factors that affect the output frequency in this setup.

First there is the gain spectrum of the laser diode itself. This spectrum depends on the

particular diode used but can extend over 80 nm in the case of the infra-red diodes. There

is then the spread of frequencies which the grating directs back into the laser diode. This

generally has a width of a couple of nm. The back facet of the diode and the grating then

define a cavity which produces a set of longitudinal modes separated by the cavity FSR,

determined by the cavity length, L ≈ 15 mm to be c
2L ≈ 10 GHz. There may also be a set

of modes due to the cavity created between the two facets of the diode. As this is within

the extended cavity the frequency separation between the modes is always greater than

for the extended cavity modes. The influence of this cavity will depend on the quality of

the anti-reflection coating on the front surface of the diode. Each of these considerations

leads to a characteristic ‘gain curve’ as shown in figure 4.2. All of these different gain

curves are required to line up in frequency space such that one of the grating-diode cavity

modes has significantly more gain and so will be the only one to lase. There are a variety

of controllable parameters that can move each of these gain curves. The temperature of

the diode can be changed via a peltier heater which creates a temperature differential

between the mount and the optical table. This moves the gain curve of the diode. The

grating is on a stable optical mount which allows the vertical angle to be manually varied

for alignment and the horizontal angle to be adjusted to move the grating gain curve.

There is a PZT on the back of the grating which changes the length of the diode-grating

cavity moving its modes. The amount of current supplied to the diode has the effect of

changing the refractive index of the diode via the number of electrons and holes created

and so changes the optical length of both the diode and the diode-grating cavities. As the

PZT is scanned the grating-diode longitudinal modes (bottom of figure 4.2) move relative
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Figure 4.2: Gain profiles involved in a ECDL. Top is the curve corresponding to the gain
of the diode itself. Next is the frequency spread directed back into the diode from the
grating. Next is the longitudinal modes between the two facets of the diode. Finally at the
bottom are the longitudinal modes between the back facet of the diode and the grating.
The longitudinal mode which would lase in this case has been marked.

.

to the other gain curves. Eventually the next longitudinal mode will have enough gain

to lase in preference to the original mode. The laser will ‘mode-hop’ to this other mode.

To increase the frequency range which the laser can be scanned the diode current can be

changed in conjunction with the grating PZT. With the correct current tuning rate the

diode’s internal modes can be made to move at the same rate as the diode-grating modes

resulting in a greater mode-hop free frequency range.

Each grating has a blaze angle which is the angle of the sawtooth pattern on the

grating relative to the surface. In the Littrow configuration the grating is most efficient at

diffracting light into the 1st order when the angle between the laser beam and the normal

to the grating surface is equal to the blaze angle. Choosing a blaze angle thus amounts

to choosing a percentage of the light that is fed back to the laser diode. In practice as

much usable laser power as possible is desired while keeping it lasing in a single mode. For

diodes which have good anti-reflection coatings, blaze angles designed for very different

wavelengths compared to the desired lasing wavelength are used so only a small amount
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of power is fed back to the diode. This is the case with the 866 nm and 854 nm repumping

lasers where a grating designed for maximum feedback at 300 nm is used leading to a

feedback fraction of < 10%. It is noted that the laser linewidth will increase the smaller

the amount of feedback. This is due to the effective finesse of the cavity decreasing. This

however is quite a small effect [56] and the extra laser power achieved is deemed more

important.

Extended-cavity diode laser (ECDL) setups are relatively cheap, simple to use and

require little maintenance. They are unfortunately however only available at certain wave-

lengths. Diode lasers at 854 nm and 866 nm are now readily available and are used in

the experiment. It is trickier to find diodes at 397 nm. There are however a few available

and we use these for the Doppler cooling transitions in our experiment. There are also

now diodes available for the 729 nm transition, one of which we use. These were how-

ever not available until recently. It is testament to the advantages of laser diodes over

other systems that the group at Osaka university has previously cooled down a 743 nm

diode to ≈ −50 ◦C to convince it to lase at 729 nm to address the same S 1
2
→ D 5

2
tran-

sition [57]. This required the complication of putting the diode in a vacuum system to

avoid condensation.

The linewidths of the infra-red ECDL systems in our experiment have not been mea-

sured but have been found in other groups to be less than 1 MHz [56]. This is adequate to

address the electric-dipole transitions. The 729 nm laser requires a much smaller linewidth

as it is addressing a transition with a linewidth of 0.14 Hz. This laser must also be signif-

icantly narrower than the trap frequency (≈ 100 kHz - 1 MHz) to see motional sidebands

as described in § 3. The linewidth of our 729 nm diode laser was narrowed via a Pound-

Drever-Hall (PDH) lock described in § 4.2.7. The linewidth of the 397 nm lasers was

estimated to be > 10 MHz via the transmission of the scanning cavity described in § 4.2.3.
This is not ideal when trying to reach the Doppler limit since the laser linewidth is a

sizable fraction of the natural linewidth of the transition. Work is currently underway to

reduce the linewidth of these lasers via a PDH lock similar to that of the 729 nm laser

but using a lower finesse cavity and modulating the current of the laser itself rather that

using an EOM.

It is noted that the beam shape of a laser diode is elongated in one direction with an

aspect ratio of anything from 1:2 to 1:6. This shape is due to the active region in the diode

being of a rectangular shape. There are therefore different divergences in each direction

which leads to different beam sizes in each direction at the collimating lens. The beam

shape and astigmatism are manipulated using optical components described in § 4.2.5.
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4.2.2 Laser Wavelength Measurement

The most precise measurement that we have of the laser wavelengths is via the light

emitted from a cold, trapped single ion. The transition frequencies have been measured

previously to very high accuracies by other groups [58]. Our laser wavelengths can be

optimised using the light from the ion. However to initially obtain a signal from the

ion, the two 397 nm and the four 866 nm lasers need to be close enough to the correct

wavelengths such that they are within the ion’s Doppler width. Thus a method is required

to initially measure these wavelengths. Until recently there was only one way to do this in

our group - via a home built wavemeter based on an Michelson interferometer. This has

been described extensively elsewhere [51] and so will only briefly be described here. The

wavelength is measured relative to a stabilised Helium-Neon laser (HeNe). A HeNe will

lase on two longitudinal modes of its cavity at any given time. The modes are both linearly

polarised but the polarisation angle of one mode is 90 degrees from the other. The HeNe is

stabilised by putting the light emitted through the back of the laser into a polarising beam

splitter so each of the polarisations is separately measured on photodiodes. Equalising the

power of the two different polarisations the HeNe is kept at a constant frequency. Its

stability is found to be better than 1 MHz/day [59]. The stabilised HeNe laser and the

laser to be measured take separate paths around the interferometer and are measured on

separate photodiodes. A cart moves up and down an air track to change the path length

difference between the two arms of the interferometer resulting in fringes when they are

combined onto a photodiode. The number of fringes are counted for both lasers and the

ratio once calibrated gives the wavelength of the laser measured. The laser wavelengths

can be measured to an accuracy of less than < 500 MHz.

This wavemeter has many disadvantages. Only one laser can be measured at any time,

during which the laser has to be directed away from the ions as a lot of power is required.

The movement of the cart also causes vibrations which can interfere with other apparatus

on the table. Also different alignments of the lasers through the wavemeter can affect

its reading. Recently we had the opportunity to use a commercial (High Finesse WS-6)

wavemeter from another laboratory. An optional add-on (High Finesse MC8) allows eight

laser wavelengths to be measured simultaneously. A precision of 200 MHz is achievable

with this wavemeter. Unfortunately the wavemeter was approximately 60 metres away

and so optical fibres of this length were required to transmit the light. One fibre is used

to transmit both the 397 nm beams, one fibre transmits the 866 nm and 854 nm beams

and a final fibre transmits the 729 nm beam. A lot less optical power is required for this

wavemeter and so only a fraction of the light can be sent to the wavemeter while still

performing experiments with the trapped ions.

62



Chapter 4 Laser Systems and Optical Setup

4.2.3 Scanning Cavity Lock

Experiments with a trapped ion can take hours to complete. Over this time the laser

frequencies can drift out of resonance with the ion. This could be due to the angle of the

extended cavity grating drifting or possibly long-term drifts in temperature if the PID

system used for stabilisation is not optimised. Ideally the 866 nm and 397 nm lasers used

for repumping and Doppler cooling respectively should not drift by more than a fraction

of the ≈ 20 MHz transition linewidth on the timescale of the experiment.

The solution is to create a signal for each laser which is linearly dependent on the

laser’s frequency and then feed back to to the laser to keep this signal constant. When I

first joined the group the method used was to lock the lasers to stable, tunable reference

cavities. This was the method used when conducting the experiment of chapter 5. The

method has been described extensively in reference [51] and so only an overview will be

provided here. The idea is to measure the cavity transmission which has a maximum in

frequency space for each cavity mode. The cavity length is tuned via PZTs on one of

the cavity mirrors until a TEM00 mode is found via a CCD camera monitoring the cavity

transmission. A setpoint is used which corresponds to approximately half the maximum

cavity transmission. This corresponds to the side of a fringe which has an approximately

linear gradient and is an odd function such that positive and negative frequency shifts can

be differentiated. The difference between the cavity transmission and the setpoint is then

used as an error signal which is sent to PID electronics to create a signal which is fed back

to the PZT on the external cavity grating of the laser, altering the length of the extended

cavity. A separate cavity was used to individually lock each 397 nm laser. Only one of

the 866 nm lasers however was locked to a cavity. The other three 866 nm lasers were

locked to this master laser by directing some of the light from each laser into a commercial

scanning cavity (TecOptic SA-7.5) which we will label as a spectrum analyser. As the

length of the spectrum analyser was scanned over a FSR (7.5 GHz) all four 866 nm laser

peaks could be seen via a photodiode measuring the transmission. This signal was sent

into a Labview program which digitally measured the position of the peaks. With this

information the program could calculate the frequency difference between each peak and

the master laser and create an error signal to feed back to the PZT of each laser to keep

this frequency offset constant. The lock was very slow - the frequency of updating the

voltages being fed back being only ≈ 1 Hz. The stable cavities had a finesse of ≈ 60 and

a free-spectral-range of ≈ 1.5 GHz resulting in a transmission peak width of ≈ 25 MHz.

The lasers could be thus locked well within the ≈ 20 MHz transition natural linewidths.

This was a reasonably robust lock but the laser frequency stability depends on the

stability of the reference cavity length. The cavities were kept under vacuum to reduce
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changes in pressure and temperature. The temperature was stabilised and the spacer was

made out of a low-expansion glass (Zerodur). To reduce changes in the cavity length due

to the relatively high thermal coefficient of expansion of the PZTs another set of PZTs

was attached which move the opposing mirror by the same amount (this re-entrant design

is described in [60]). However there were still large drifts in the PZT lengths after the

voltage on them were changed. Another problem was that using this lock would translate

laser power instability into frequency instability. This is due to the setpoint being on the

side of the transmission peak, a change in the peak’s size will result in the setpoint at a

given intensity moving in frequency. The signal level from the ion could be seen to change

due to the instability of the lock. The feedback bandwidth achieved was very low and

it would be advantageous to feedback more quickly, possibly reducing some of the laser

acoustic noise.

A new locking system was developed which was used to lock the 397 nm lasers in

the experiments detailed in chapters 6 and 7. The fundamental difference in the locking

schemes is that an atomic transition was used for the frequency measurement rather than

a cavity length. The transition used is the 3s → 2p transition in Neon at ≈ 633 nm. This

is the lasing transition in a HeNe laser. The HeNe was locked using the same method

used in the Michelson interferometer wavemeter described in § 4.2.2 achieving a similar

stability of < 1 MHz/day.

The method to lock the 397 nm lasers to the HeNe is to use a scanning cavity. A

similar method is used to that of the spectrum analyser used to lock three 866 nm lasers

to a master 866 nm laser described earlier. The length of the cavity is scanned. As the

lasers are of different wavelengths they will become resonant with a mode of the cavity at

different parts of the scan and so separate peaks will be seen on the cavity transmission

spectrum. The frequency difference between each 397 nm laser peak and the HeNe peak

is detected and used as an error signal which is then sent through PID electronics and

fed back to the external cavity grating PZT of each 397 nm laser. The system is designed

to have as high a feedback bandwidth as possible. This is achieved by using a fast scan

(≈ 2 kHz) and using fast electronics such that the feedback value can be updated every

cavity scan. A similar laser lock to a fast scanning cavity was developed in the group of

Wolfgang Lange in Sussex [61].

First let us consider the design of the cavity itself. The design and construction was led

by J.Goodwin, a PhD student in our group [59]. Only an overview of the cavity design will

be given here. I was responsible for programming the microcontrollers used and designing

and building some of the electronics and so more details of this aspect will be given below.

It was decided to use a confocal cavity for which the radius of curvature of the mirrors
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is equal to the cavity length. In this configuration the transverse cavity mode frequen-

cies overlap such that modes are only seen every FSR/2. This should reduce the mode-

matching requirementi. One cavity mirror is mounted on a small PZT to allow rapid

scanning of the cavity length. Although the laser stability depends on the HeNe frequency

stability and not the cavity length it is still important that the cavity does not drift by

too large an amount as the transmission peaks could move out of the range of the scan

and the lasers would then become unlocked. It was chosen to compensate for a drift in

the cavity length by using a second PZT stack on the other cavity mirror instead of using

a low expansion material to try to make the cavity length stable. This opens the choice of

materials that can be used. Brass was chosen as it is easy to work with. The mirrors must

be highly reflective at both 397 nm and 633 nm and so a special double stacked coating

was used. It was shown in [59] that the effects due to dispersion in the air between the

mirrors were important as this resulted in a movement of the HeNe and 397 nm peaks

relative to each other which could not be differentiated from a drift in the laser frequency.

It was decided to allow the cavity to be placed under vacuum (≈ 10−2 mbar) to reduce

this unwanted effect. For the experiments described in this thesis the cavity was left at

atmospheric pressure. It has been calculated [59] that laboratory temperature changes of

4 K would require the cavity length to be compensated by 12 µm. It was thus decided

to use a PZT stack with a throw of 13.3 µm (Noliac SCMAR03-12). For a given cavity

finesse choosing a FSR is a compromise between how much the laser frequency can be

scanned while locked and how accurately the frequency of each peak can be detected. The

cavity length was chosen to be 15 cm resulting in a FSR of 1 GHz.

Figure 4.3 shows a schematic of the scanning cavity. The main brass body is in three

separate pieces. The mirrors and PZTs are held in the endpieces which are screwed into

the central piece. The amount which these are screwed in determines the length of the

cavity and are optimised for confocality. Windows at the input and output and a sleeve

glued over the screw threads fully seal the cavity which can then be pumped from the

vacuum inlet which is then valved off.

The optics used to couple into the cavity and detect the transmitted light are shown

in figure 4.4. It is noted that a photomultiplier tube (PMT) has been used instead of a

photodiode to detect the 397 nm light. This is due to the small amount of 397 nm light

which is transmitted through the cavity. The reason for this has been attributed to a large

effective linewidthii of the 397 nm lasers compared with the cavity linewidth resulting in

iIn practice the cavity was usually used away from the confocal position. A slight misalignment from
confocality results in the spreading out of the transmission peak due to the transverse modes having slightly
different frequencies leading to a reduction in the finesse. The TEM00 mode was mode-matched and used
to lock to.

iiThis effective linewidth is due to the laser jitter during the time the cavity takes to scan past the
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Figure 4.3: Schematic of the scanning cavity. Adapted with permission from [59]
.

only a small fraction of the light being resonant with the cavity at any given moment

of time as the cavity is scanned. To test this theory the effective finesse at 397 nm and

633 nm with cavity lengths of 15 cm and 2 cm, corresponding to FSRs of 1 GHz and

7.5 GHz respectively was measured. The finesse at 633 nm was measured to be 1000 and

2000 at FSRs of 1 GHz and 7.5 GHz respectively. A factor of 2 increase in the finesse

for a cavity linewidth increase by a factor of 7.5 suggests that the finesse measurement of

2000 at a FSR of 7.5 GHz is not limited by the laser linewidth and is the actual finesse of

the cavity at 633 nm. In contrast the effective finesse at 397 nm was 83 and 600 at FSRs

of 1 GHz and 7.5 GHz respectively [59]. This suggests that the laser linewidth is limiting

the effective finesse at both of these FSRs. The linewidth of the 397 nm lasers is thus

estimated to be on the order of 10 MHz on the timescale of the cavity scaniii.

The sensitivity of the PMT is adequate to see a peak over the background with≈ 50 µW

of light from each 397 nm laser through the input fibre in figure 4.4. The waveplate is

included to rotate the axis of the linearly polarised 397 nm light. It was found that unless

the polarisation was aligned with a certain axis of the cavity two overlapping peaks would

be seen on the cavity transmission. This is attributed to birefringence in the dielectric

coatings of the mirrors.

The voltage applied to the scanning PZT and the position of the detected transmission

peaks are shown in figure 4.5. A sinusoidal scan was applied to the PZT. This was chosen

resonance.
iiiIt has since been concluded that although the relatively large laser linewidth does reduce the cavity

transmission a larger effect is due to loss within the cavity. A cavity with a lower finesse would improve
the transmission due to both of these effects.
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Figure 4.4: Schematic of the optics used for the scanning cavity lock. Some light from
the 397 nm lasers (FC = fibre coupler) is picked off and transmitted through the optical
fibre (F) shown to the cavity optics. It is then put through a λ

2 waveplate (WP) and then
two lenses are used to couple to the cavity mode. One of the polarisation modes from the
HeNe laser (shown in yellow) is chosen via a polarising beam splitter (PBS). This is then
sent through two lenses to couple to the cavity mode and then combined on a dichroic
beamsplitter (BS) with the 397 nm lasers. The transmitted light is split into the 397 nm
and HeNe beams using another beamsplitter. The HeNe light is detected on a photodiode
(PD) while the 397 nm light is viewed using a fibre-coupled PMT.
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FSR

Pulse Detection Calculation and DAC Update

Figure 4.5: Schematic of the scanning cavity drive voltage and transmission pulses. The
pulses from the two 397 nm lasers are shown in blue while those from the HeNe are shown
in red. The pulses seen are mirrored after the maximum voltage applied to the piezo as
the scan is symmetrical. The AC voltage applied to the short piezo is set such that the
scan range is just longer than one free spectral range. The DC bias on the long piezo is
adjusted so that the HeNe mode appears near the beginning and end of the scan range.
The two different blue laser frequencies then give a pair of peaks somewhere within the
scan range.

over a triangular scan as higher frequency fourier components could have been resonant

with the cavities vibrational modes and caused unwanted effects. The frequency separation

between the first two HeNe peaks detected represents the cavity FSR. The lock aims to

keep the frequency separation between each 397 nm laser pulse and the first HeNe pulse

constant (shown as s1 and s2 in the diagram). The cavity lock is implemented by keeping

the frequency separation between the start of the cavity scan and the first HeNe pulse

constant (s3 in the diagram). Calculating the voltage to output and updating the voltage

on the DACs begins after the second HeNe pulse to maximise the time available.

Figure 4.6 provides a high level view of the electronics used in the system. The currents

produced by the light hitting the photodiode and PMT are sent through transimpedance

amplifiers and then into analog peak detector electronics. The 5 V pulses representing the

peaks are then sent into microcontrollers (Arduino Mega) which are used to detect the

pulse times and calculate error signals. A voltage-controlled oscillator (VCO) (XR-2206)

is the source used to scan the cavity. It is sent through a high power amplifier (based on
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Figure 4.6: Schematic of the electronics used for the scanning cavity lock.

two high current OPA 547 op-amps) and is then connected to the short PZT. A trigger

from the VCO is sent to the microcontroller to let it know when the scan begins. The

microcontrollers output in parallel to three 8-bit digital to analog converters (DACs -

LTC1597). The error signals for the 397 nm lasers are sent to analog PID (proportional-

integral-derivative) electronics to produce a voltage to feedback to the ECDL cavity piezos.

The feedback voltage for the cavity is instead calculated by the microcontrolleriv.

The stages performed in the peak detector are shown in figure 4.7. As explained in

the caption the signal is differentiated, compared with ground and then sent through an

AND gate with a threshold detection of the original signal. This produces a very short

5 V pulse. This is sent through a monostable multivibrator to extend the pulse duration

to ≈ 2 µs so it can be easily detected by the microcontroller.

The microcontroller used is an Arduino Mega which is based on a ATmega1280 chip.

The Arduino board has connections for 54 digital input/output pins and a USB connection

so it can easily be connected to a computer to upload programs. Programs are written in

a specifically designed language based on C. The clock speed is 16 MHz.

When each peak is detected a 5 V pulse is sent to a pin of the Arduino which has been

configured as an input. Three pins are used, one for the HeNe peaks, one for the peaks

ivIt was chosen to use the microcontroller to calculate the feedback to the cavity as there are less
stringent time constraints. It is not required to feedback every cavity scan as this lock is to only stop a
slow drift of the cavity length. In practice for a 2 kHz scan frequency there is enough time to perform the
calculation every scan.
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Figure 4.7: Schematic of the peak detector used for the scanning cavity lock. First the
cavity transmission signal is differentiated to create a signal with a zero crossing at the
peak maximum. This signal is put through a comparator with the other input grounded
to produce a positive pulse which stops at this zero crossing. There will however be many
more zero crossings originating from small spurious noise spikes in the input signal (not
shown in the figure) and so to remove these the signal is put through an AND gate with
a threshold detection of the original signal. Finally a monostable multivibrator is used to
extend the pulse length to ≈ 2 µs so it can be easily detected by the microcontroller.
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corresponding to both 397 nm lasers and one for a trigger indicating that the scan has

started from the VCO. The pins used are those which can be configured as interrupt pins.

An interrupt is hardware configured such that it interrupts whatever the microprocessor

is doing and forces it to begin a function created by the user. The program was written

such that a rising edge on an interrupt pin triggers a function to be called. The interrupt

function corresponding to the VCO trigger resets a variable which counts the number of

clock cycles that have passed. The ones attached to the transmission peaks read the clock

times at which the peaks were detected and assigns them to variables. Interrupts have

been used as they will minimise any variation in the delay between detecting a pulse and

setting the relevant variable. It is important to turn off automatic timer interrupts which

are used by the Arduinio for some timing functionsv. These cause ≈ 4 µs glitches which

repeat on the order of 1 s. Directly counting the clock cycle number bypasses the need for

these timer interruptsvi.

As the cavity is being scanned with a sinusoidal voltage a particular time difference

in different parts of the scan will not correspond to the same cavity length difference and

hence not the same frequency difference. The time at which a pulse is detected thus needs

to be converted to be proportional to the PZT extension. The voltage applied is shown in

figure 4.5. It is biased such that it is always positive. Considering half an oscillation for a

given cavity scan frequency, Ω and clock speed, Cs the number of clock cycles in the half

oscillation, N is given by Cs

2Ω . A pulse which is detected i clock cycles from the beginning

of the scan is thus proportional to an extension and is thus proportional to the required

voltage to be output to the DAC if

Vout =
A

2

[

1− cos

(

π
i

N

)]

. (4.2)

This has been calibrated such that Vout covers the whole range of the DAC if A is the

maximum number that can be output. To speed up the computation time required by the

DAC a lookup table is created by the program for Vout for a given number of clock cycles.

The conversion is done within the interrupt functions.

To actually tell the DAC a voltage to which it should be updated a 16-bit number is

required. The Arduino has a number of ports consisting of a set of 8 pins. The ports are

hard-wired such that their voltages can be set simultaneously using a single command.

Using the calibration of equation 4.2 it is assured that the maximum number sent to the

ports is the maximum number that can be processed by a 16 bit counter
(

216 − 1
)

. The 8

most and least significant bits of the number are then separated and sent to the separate

vUsing the command ‘TIMSK0=0’.
viUsing the timer variable ‘TCNT1’.
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ports of the Arduino. Triggers are then sent to the DAC to tell it to update the voltage

it is outputting.

Due to the low 397 nm power transmitted though the cavity the threshold on the peak

detector must be set close to the background level and so spurious peaks can sometimes

be mistakenly detected. These peaks could occur anywhere in the scan and will cause

problems if they result in a radically different voltage being sent to the extended cavity

grating piezo. It was thus decided to include windows around the 397 nm peaks. If from

one scan to the next a detected peak appears to have moved by more than the window

then it will be ignored and the DAC voltage will not be updated.

After the lasers have been locked a voltage is output to each DAC equal to the relevant

397 nm peak position frequency difference from the first HeNe peak minus the same

frequency difference measured when the locking began (plus an offset to keep the voltage

away from the DAC rails). We will call this original frequency difference the setpoint. The

laser frequencies can be scanned by changing the value of this setpoint. This is achieved

via a Labview interface which sends digital signals to the Arduino. Three digital signals

are required, one specifies which laser to move, the second says whether to increase or

decrease the setpoint and the third performs the action every time a pulse is provided.

For the 397 nm lasers the signal from each DAC is sent into commercial analog PID

(proportional-integral-derivative) electronics (TuiOptics P100) to create the voltages to be

applied to the PZTs. The scanning cavity is locked by keeping the first HeNe pulse time

the same time from the beginning of the scan. This lock is required to keep the HeNe and

397 nm pulses within the range of the scan. It was decided to calculate the proportional

and integral feedback for this lock digitallyvii. The integral is calculated using the formula

‘integral = integral + error’ where ‘error = setpoint - pulse position’. This results in the

integral being updated every cavity scan. The output to the cavity piezo, Vpiezo is thus

Vpiezo =
A

2
+ P × error + I × integral. (4.3)

The lock has been found to be successful in stopping the lasers from drifting. No

reduction in the signal from the ion is seen over a timescale of hours due to a drift the

frequency of the 397 nm lasers. A second scanning cavity is under construction to lock

the infra-red lasers via the same method. For the results of chapters 6 and 7 the lengths

of the extended cavities of the infra-red lasers are manually adjusted (via the voltage on

their respective PZTs) if a reduction in the signal from the ion is witnessed. No reduction

viiIt was originally decided to perform the cavity feedback calculation digitally as it was not necessary to
feedback every scan and so there was plenty of time to perform the computation. In practice at a cavity
scan speed of 2 kHz there was enough time to feedback every scan.
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in the linewidths of the 397 nm lasers is seen via the cavity transmission when the lock is

activated.

4.2.4 Acousto-Optic Modulators

Each laser is pulsed using a commercial acousto-optic-modulator (AOM) to select temporal

slices from the continuous wave laser output. This is required for creating laser pulses used

for the pulsed spectroscopy of chapter 7. The crystal is bonded to a piezo transducer. The

piezo is driven at an RF frequency of ≈ 100 MHz launching an acoustic travelling wave into

the crystal. Light diffracts from the resulting compressions and rarefactions of the crystal.

The first order diffracted light is at the frequency of the laser plus the RF frequency. The

zeroth order light is blocked and the first order is directed towards the ions. Thus ideally

only when the AOM is switched on will the ions see the laser beam. Figure 4.8 shows

a schematic of the electronic components used for the AOMs. The voltage-controlled-

oscillator (VCO) outputs a radio frequency which is dependent on the voltage supplied.

The frequency is optimised to obtain the highest 1st order diffracted efficiency. The RF is

then passed through a switch which is controlled via a TTL input. A variable attenuator

is then used which has a gain dependent on an input voltage. Currently this is used to

optimise the AOM efficiency but in the future a signal from a photodiode will be fed

back to this to reduce the amplitude noise of the laser (forming a ‘noise-eater’). A final

amplifier is used before the signal is sent to the AOM. The laser beam must either be

collimated or be within the Rayleigh range of a focus (so the divergence is small) when

it passes through the AOM. The beam size at the AOM is a tradeoff between switching

speed and diffraction efficiency. The switching (≈ 10 ns) is much quicker than our current

requirements (≈ 10 ms pulses) and so the beam is made as large as possible (≈ 300 µm).

Up to 80% of the light passed into the AOM is diffracted into the 1st order.

4.2.5 Optical Table Setup

We have seen many of the optical components required for the experiment. Now let us

look at how the lasers are maneuvered through them before being focused onto the trapped

ions. All the lasers except for the 729 nm (§ 4.2.6) are on a single optical table. For clarity

the layouts of the infra-red (IR) and 397 nm lasers have been shown on separate figures.

This is the optical layout at the time of writing where the scanning cavity lock is being

used for the 397 nm lasers and the AOMs and fibre EOM (§ 6.3) have been included. The

paths of the 866 nm and 854 nm beams are shown in figure 4.9 while that of the 397 nm

is shown in figure 4.10. The 866 nm beams are first combined and then sent through an

anamorphic prism pair to partially circulerise the initially elongated beam shape (§ 4.2.1).
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Figure 4.8: Schematic of electronics used for AOMs. The 397 nm AOMs are centered
at 110 MHz (Isomet 1206C-833), the 729 nm at 250 MHz (Isle Optics LM250) and the
854 nm at 80 MHz (Brimrose 80-20). VCOs are used at all of these frequencies (110 MHz:
ZX95-200-S+, 250 MHz: ZX73-2500-S+, 80 MHz: ZOS-100). The variable attenuators are
based on variable amplifiers (LMH6505MA). The Amplifiers for the 397 nm and 854 nm
AOMs are based on a ASC2832 chip. The 729 nm AOM amplifier is a Mini Circuits
ZHL-1-2W.

The combined beam is then put through a Faraday isolator to reduce reflections back into

the lasers which could disrupt the wavelength and single mode operation. A λ/2 waveplate

is then used to rotate the polarisation such that it is vertical so it does not become elliptical

after reflecting off the many mirrors it encounters further along the path. The 854 nm

and 397 nm lasers have a similar arrangement, however the beam shaping is performed

using a cylindrical lens pair. Pick-offs are placed after the waveplates to send light to the

wavemeter (High Finesse) and the scanning cavity in the case of the IR and 397 nm lasers

respectively. This is done as early as possible so the lock and wavemeter reading will not

be interrupted if the beam is blocked further down the line. Flipping mirrors are used to

direct the light to the Michelson wavemeter if it is required since it requires a lot of light.

The spectrum analyser shown in figure 4.9 is that used for the old 866 nm lock (§ 4.2.3)

and is used in chapter 6 to look at the sidebands generated by the fibre EOM.

The electromagnet used to generate the magnetic field for Penning trap operation

(§ 4.4.1) sits on the optical table such that the trap itself is 325 mm above the table. A

breadboard with components at this height is used for combining the beams and changing

the beam polarisation. Single-mode, polarisation-maintaining optical fibres are used to

send the light up to this breadboard. Two single-mode fibres are used, one for the 397 nm

beams and one for the 854 nm, 866 nm and 729 nm beams. As the lasers have traveled

through the same fibre they will automatically be spatially overlapped. It only remains to

overlap the output of the 397 nm fibre with that of the infra-red fibre at the centre of the

trap using a single lens external to the trap vacuum system. A 250 mm focal length lens

is used to produce spot sizes at the ions of 90-100 µm. Figure 4.11 shows the components

used on the breadboard.
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Figure 4.9: Optical Setup of the 854 nm and 866 nm lasers. The optical setup of the
397 nm lasers is shown seperately in figure 4.10 and how they are combined is shown in
figure 4.11. Wavemeter A is the Michelson interferometer described in the text. Wavemeter
B is the commercial High Finesse wavemeter (see text). The fibre EOM will be detailed
in chapter 6.

75



Chapter 4 Laser Systems and Optical Setup

Wavemeter A

Wavemeter B

Scanning Cavity

To trap breadboard

397n
m

397n
m

Figure 4.10: Optical Setup of the 397 nm lasers. The optical setup of the infra-red lasers
is shown seperately in figure 4.9 and how they are combined is shown in figure 4.11.
Wavemeter A is the Michelson interferometer described in the text. Wavemeter B is the
commercial High Finesse wavemeter (see text).
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Figure 4.11: Optical Setup before the trap where the IR and UV beams are combined.
The YAG beam shown is used for photoionisation and is discussed in § 4.4.3. It is sent
through the trap in the opposite direction to the other beams. Two YAG mirrors (> 90%
transmission at IR and UV) are used to stop damage to the IR and UV fibres. The
polarisation of the 854 nm, 866 nm and 729 nm lasers can be rotated using the λ/2
waveplate. The 397 nm polarisation is set by the angle of the output fibre coupler. A
250 mm focal length lens is used to focus all of the beams into the trap.
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4.2.6 729 nm Laser System Overview

The S 1
2
→ D 5

2
quadrupole transition needs to be addressed with a narrow linewidth laser

to resolve individual sidebands of the ion’s motion. This is required for sideband cooling

(§ 3.3) and for quantum computation schemes discussed in § 3.4. The coherent dynamics

which occur are described in § 3.2.

Originally the 729 nm source was a commercial Verdi pumped Titanium-Sapphire

laser. The linewidth of the laser was narrowed using a Pound-Drever-Hall (PDH) lock

to an external cavity. The scheme used is described in reference [52]. The linewidth

achieved was estimated to be ≈ 1.7 kHz. The lock however was not very robust. When

the laser head of the Verdi became faulty it was decided to develop a new system based

on the newly available 730 nm diodes instead of maintaining the Titanium-Sapphire laser

system. The new system was developed by a Post-Doc in our group (D.Crick). The system

uses the external cavity used for the Titanium-Sapphire system to produce a PDH lock.

The electronics and optics have however been improved to produce a very robust lock. An

overview of the PDH locking scheme will be given together with an overview of the optics

and electronics used.

4.2.7 Pound-Drever-Hall Locking Scheme - Theory

The Pound-Drever-Hall (PDH) technique was first implemented in the microwave regime

by R. Pound in 1946 [62] and then in the optical regime by R. Drever and J. Hall in

1983 [63]. In this technique the laser is locked using the reflected light from a stable

external cavity. The set point used is a position where there is a narrow dip in reflected

light detected. As will be shown below, the error signal produced is essentially dispersion

shaped, with a zero crossing at the centre of the intensity dip. This is advantageous as

the laser’s intensity noise does not generate frequency noise. The fraction of light reflected

from the cavity is an even function of the laser frequency. If this is directly used as an error

signal the laser cannot be locked to the central point because it is impossible to differentiate

between a positive or negative frequency shift. To circumvent this problem the error signal

used is related to the derivative of the cavity’s Airy function. The derivative is an odd

function and so the laser can be locked to the central point. Another advantage of the

more complicated PDH lock is due to the fact that the error signal is derived from the

light from the input cavity mirror rather than the light transmitted through the cavity. A

fraction of the light used is that which has been instantly reflected from the first mirror.

The light used has two components - a promptly reflected component at the actual laser

frequency, and a delayed component at the cavity resonance frequency leaking from the

cavity mode. The PDH scheme essentially compares these two components so that very
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rapid deviations of the input frequency from the desired cavity frequency can be detected

and ultimately removed in a feedback loop. The PDH technique can thus cope with faster

frequency fluctuations than the side-of-fringe technique, resulting in a tighter lock.

To physically obtain the derivative of the cavity’s Airy function the laser frequency is

modulated. The laser intensity measured will either vary in phase with the modulation

applied (for a positive gradient) or out of phase (for a negative gradient). This is the

method used for a ‘dither lock’. The PDH lock can be thought of as the high modulation

frequency limit of this technique. The error signal acquired permits a tighter lock and will

work at a higher maximum frequency jitter of the laser.

The mathematical form of the PDH error signal will be derived using a standard

treatment similar to that adopted in reference [64]. First the reflected power of a phase

modulated laser beam from a reference cavity is calculated. It is the light intensity that

is required rather than the electric field as a photodiode cannot directly see the field. The

electric field of a phase modulated laser beam can be expressed as

Eincident = E0e
i[ωt+β sin(Ωt)], (4.4)

where β is the magnitude of the modulation and Ω is the modulation frequency.

It is intuitively more favorable to express the incident field as a sum of Bessel functions.

For a small modulation we can approximate the field as zeroth and first order Bessel

functions (§ 6 for a more complete description at higher modulation amplitudes). We

obtain

Eincident ≈ E0

[

J0 (β) e
iωt + J1 (β) e

i(ω+Ω)t − J1 (β) e
i(ω−Ω)t

]

, (4.5)

where J0 (β) and J1 (β) are the zeroth and first order Bessel functions respectively.

There are now three terms in the expression representing waves at three different

frequencies. It is seen that the magnitudes of these frequency components depend on the

magnitude of the modulation. There is one component at the frequency of the original,

unmodulated wave (carrier) while the others have frequencies separated from the original

by ±Ω (sidebands).

The PDH error signal is derived from the signal coming from the input cavity mirror.

A reflection coefficient as a function of frequency is thus required. It is a standard result
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that for a symmetric cavity with mirrors of reflectivity r, the reflection coefficient isviii [65]

F (ω) =
Ereflected

Eincident
= r

[

eiω/∆νfsr − 1

1− r2eiω/∆νfsr

]

. (4.6)

The reflected electric field from the cavity is thus

Ereflected = E0

[

F (ω) J0 (β) e
iωt + F (ω +Ω) J1 (β) e

i(ω+Ω)t

−F (ω − Ω) J1 (β) e
i(ω−Ω)t

]

. (4.7)

The reflected power is then obtained by finding the modulus squared of the field

Preflected = Pc |F (ω)|2 + Ps

[

|F (ω +Ω)|2 + |F (ω − Ω)|2
]

+2
√

PcPs [Re [F (ω)F ∗ (ω +Ω)

−F ∗ (ω)F (ω − Ω)] cos (Ωt) + Im [F (ω)F ∗ (ω +Ω)

−F ∗ (ω)F (ω − Ω)] sin (Ωt)] + (2Ω terms) , (4.8)

where Pc and Ps are the reflected carrier and sideband powers from the cavity respectively.

The terms in which we are interested for our error signal are those containing infor-

mation about both the carrier and sidebands (F (ω)F ∗ (ω +Ω)− F ∗ (ω)F (ω − Ω)). The

2Ω terms are easily discarded using a low-pass filter. The constant terms are removed by

capacitively coupling the photodiode. We are left with a term varying as cos (ωt) and a

term varying as sin (ωt). The frequency of the modulation decides which of these terms

is significant. The PDH technique operates in the high frequency regime. The higher the

modulation frequency the further the sidebands are from the carrier in frequency space.

In the high modulation frequency limit we can assume all the power of the sidebands is

reflected (F (ω +Ω) = F (ω − Ω) = −1). In this case the real part of equation 4.8 is

negligible and so we neglect the cos (ωt) term obtaining

Preflected = 2
√

PcPs Im [F (ω)F ∗ (ω +Ω)− F ∗ (ω)F (ω − Ω)] sin (Ωt) . (4.9)

We would like to measure a DC signal. To get rid of the sinusoidal variation with time

the signal is mixed with the original modulation signal. This creates a DC term and a AC

term with a frequency of 2Ω (using sin2 (Ωt) = 1
2 [1− cos (2Ωt)]).

The 2Ω term can be removed using a low-pass filter and we finally have our error signal

ǫ =
√

PcPs Im [F (ω)F ∗ (ω +Ω)− F ∗ (ω)F (ω − Ω)] . (4.10)

viiiNote that this expression contains both a immediately reflected component as well as a component
which leaks out of the cavity.
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Figure 4.12: Example PDH error signal. A relatively low finesse of ≈ 300 has been used
so the structure can easily be seen. The frequency of the laser modulation is Ω.

Figure 4.12 shows an example of the form of this error signal.

4.2.8 PDH Lock - Experimental Implementation

The optical setup is shown in figure 4.13. The initially elongated beam shape of the diode

laser is partially circulerised using an amorphous prism pair. Two Faraday isolators were

required to reduce feedback from the external cavity so that it did not interfere with the

lock. The rest of the optics is very similar to that used for the old Titanium-Sapphire

laser system described in [52]. Polarising beam splitters (PBS) and wave plates are used

to direct the light around the different sections. The first λ/2 and PBS determine the

fraction of light directed towards the external cavity to produce the required error signal.

The remainder of the light goes through a second λ/2 and PBS to choose the fraction of

light double-passed through a AOM and then sent through a fibre to the trap. The λ/4

waveplate is also double passed so that the light’s polarisation is changed from vertical to

horizontal so it then passes through the PBS. The other portion of the light goes straight

through the PBS through a fibre to either of the wavemeters described in § 4.2.2. It is

noted that the wavemeter reading does not include the frequency shift imparted by the

AOM.

The fraction of the light sent towards the cavity is first sent through an EOM to

modulate the laser’s phase as required to create the PDH error signal. It is then mode

matched with two lenses into the cavity. The light transmitted through the cavity is

measured on a photodiode and observed on a CCD camera to check the mode which is

being coupled. The reflected light from the cavity passes twice through the λ/4 waveplate
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Figure 4.13: Optical Setup of the 729 nm Laser System. The EOM (Linos PM25) is used
to generate sidebands on the laser required for the PDH error signal. The cavity has a
FSR of 1.5 GHz

and so is reflected off the PBS onto a photodiode. It is the electronic signal from this

reflected light which is used to create the PDH error signal. The signal is first sent

through a DC blocking capacitor to remove the DC terms of equation 4.8. It is then

mixed with the original oscillator signal, the phase lag of which is optimised to create the

required error signal.

The error signal is sent into a loop filter to create the required feedback signal to the

laser diode current. A loop filter has been chosen rather than conventional PID electronics

as its gain curve can be made to more closely match the optical characteristics of the

system. Loop filter design is discussed at length in references [52] and [66]. Low frequency

feedback is also provided to the piezo attached to the grating of the laser’s extended cavity

via an Arduino (§ 4.2.3). The Arduino samples the error signal and then outputs via a

DAC to the piezo. Additional features which help the robustness of the lock are also

implemented with this Arduino. When the laser is locked the cavity transmission should

be high. If a sudden jolt knocks the laser far enough in frequency such that it is no longer

within the capture range of the error signal then the high gain at low frequency will quickly

move the feedback to a rail of the voltage. This is undesirable as the laser then has no

chance of re-locking to the correct cavity mode. To overcome this the Arduino freezes the

piezo feedback value if the cavity transmission falls below a certain value (the assumption

being the laser has become unlocked or the light to the cavity has been blocked). This
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Figure 4.14: Ringdown spectroscopy on the 729 nm locking cavity. The red plot shows
the detected cavity transmission. The initially locked laser is unlocked and quickly moves
from the cavity resonance. The cavity transmission then exponentially decays. The fit
gives a time constant of 6.33 µs which results in an estimated finesse of ≈ 60 000. Courtesy
of D.Crick.

has worked well to produce a robust lock.

The cavity finesse has been measured to be ≈ 60 000 using ring-down spectroscopy

(see figure 4.14). Figure 4.15 shows the cavity transmission when the laser is locked and

is scanned. The extent of the cavity transmission jitter when the laser is locked is much

smaller than the cavity linewidth (≈ 25 kHz). However the cavity acts as a low-pass filter

and jitter above the cavity linewidth is attenuated so this is not an accurate measure of

the laser linewidth relative to the cavityix. With difficulty and many assumptions a rough

estimate of the laser linewidth relative to the cavity has been calculated from the error

signal to be of order 10 Hz (performed by D.Crick). To achieve an accurate measure of the

laser linewidth a similar laser system is required and the stability of the beatnote between

the two systems is measured.

ixAlso as the laser is locked to the peak of the cavity transmission there is no change in the transmission
for a frequency change of the laser to first order.
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Figure 4.15: 729 nm locking cavity transmission with laser locked (black) and scanning
(red). The sidebands on the laser can just be made out in the plot where the laser is
scanning. It is noted that much more light is transmitted through the cavity when the
laser is locked. One reason for this is due to there being a greater amount of time for light
to build up in the cavity. Another reason is that the laser linewidth is smaller when it
is locked and so a greater percentage of the light can be resonant with the cavity at any
time. Courtesy of D.Crick.
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Figure 4.16: Split-Ring trap electrodes. Adapted with permission from [52].

4.3 Ion Traps

4.3.1 Split Ring Trap

The split-ring trap was used in the repumping and pulsed spectroscopy experiments of

chapters 6 and 7. It was made by Martijn Van Eijkelenborg and is detailed in reference [67].

Figure 4.16 is a diagram of the trap electrodes. Although the electrodes are very different

from the ideal hyperbolic ones described in figure 2.2 the potential is close to harmonic

at the centre of the trap. The ring electrode is split into four sections so that axialisation

(§ 3.1.2) can be applied. The endcaps are hollow so that a filament can be housed in each

one. A hole in the endcap allows electrons to move along the magnetic field direction to

the trap centre for ionisation of calcium atoms (§ 4.4.3). A calcium oven is between the

ring and endcaps on each side. Each oven has a hole pointing towards the trap centre

which the atoms can come out of.

The laser and fluorescence detection directions are shown in figure 4.16. Note that

there are no laser beams along the magnetic field direction and so Doppler cooling cannot

be performed along this axis. The first imaging lens is shown. This is inside the vacuum

chamber. See § 4.4.2 for a description of the imaging system.

4.3.2 PCB Trap

The PCB trap is used in the J-mixing experiment of § 5.3. It is made out of two pieces of

circuit board (FR4) facing each other. The trap electrodes are milled onto the boards. The

trap actually has 3 trapping regions. It was designed for moving ions between these trap-

ping zones perpendicular to the magnetic field. The experiments where this is performed

and the details of the trap have been described extensively elsewhere (see references [51]
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and [7]) and so will not be described here. Although the electrodes are vastly different

from the ideal theoretical shape the distance between the two boards is optimised such

that the potential is again almost harmonic at the trap centre. The lasers pass between

the two boards and imaging is perpendicular to this as in the case of the Split-Ring trap.

4.4 Other Experimental Considerations

4.4.1 Magnetic Field Generation and Vacuum System

The magnetic field was generated by a conventional electromagnet (Oxford Instruments

- Newport Series N100). Up to 15 amps is sent through each of the two coils of the

electromagnet in parallel to produce a magnetic field strength at the ion of up to 1 tesla.

A movable iron pole piece is in the centre of each coil. These clamp the vacuum can

of the trap in the magnet. The current source used is a Danfysik - System 8000 - 853.

This is specified to a drift of ±3 ppm over 30 minutes and ±10 ppm over 8 hours. Using

a Hall probe the the magnetic field at the ions has been calibrated for a given current

through the coils [51]. The coils saturate at high current. At ≈ 1 tesla the increase

in the current required to produce an increase in the magnitude of the magnetic field is

100 ampere tesla−1 while at < 0.5 tesla this gradient is 18.8 ampere tesla−1. The 30 minute

drift when a field of ≈ 1 tesla is generated is expected to be ±9× 10−7 tesla. This drift is

insignificant for the dipole transitions. It is however important for the S 1
2
→D 5

2
transition.

The transition with the largest Zeeman shift is the mJ = −1
2 → +3

2 . The magnetic field

drift results in a drift in the frequency of this transition of ±35 kHz. This suggests that

the magnetic field stability should be good enough to see motional sidebands at the trap

frequency (§ 3.2) when pulsed spectroscopy is performed (chapter 7). This is however a

lower limit on the magnetic field stability.

Connecting the magnets in parallel is not ideal for magnetic field stability. A change

in the relative resistance of the two coils will result in a change in the current passing

through each coil which will change the magnetic field at the ions. If the coils are instead

connected in series then a resistance change will change the voltage drop across the coil

but the current should stay constant and thus the magnetic field should stay constant.

Unfortunately the current source is not able to produce the voltage required to connect

the coils in series.

Ultra-high vacuum conditions are required to trap ions in a Penning trap for extended

periods of time. A pressure of < 10−9 mbar is achieved for the experiments described in

this thesis. The vacuum system is heated to ≈ 120 ◦C in a bakeout oven for ≈ 2 weeks

while it is pumped by a turbopump. An ion pump is then permanently switched on and
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the chamber is valved off from the turbo pump to achieve the lowest pressures. The trap

chamber can then be removed from the bakeout oven and installed on the optical table.

The PCB trap’s vacuum system has an extra pump attached. This is a getter pump

(Capacitorr - D400-2). It is made up of a material with a large surface area which gases

stick to. The Split-Ring trap has a ion-gauge to measure the pressure. The PCB trap

relies on the ion pump current to give a rough measurement of the pressure.

4.4.2 Photon Detection

For all of the experiments described in this thesis the light from the ions is detected using

a photomultiplier tube (PMT). This device is affected by magnetic fields and so is kept

510 mm away from the ions. The same symmetric three-lens system is used as the imaging

system for both the Split-Ring and PCB traps described earlier (see figure 4.17). The first

lens (l1) is held in the vacuum chamber ≈ 19 mm from the trap centre and has a focal

length of ≈ 40 mm. The second lens (l2) has a focal length of ≈ 155 mm and the third

is a copy of the first. The system is designed to be as symmetrical as possible so as to

reduce abberations and keep the magnification close to 1. The light is focussed through

a pinhole to remove background light. The size of this pinhole is as large as 1 mm when

trapping large clouds of ions but is reduced to ≈ 200 µm when a single ion is trapped.

A band-pass filter (Semrock FF01-406/15-25) was placed before the PMT to block out

background light at other frequencies (transmission of ≈ 90% at 397 nm). This was used

for the experiments described in chapters 6 and 7. Previously a combination of a low-pass

(Comar 435IK25) and band-pass (Comar 395GB25) filters were used. These were still in

place for the experiment described in chapter 5. The transmissions of these filters were

70% and 80%. The detection effieciency is important for the experiment in chapter 5. The

transmission of the trap window and each lens is 90%. At the time the solid angle of light

detected was limited by the diameter of the second lens to a fraction of 0.0087 of 4π. The

quantum efficiency of the PMT is ≈ 0.2 so in total the detection efficiency is calculated

as ≈ 6× 10−4. However we can also define an effective detection efficiency as the ratio of

the rate of photons we detect over the number we should theoretically be scattering. The

theoretical scattering rate is approximated by Γ/8. There are 8 states which are coupled

to the cooling transition; two S 1
2
, four D 3

2
and two P 1

2
. If these transitions are saturated

then the ion will spend approximately a quarter of its time in the P 1
2
states. For efficient

Doppler cooling the lasers are detuned by half the transition linewidth leading to a factor

of two reduction in the time spent in the P 1
2
states. The expected scattering rate is thus

Γ/8 = 1.7 × 107 photons s−1. We detect a maximum of 7000 photons s−1 leading to an

effective detection efficiency of 4 × 10−4. This is the value used in chapter 5 to compare
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Figure 4.17: Imaging system used for both the Split-Ring and PCB traps. The focal length
of lenses l1 is 40 mm while lens l2 has a focal length of 155 mm. The first lens is inside
the vacuum chamber. See the text for a description of the other components.

the experimental results with theory.

The signal from the PMT is sent through a discriminating amplifier and then converted

to TTL pulses. The pulses are counted on an multi-channel-scaler card (EG and G-Ortec).

This has 8000 time bins whose width can be manually set or controlled via an external

trigger. The bin width can be set as low as 2 µs but generally a width of 10 ms is used.

4.4.3 Ion Creation

The trap potential is always present. This means that the ions must be created inside the

trap if they are to remain confined since they find themselves in a conservative field. The

idea is to send a 40Ca atom into the trap and then convert it into an ion so it suddenly

begins to feel the trapping potential. The atoms are produced by passing a current through

a tantalum wire which is spot welded to a tantalum tube which has been filled with calcium

shavings and crimped at both ends (a calcium oven). Natural abundance calcium can be

used as 40Ca is the most abundant isotope (96.9% abundance [68]). A small hole is made in

the middle of this tube using a pin. When the temperature of the oven is high enough some

calcium atoms will travel out of the hole and will head towards the trap. An aperature

is generally used to only pass atoms which are directed towards the central region of the

trap stopping calcium from hitting electrodes and causing possible shorts and contact

potentials. The method used to ionise the atoms when I joined the group (and used in

obtaining the results of chapter 5) was to create a beam of electrons by heating up a short

section of thoriated tungstun wire (a filament). The wire is placed such that the electrons

would travel along the magnetic field direction to the trap centre. By setting the potential

on the wire relative to the trap centre to be above the ionisation energy (6.1 eV) but below

the energy required to doubly ionise the calcium atoms (11.9 eV) [58] Ca+ ions will be

created in the trap. There are many problems using this ionisation method. The electron

beam can charge up any resistive materials which are near the trap and so alter the trap

potential which the ion sees. The filament positioning requirements can be restrictive for

electrode design and laser and imaging access. The filament also gets very hot and so can

88



Chapter 4 Other Experimental Considerations

cause outgasing of material near it which can raise the pressure in the trap. The method

is also inefficient which means the oven has to be heated to a high temperature as well so

that a large flux of neutral atoms is generated. The light from the filament can also cause

a lot of background light which can reduce the chance of observing the ions while they are

being loaded.

A better approach which circumvents many of these problems is to use photoionisation.

Here the atoms are created in the same way but a laser is used to provide the energy re-

quired to excite an electron above the ionisation threshold. The relevant electronic energy

levels of the calcium atom are shown in figure 4.18. A common method to photoionise

calcium ions is using a 423 nm laser diode to excite an electron to the 4s4p 1P1 state

and then another laser diode near 389 nm to excite it up to the continuum [69] [70]. The

isotope shift of the 423 nm transition between 40Ca and 43Ca is ≈ 600 MHz while the

transition linewidth is ≈ 35 MHz. It is therefore possible to selectively ionise one isotope

of Ca. This approach has allowed the Oxford group to load pure crystals of 43Ca+ using

an oven filled with natural abundance calcium [71]. Another method is to use a 272 nm

laser as the first step to excite an electron up to the 4s5p 1P1 [72]. A second photon from

the same laser can then ionise the ion. A photon from the 397 nm cooling laser also has

enough energy to perform this second step. If a second photon is not absorbed quickly

enough then the ion may spontaneously emit down to the 4s3d 1D2 state. A 272 nm

photon can also excite the electron up to the continuum from this state. The drawback of

this scheme is that it requires the use of an expensive dye laser system.

The photoionisation method which we have deployed is to use a short-pulse frequency

doubled Nd-YAG laser (Continuum SureLite II) which via a 3 photon transition ionises

the atom. The maximum energy per pulse that the laser can produce is ≈ 300 mJ at

532 nm. The pulse length is ≈ 5 ns with a repetition rate of 10 Hz. This leads to a

power during the pulse of 60 MW and an average power of 3 W. Dichroic mirrors (Coma

555 IM25) are used to maneuver the beam. Approximately 650 mJ of the fundamental

1064 nm is produced. The majority of the power at this wavelength passes through the

first dichroic mirror into a beam dump. A periscope is used to send the beam up to the

height of the trap. It is then sent through a focusing lens (f ≈ 800 mm) into the trap (spot

size ≈ 200 µm) in the opposite direction to the other lasers. On the other side of the trap

two dichroic mirrors are placed in the beam to direct the laser away from the fibres which

could be damaged by the high power pulses (figure 4.11).

The YAG power can be crudely changed by altering the Q-switch delay and it is found

that this is adequate for our requirements. A λ/2 waveplate and polariser have previously

been used to finely adjust the power but they have now been taken out of the beam.
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Figure 4.18: Electronic energy levels of a calcium atom. Reproduced with permission
from [73].
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Figure 4.19: Loading a small ion cloud with the YAG

Figure 4.19 shows a PMT trace of ions being loaded into a Penning trap at ≈ 1 tesla

using the YAG laser for photoionisation. The Split-Ring trap was used for this experiment.

A current of 1.7 amps was passed through the oven for ≈ 30 s and then the YAG was

fired for 10 pulses. A Q-switch delay of 160 µs was used which gives a measured average

power of ≈ 100 mW and so an energy per pulse of 10 mJ. One of the 397 nm lasers was

repetitively scanned by ≈ 1 GHz from an initial red detuning up towards resonance with

a period of 1 s. This helps to cool in any very hot ions more quickly. It is noticed that

compared to previous loads where a filament was used [51] [52] the ions seem to be cold as

soon as signal from them is seen as evidenced by the narrowness of the peaks. Previously

the peaks would first be wide and then get taller and thinner as the ions cooled. Now the

signal still increases as more ions are loaded but even the small peaks are thin. This is

attributed to the ions being colder due to a lower background pressure at the trap. This

could be caused by a reduction in outgassing due to hot filament not being required.

Once the experimental parameters have been optimised for single ions they can be

loaded with a 1 µJ pulse. It is noted that if the YAG alignment is not optimal it can take

up to 30 s for an ion to cool in to the trap centre such that a signal can be seen. If good

alignment is achieved then the loading can be instantaneous.

Whilst once readily available, laser diodes at 423 nm are now rare and so a relatively

complex and expensive doubling system is required to create this light. As an alternative

for isotope selective loading an attempt was made to excite an electron to the 4s4p 3P1

state and then ionise the atom with a 2 photon transition from the YAG. A 657 nm diode

in a ECDL setup was used. The power of the YAG was reduced such that it was on the

border of being able to ionise atoms. The 657 nm laser frequency was scanned and loading

was attempted at each frequency, separated by 50 MHz. The power of the 657 nm laser
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was ≈ 6 mW at the trap. No enhancement in loading was seen. This was attributed to

both the Doppler width and the narrow linewidth of the transition (≈ 400 Hz). Only a

fraction of the 657 nm laser power is resonant with transition as the laser linewidth is much

greater than the transition linewidth. The YAG is able to ionise all of the atoms it interacts

with no matter what their frequency shift due to the Doppler effect is. The 657 nm laser

linewidth is much less than the Doppler width of the atomic beam (≈ 1 GHz) and so can

only interact with a fraction of the beam. To be able to ionise via this transition (and

hence obtain isotope selective loading) a locked, narrow linewidth laser would be ideal. A

well collimated atomic beam perpendicular to the laser beam direction would also improve

the probability of exciting a higher proportion of the atoms. If this method were to be

employed a CW laser at 443 nm or < 293nm would be required.
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An energy level diagram has been presented for a 40Ca+ ion in the presence of an applied

magnetic field (see figure 4.1). It was implied that these states, written in the |L, S, J,mJ〉
basis were the energy eigenstates of the system. The applied magnetic field B, would

cause a linear shift of these energy levels given by

∆EZeeman = µBgJmJB, (5.1)

where µB = eh̄
2me

is the Bohr Magnetron and gJ = 1 + J(J+1)−L(L+1)+S(S+1)
2J(J+1) is the Landé

g-factor. Implicit in this treatment is the notion that the spin-orbit interaction causes

L and S to couple to form J and whereas mL and mS are not good quantum numbers,

mJ is. In terms of a hierarchy of perturbation the spin-orbit interaction is seen as strong

and is treated first. The interaction with the B field is treated as a secondary, smaller

perturbation.

However when the applied magnetic field is large a different coupling scheme is ap-

propriate. Now L and S couple individually to the B field and mL and mS are good

quantum numbers. In this scheme it is the spin-orbit interaction that must be treated

as a smaller, secondary perturbation. The energy eigenstates of the system can then be

written independently in the |L, S,mL,mS〉 basis and the field causes a linear shift of the

energy levels given by

∆EPaschen-Back = µB (mL + 2mS)B. (5.2)

We can always write mJ = mL+mS as the components are all defined along the same axis

so there is an inconsistency between equation 5.1 and equation 5.2. The energy eigenstates

presented earlier must obviously be an approximation at low field. The energy of the states
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must also not exactly follow equation 5.1. In this chapter a solution will be shown for the

energy eigenvalues and eigenvectors of a 40Ca+ ion for an applied magnetic field following

the methods used in [74] and [75]. The solution is valid while the resulting splitting is

much less than the energy difference between the S, P or D orbitals. We will then look at

experimentally observable effects due to this change in eigenvalues and eigenvectors.

5.1 Calculation of the Energy Eigenvalues and Eigenstates of a

40Ca+ Ion as a Function of Magnetic Field Strength

The outer electron in a 40Ca+ ion has both an orbital and spin angular momentum and

associated magnetic moments. These magnetic moments can interact with each other via

the spin-orbit effect or they can each interact with an applied magnetic field via the Zeeman

effect. The spin-orbit interaction can be thought of as the spin angular momentum of the

electron interacting with the magnetic field created by the nucleus orbiting the electron

(in the frame of the electron). This created magnetic field is proportional to the electron’s

orbital angular momentum so we have a term proportional to L̂ · Ŝ which we write as

ĤSpin-Orbit = f (r) L̂ · Ŝ
= f (r)

(

Ĵ2 − L̂2 − Ŝ2
)

, (5.3)

where f (r) is dependent on the principle quantum number and orbital angular momentum

quantum number (via the quantum defect) and can be found experimentally by measuring

the fine-structure splitting at B = 0 if L, S and J are known.

The applied magnetic field does not interact equally with the electron’s spin and orbital

angular momentum. Relativistic quantum field theory can be used to show the interaction

is approximately twice as strong in the case of the electron’s spin. The interaction with

the external magnetic field can be written as

ĤZeeman =
µB
h̄
B
(

L̂z + 2Ŝz

)

, (5.4)

where the magnetic field is applied along the z axis. The reason a single set of eigen-

functions cannot exist independently of B is related to this factor of 2. If the magnetic

field interacted equally with the orbital and intrinsic angular momenta then we could

write Ĵz = L̂z + Ŝz. As Ĵz commutes with Ĵ2, L̂2 and Ŝ2 the spin-orbit and Zeeman

Hamiltonians would share a common set of eigenfunctions for all B. Instead we find that

the eigenfunctions and corresponding eigenvalues are a function of B. We must find the
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eigenfunctions, Ψ and eigenvalues, q that satisfy

ĤΨ = qΨ, (5.5)

where

Ĥ = ĤSpin-Orbit + ĤZeeman

= f (r)
(

Ĵ2 − L̂2 − Ŝ2
)

+
µB
h̄
B
(

L̂z + 2Ŝz

)

. (5.6)

When an operator has a finite number of eigenfunctions it is often easier to use matrix

notation. Here we write the eigenfunction of equation 5.5 as a vector, [Ψ] whose elements,

Ψn give the amplitudes of the states of a particular, chosen basis. The operator then

becomes a matrix, [H] whose elements, Hnm are

Hnm = 〈Ψn| Ĥ |Ψm〉 . (5.7)

Our first task is thus to choose a basis and calculate the matrix elements using the Hamil-

tonian of equation 5.6 in this basis. There are two obvious choices for our basis states;

either the eigenstates at zero applied field |L, S, J,mJ〉 or those in the limit of high applied

field |L, S,mL,mS〉. In our system we are much closer to the zero field limit and so we

will use the |L, S, J,mJ〉 states as shown in figure 4.1 as our basis states.

For the L = 0 states there is no spin-orbit interaction term in the Hamiltonian and

the states will be pure eigenstates for all applied magnetic fields with energies given by

equation 5.1. We will treat the L = 1 (P states) and L = 2 (D states) in separate

eigenvalue equations.

Due to our choice of basis the spin-orbit part of the matrix elements is very easy to

calculate. We can simply let the operators act and then use orthonormality. For clarity

we shall drop the L and S quantum numbers when specifying the states but it is implied.

We obtain

H
(J,mJ ),(J ′

,m
′

J),spin-orbit
=

〈

J,mJ

∣

∣

∣
f (r)

(

Ĵ2 − L̂2 − Ŝ2
)
∣

∣

∣
J

′

,m
′

J

〉

= 〈f (r)〉h̄2
[

J
′
(

J
′

+ 1
)

− L (L+ 1)− S (S + 1)
] 〈

J,mJ

∣

∣

∣
J

′

,m
′

J

〉

= 〈f (r)〉h̄2
[

J
′
(

J
′

+ 1
)

− l (L+ 1)− S (S + 1)
]

δJJ ′ δ
mJm

′

J
. (5.8)

The spin-orbit terms thus only contribute to the diagonal elements of the matrix and

can be found by simple substitution of J , L and S. The natural basis to calculate the

part of the matrix elements belonging to the Zeeman effect is |mL,mS〉. We must first

transform into this basis before the matrix elements can be calculated. This is possible

95



Chapter 5

Calculation of the Energy Eigenvalues and Eigenstates of a
40Ca+ Ion as a Function of Magnetic Field Strength

via the Clebsch-Gordon coefficients, CJ,mJ ,mL,mS
which are defined as

|J,mJ〉 =
∑

mL=−L,L

∑

mS=−S,S
CJ,mJ ,mL,mS

|mL,mS〉. (5.9)

The states |mL,mS〉 are eigenstates of the operators L̂2, Ŝ2, L̂z and Ŝz. They are also

obviously eigenstates of Ĵz = L̂z + Ŝz with an eigenvalue mJ = mL + mS . For a given

combination of L and S there are different combinations of mL and mS which add to give

the required mJ . These different combinations will all be degenerate eigenstates of the

system. By simple substitution into the eigenvalue equation (equation 5.5) it can be seen

that any state that is a linear combination of degenerate eigenstates is also an eigenstate

of the system. This linear combination is what is shown in equation 5.9. The job of the

Clebsch-Gordon coefficients is to create a linear combination which is also an eigenstate

of Ĵ2. The sum is taken over all mL and mS , however the terms will only be non-zero

for those combinations which sum to mJ . The Clebsch-Gordon coefficients can be readily

calculated or are widely available in tables. So armed with our new tool we will seek

to calculate the Zeeman part of the matrix elements. This is done by first applying the

Clebsch-Gordon coefficients, then letting the operators L̂z and Ŝz act and finally using

orthonormality to obtain

H
(J,mJ ),(J ′

,m
′

J),Zeeman
=

〈

J,mJ

∣

∣

∣

µB
h̄
B
(

L̂z + 2Ŝz

)
∣

∣

∣
J

′

,m
′

J

〉

=
µB
h̄
B

∑

mL,mS

∑

m
′

L
,m

′

S

C∗
J,mJ ,mL,mS

C
J
′
,m

′

J
,m

′

L
,m

′

S

∗
〈

mL,mS

∣

∣

∣

(

L̂z + 2Ŝz

)
∣

∣

∣
m

′

L,m
′

S

〉

= µBB
∑

mL,mS

∑

m
′

L
,m

′

S

C∗
J,mJ ,mL,mS

C
J
′
,m

′

J
,m

′

L
,m

′

S

∗
〈

mL,mS

∣

∣

∣

(

m
′

L + 2m
′

S

)
∣

∣

∣
m

′

L,m
′

S

〉

= µBB
∑

mL,mS

C∗
J,mJ ,mL,mS

C
J
′
,m

′

J
,mL,mS

∗ (mL + 2mS) . (5.10)

So we can obtain these parts of the matrix elements by simple substitution of the Clebsch-

Gordon coefficients and the mL and mS quantum numbers. For the L = 1, S = 1
2 and

L = 2, S = 1
2 cases we have 6×6 and 10×10 matrices respectfully. Thankfully the majority

of the elements are zero. The full matrices are shown in figures 5.2 and 5.3. The ǫ1 and

ǫ2 introduced here are used to describe the energy splitting due to the spin-orbit effect

for the L = 1 and L = 2 states respectively. The magnitude of the splittings are 3ǫ1 and
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P 3
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P 1
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D 5
2

D 3
2

ǫ1

2ǫ1

2ǫ2

3ǫ2

L = 1

L = 2

Figure 5.1: The P and D states prior and after the spin-orbit effect with B = 0.

5ǫ2 for the L = 1 and L = 2 states respectively. The splitting is however not symmetrical

about the unperturbed state. The P 3
2
is ǫ1 above the unperturbed state while the P 1

2
is

2ǫ1 below the unperturbed state. The D 5
2
is 2ǫ2 above the unperturbed state while the

D 3
2
state is 3ǫ2 below the unperturbed state. This is shown schematically in figure 5.1.

97



Chapter 5

Calculation of the Energy Eigenvalues and Eigenstates of a
40Ca+ Ion as a Function of Magnetic Field Strength

(J,mJ)
(

3
2 ,+

3
2

) (

3
2 ,+

1
2

) (

3
2 ,−1

2

) (

3
2 ,−3

2

) (

1
2 ,+

1
2

) (

1
2 ,−1

2

)

(

3
2 ,+

3
2

)

ǫ1 + 2µBB 0 0 0 0 0

(

3
2 ,+

1
2

)

0 ǫ1 +
2
3µBB 0 0 −

√
2
3 µBB 0

(

3
2 ,−1

2

)

0 0 ǫ1 − 2
3µBB 0 0 −

√
2
3 µBB

(

3
2 ,−3

2

)

0 0 0 ǫ1 − 2µBB 0 0

(

1
2 ,+

1
2

)

0 −
√
2
3 µBB 0 0 −2ǫ1 +

1
3µBB 0

(

1
2 ,−1

2

)

0 0 −
√
2
3 µBB 0 0 −2ǫ1 − 1

3µBB

Figure 5.2: Operator in matrix notation for the spin-orbit and Zeeman Hamiltonian for
L = 1 in the |J,mJ〉 basis states.
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Figure 5.3: Operator in matrix notation for the spin-orbit and Zeeman Hamiltonian for L = 2 in the |J,mJ〉 basis states.
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The eigenvalue equation (equation 5.5) needs to be solved using each of these matrices

together with their corresponding eigenvectors in our chosen basis. It follows from the

nature of the matrices that it is only pairs of levels are mixed. This means that each

matrix can be broken down into a number of 2× 2 matrices and solved for the eigenvalues

and eigenvectors individually.

We find that states with the same L and mJ become mixed. The eigenstates are

now superpositions of the two states. As would be expected the magnitude of the mixing

of |J,mJ〉 into |J ± 1,mJ〉 is the same as that from |J ± 1,mJ〉 into |J,mJ〉. There is

however a negative sign between the two different wavefunctions. This sign has been

written explicitly in the following expressions so that AL,mJ
and BL,mJ

are positive for all

B. The L = 0 states are unchanged,
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The L = 1 states become
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The L = 2 states become
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We have introduced the new notation L#mJ
to name the new states which don’t have J

as a good quantum number anymore. The number # = 1, 2 is used to keep track of the

value of J the state possesses at B = 0 and will be required later.

We can write these wavefunctions in the form

|J,mJ〉 → NL,mJ
(|J,mJ〉 ±ML,mJ

|J ± 1,mJ〉) , (5.14)

where NL,mJ
and ML,mJ

are thought of as normalisation and mixing coefficients respect-

fully and NL,mJ
=

(

1 +M2
L,mJ

)− 1
2
. This has been done as AL,mJ

and BL,mJ
are reason-

ably complicated and for small B the normalisation coefficient, NL,mJ
≈ 1 and thus can
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Figure 5.4: The amplitude of the original (N2,mJ
) and mixed (N2,mJ

M2,mJ
) parts of the

wavefunctions of the D orbital states (dashed and solid lines respectively). Clockwise from
top-left the plots correspond to mJ = +3

2 , +
1
2 , −1

2 and −3
2 .

be omitted. The mixing coefficients are

M1,± 1
2

=
±2

√
2µBB

±9ǫ1 + µBB ± 3
√

9ǫ21 ± 2ǫ1µBB + µ2BB
2

M2,± 1
2

=
±2

√
6µBB

±25ǫ2 + µBB ± 5
√

25ǫ22 ± 2ǫ2µBB + µ2BB
2

M2,± 3
2

=
±4µBB

±25ǫ2 + 3µBB ± 5
√

25ǫ22 ± 6ǫ2µBB + µ2BB
2
. (5.15)

The equations for the mixings are quite complicated and so visual representation of

the states is shown in figures 5.4 and 5.5 for the D and P states respectively.

We now wish to find the eigenvalues of the system. The S states do not have a spin-

orbit term and so their energies evolve linearly with an applied magnetic field as given by
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Figure 5.5: The amplitude of the original (N1,mJ
) and mixed (N1,mJ

M1,mJ
) parts of the

wavefunctions of the P orbital states (dashed and solid lines respectively). The left, right
plot is for the mJ = +1

2 , −1
2 state respectively.

equation 5.1

ES1
+1

2

= µBB

ES1
− 1

2

= −µBB.
(5.16)

For the other states the eigenvalue equation (equation 5.5) needs to be solved for the eigen-

values corresponding to the eigenstates of equation 5.15. We find the P state eigenvalues

to to be
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2
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√
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2. (5.17)
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The D state eigenvalues were found to be
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(5.18)

The energies of the states as a function of B are plotted in figure 5.6. At a magnetic

field of 1000 tesla the system is effectively in the high field limit. Here some of the states

become degenerate such that there are 5 different state energies in the P orbital and 7

in the D orbital. Equation 5.2 shows the energy of the states have a factor mL + 2mS .

Using this we can write down the states. From the top to bottom in the high field limit

of figure 5.6 the P states are (mL,mS):
(

1, 12
)

,
(

0, 12
)

,
{(

1,−1
2

)

,
(

−1, 12
)}

(degenerate),
(

0,−1
2

)

and
(

−1,−1
2

)

. The D states are
(

2, 12
)

,
(

1, 12
)

,
{(

0, 12
) (

2,−1
2

)}

,
{(

1,−1
2

) (

−1, 12
)}

,
{(

−2, 12
) (

0,−1
2

)}

,
(

−1,−1
2

)

and
(

−2,−1
2

)

.

The expressions for the eigenvalues given in equations 5.17 and 5.18 provide the energy

of a state relative to the energy the state would have prior to spin-orbit coupling at B = 0.

Ideally we would like all of the ion’s energy levels relative to one reference point which we

will choose as the S 1
2
state energy at B = 0 i. The link between the different L states

is the experimentally measured B = 0 energy states. The state energies relative to the

iThese energies will be required in the calculation of the D 5

2

shelving rate in the next section.
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Figure 5.6: The eigenvalues of the P (top) and D (bottom) states as a function of applied
field. The energy plotted is relative to the B = 0 situation, with no spin-orbit coupling.
Note the different scale for B in the two plots. In the case of the P states the blue, solid
lines and the red, dashed lines represent the states with J = 3/2 and J = 1/2 at B = 0
respectively. In the case of the D states the blue, solid lines and the red, dashed lines
represent the states with J = 5/2 and J = 3/2 at B = 0 respectively.
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S 1
2
state (B = 0) are (via figure 5.1)

E
′

S1mJ
= ES1mJ

E
′

P1mJ
= EP 1

2

(B = 0) + 2ǫ1 + EP1mJ

E
′

P2mJ
= EP 3

2

(B = 0)− ǫ1 + EP2mJ

E
′

D1mJ
= ED 3

2

(B = 0) + 3ǫ2 + ED1mJ

E
′

D2mJ
= ED 5

2

(B = 0)− 2ǫ2 + ED2mJ
, (5.19)

where ELmJ
(B = 0) are the experimentally determined energies of the ion’s states at zero

applied magnetic field.

5.2 J-State Mixing - An Observable Effect

We have seen how the states shown in figure 4.1 were only low magnetic field approxi-

mations of the actual electronic states of our ion. The approximation is however a very

good one. At our trapping field of ≈ 1 tesla the maximum amplitude of the mixing is

only 0.0038. The eigenvalues are different from those caused by a linear Zeeman shift by

< 300 kHz at 1 tesla. This small shift would not be noticed on the dipole transitions

which have linewidths of ≈ 20 MHz. It would be possible to see a shift in principle on

the S 1
2
→ D 5

2
quadrupole transition but it would have no experimental consequences once

the transition had been found. There is however a remarkably clear effect of the J-state

mixing which will now be described.

Quantum jumps occur when the ion goes into a metastable state which is not part

of the cycle from which the signal is being observed. No light is observed until it is re-

pumped back out of the state or if it finally spontaneously decays. There are two possible

metastable states in the 40Ca+ ion. These are the two D states - D 3
2
and D 5

2
which have

lifetimes of ∼ 1 s. During Doppler cooling the ion can readily spontaneously decay into

the D 3
2
state from the P 1

2
state with a probability of ≈ 1

15.4 [53]. Thus to be able to

Doppler cool (scattering more than ≈ 15 photons) efficient repumping from the D 3
2
level

is required. This is achieved with a single 866 nm laser in an RF trap and four 866 nm

lasers in a Penning trap to address each of the mJ sub-levels. The ion cannot get into

the D 5
2
level during the cooling cycle as the P 1

2
→ D 5

2
transition is strongly forbidden.

The only way the ion could possibly get into this state is from spontaneous emission via

the P 3
2
state. There is no laser to resonantly excite the ion up into the P 3

2
state. The

gain profile of the 866 nm lasers does however extend down to the 850 nm required to

excite up to the P 3
2
state and so amplified-spontaneous-emission at this wavelength will
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Figure 5.7: PMT signal when there is no 854 nm beam to repump the D 5
2
state.

be present. A filter (Thorlabs FB870-10) has been placed in the beam to remove more

than 99% of this light. The filter also removes ≈ 99% of any 854 nm light which would

repump the D 5
2
state. A filter (Semrock FF01-406/15-25) was also placed in the 397 nm

beam to remove light at 393 nm which could excite the ion up to the D 3
2
state. So during

our standard Doppler cooling process we would expect not to see any quantum jumps in

our system and in the case of the RF trap this is indeed the case. There is however a

marked difference when we move to the Penning trap. An example of the signal seen from

the ion at 1 tesla is shown in figure 5.7. It is seen that the ion is dark the majority of the

time, staying bright for periods < 1 s ii. When B was decreased fewer quantum jumps

were seen.

As the D 5
2
state is the only metastable state which we are not repumping, the ion

must be getting into this state. So how is our ion getting shelved? The clue is the increase

in quantum jumps as the applied magnetic field increases and the answer lies within the

J-state mixing which we have described. Using our calculated states we will solve for the

probability of decaying from the P 1
2
to the D 5

2
as a function of magnetic field strength.

The number of 397 nm photons emitted during the cooling cycle before the ion is

shelved into the metastable state at a certain magnetic field is given by

n =
Γ (P1 → S1)

Γ (P1 → D2)
, (5.20)

where Γ is a transition rate - a probability per unit time of the transition occurring. We

ignore transitions down to the D 3
2
states as these are being efficiently repumped. We are

expecting the number of photons emitted to decrease as B increases so a more natural

iiWhen the filters are not used quantum jumps are seen even in both the RF and Penning traps. The
jumps are shorter than the D 5

2

state lifetime due to the 854 nm light which repumps out of the state.
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variable to calculate would be the inverse of this given by

n−1 =
Γ (P1 → D2)

Γ (P1 → S1)
. (5.21)

In the first stage of the cooling cycle the ion is excited up to either the P1+ 1
2
or P1− 1

2

state with equal probability. We thus average over these initial states as the ion will be in

each of these states half the time

n−1 =
Γ
(

P1+ 1
2
→ D2

)

+ Γ
(

P1− 1
2
→ D2

)

Γ
(

P1+ 1
2
→ S1

)

+ Γ
(

P1− 1
2
→ S1

) . (5.22)

The total transition rate is the sum over the transition rates to the individual mJ sub-

levels. Using the selection rule ∆mJ = 0,±1 we obtain

n−1 =

+ 3
2

∑

mJ=− 1
2

Γ
(

P1+ 1
2
→ D2mJ

)

+
+ 1

2
∑
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2
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(
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2

∑
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2
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(
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2
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)

+
+ 1

2
∑

mJ=− 1
2

Γ
(

P1− 1
2
→ S1mJ

)

. (5.23)

We can write Fermi’s golden rule for an atomic dipole transition from state ψ1 to state ψ2

as [76]

Γ (ψ1 → ψ2) =
4

3h̄c3
ω3
ψ1→ψ2

|〈ψ2| d |ψ1〉|2 . (5.24)

If we apply this to each of the terms individually in equation 5.23 we obtain
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(5.25)

For each of the four terms in this equation we first substitute in the mixed states previ-

ously calculated and then multiply out. We neglect terms which are not dipole allowed

transitions (where ∆J = 2). The expressions are quite complicated and so are shown in

an appendix (appendix A). For example the P1+ 1
2
→ D2mJ

term becomes the first part

of equation A.2 where the variables a
mJ ,m

′

J
, b
mJ ,m

′

J
and c

mJ ,m
′

J
are products of the mixing

and normalisations of equation 5.14 and are thus functions of the applied magnetic field.
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These variables are defined in the appendix (equation A.1).

We now have non-zero electric dipole matrix elements and thus can readily see paths for

which our ion can become shelved in the D 5
2
state. To calculate the shelving rate we must

link to experimentally measured or theoretically calculated transition rates. Transition

rates between individual sub-levels are rarely observed or calculated. It is more usual to

find a total rate between levels. The Wigner-Eckart theorem enables these total transition

rates to be calculated. The Wigner-Eckart theorem for an electric dipole transition can

be stated as

〈

J,mJ

∣

∣

∣
d
∣

∣

∣
J

′

,m
′

J

〉

=
〈

J
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∣

∣

∣

∣
d
∣

∣

∣

∣

∣

∣
J

′
〉

〈

J
′
, 1,m

′

J ,∆mJ

∣

∣

∣
J

′
, 1, J,mJ

〉

√
2J + 1

. (5.26)

On the left we have a full matrix element between fully specified states. On the right

we have a reduced matrix element whose angular part has been absorbed into a Clebsch-

Gordon coefficient divided by the number of sub-levels of the final state. We apply this

to each term in the first part of equation A.2 to obtain the second part. Using the

same method for the P1− 1
2
→ D2mJ

term we can obtain equation A.3. Similarly for the

P1+ 1
2
→ SmJ

and P1− 1
2
→ SmJ

terms we obtain equations A.4 and A.5 respectively.

The transition frequencies present in these equations are readily found from the eigen-

values calculated earlier (equations 5.16, 5.17 and 5.18) converting the energies to be

relative to the ground state via equations 5.19. Fortunately the reduced matrix elements

have been theoretically calculated using many-body perturbation theory [53]. Those which

have had semi-empirical corrections made were used. They are (in arbitrary units)iii
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Calculating all of the terms we can plot n−1 as a function of magnetic field (figure 5.8). It

is seen that the probability of the ion going into the D 5
2
state increases until B ≈ 300 tesla

when the probability decreases and then levels off. This leveling off is expected as the

probability of spontaneous emission to the D 5
2
state should never be higher than the

iiiNote that these reduced matrix elements can be used to find the P state to D state branching ratios.
The reduced matrix elements are substituted into Fermi’s golden rule together with the relevant transition
frequency ratios.
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n
−
1

B (tesla)

Figure 5.8: n−1 as a function of applied magnetic field. The red dashed line is a fit at low
fields, n−1 = 4.03× 10−7B2.

branching ratio to the D 3
2
state at zero magnetic field. A fit performed shows that n−1 =

4.03× 10−7B2 is a good approximation at low fields.

It will be seen that this theoretical dependency on B is in agreement with what we see

experimentally. The approach taken here to calculate the dependence differs from that

used in the publication of the following experiment [10]. First-order perturbation theory

was used to calculate the mixing which was found to be linear with B. This then led to

finding the n−1
detected ∝ B2 dependence iv.

5.3 J-State Mixing - Experiment

An experiment was performed to observe the D 5
2
shelving rate of a single 40Ca+ ion as

a function of B to test the predicted B2 dependence. The experiment was performed in

the PCB trap described in § 4.3.2. The trap was run as a combined trap where both DC

and RF voltages are placed on the trap electrodes as well as a trapping magnetic field

(§ 2.3). A combined trap was used because our Penning trap has been found to only

be stable above ≈ 0.6 tesla and so a larger range of magnetic fields could be achieved.

The RF was always used at all B so any systematic effects due to it would not influence

the resulting trend. Two 397 nm lasers were used for the Doppler cooling transition and

four 866 nm lasers were used for repumping the D 3
2
state. Their laser wavelengths were

ivThere is ≈ 3% discrepency between the results. This is attributed to the approximations used in the
calculation using perturbation theory including the fine structure frequency splitting being much smaller
than the orbital splitting.
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manually changed to follow the transitions as the magnetic field was stepped. Sometimes

the same ion was trapped as the magnetic field was changed, occasionally however the

ion was lost and another was reloaded. This experiment was conducted before the optical

table was updated and before the new scanning cavity lock was introduced. The lasers

were thus locked using side-of-fringe locks to reference cavities (§ 4.2.3 and reference [51]).

Photoionisation (§ 4.4.3) was also not yet available and so the calcium atoms were ionised

using a beam of electrons from a filament.

The magnetic field was generated using the electro-magnet that is generally used for

Penning trap experiments 4.4.1. The magnetic field was calibrated using a Hall probe.

First the magnetic field created at the maximum current of 15 A through each coil was

accurately measured by finding the trap frequencies via RF-photon correlations from the

ions. The magnetron and modified cyclotron frequencies were found to be 51 kHz and

291 kHz respectively leading to a magnetic field of 0.898 tesla. By calibrating the Hall

probe at this magnetic field the current was then stepped and the magnetic field read.

The error in this reading is estimated to be ±0.005 tesla. The 397 nm photons emitted

from the ion were detected via the imaging system described in § 4.4.2 on a PMT and

were counted using the electronics and card described in the same section. The data were

recorded for approximately 1000 seconds in 10 ms bins. This amounts to more than the

8000 bins available on the MCS card and so a number of successive runs were taken.

At each magnetic field a trace of the ion’s signal is obtained. The measurement that is

first made is the average time the ion stays bright. This can then be multiplied by the rate

at which photons are detected to give the number of photons detected before the ion goes

dark. This is linked to the theory of figure 5.8 via the detection efficiency (the fraction

of photons emitted by the ion which are detected) estimated to be 4× 10−4 (§ 4.4.2). So

the inverse of the average number of photons detected before the ion goes dark will be

plotted
(

n−1
detected = n−1

4×10−4

)

where we will use the low magnetic field approximation to

give n−1
detected ≈ 0.001B2. The detected number of photons is used as the signal level is

different in each trace with a general trend of a lower signal level as the magnetic field is

increased.

The scans were saved and then analysed using a Perl script written by a fellow student.

The data analysis has been described in detail [51]. The script is similar to the C program

used for the data analysis described in § 6.4.1. For each time-bin the decision must be

made whether the ion was bright (in the cooling cycle) or dark (in the D 5
2
state). This

requires a threshold number of counts to be set. If more than this number of counts were

detected in the bin then it is labeled as bright. As the signal level is different in each scan
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the optimal threshold is also different. The bright (Sb) and dark (Sd) signal levels
v were

first found using an initial threshold. The threshold to be used is then calculated using

the formula 2Sd+Sb

3 . The threshold level has thus been biased towards the dark signal level

due to the nature of the Poissonian noise. This noise increases with the square-root of the

number of counts so the bright level is more noisy and hence the threshold needs to be

moved further from this.

The start of a quantum jump is defined as when the ion goes from bright to dark and

its end is when it goes from dark to bright. It was decided to only define the start of

a quantum jump when the ion is initially bright and then 5 successive 10 ms bins occur

which have all been classified as dark. The end of a quantum jump was defined when

the ion is initially dark and then 5 successive bins have all been classified as bright. This

procedure was designed to bypass spurious bins in which the background level was higher

than the threshold or when the ion was bright but not enough counts were achieved due

to being in the lower tail of the count’s Poissonian distribution. This did however have

the effect of missing bright or dark periods which were less than 50 ms long. The effect

of missing these bright periods is found to be insignificant on the scale of the statistical

error which will shortly be discussed.

Figure 5.9 shows the n−1
detected found experimentally together with the theoretical fit.

The range of fits corresponding to the range of possible detection efficiencies is displayed.

It is seen that the points clearly do have a B2 dependence in agreement with theory. The

data points fall within the 1σ bounds of a straight line fit in figure 5.9. The error of the

detection efficiency (shown as the lighter red lines in figure 5.9) encompasses the results

within their 1σ bounds.

The script produces a list of all the bright period lengths in the scan. This list is

used to find the error on the average bright period length (shown as the error bars on

the data points of figure 5.9). The method used is bootstrapping. The list is randomly

sampled, replacing the chosen bright length each time such as to create a new data set.

This procedure is repeated 104 times to produce the same number of data sets. The

standard deviation of the average bright period length in the data sets is then found and

is the error used.

The shelving into theD 5
2
state due to the J-mixing effect is disadvantageous for efficient

Doppler cooling of 40Ca+ ions in a Penning trap. At a magnetic field of 1 tesla the ion

is in the D 5
2
state and is hence not being Doppler cooled the majority of the time. The

situation will only get worse in future planned experiments at higher magnetic fields as

the shelving rate increases as B2. The solution is to use lasers to repump out of the 6

vThe majority of the (Sd) signal level is due to light scattered from the trap electrodes.
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Figure 5.9: n−1
detected as a function of magnetic field strength - theoretical and experimental

results. The range of fits corresponding to the range of possible detection efficiencies is
denoted by the two lighter red lines. The error in B is ±0.005 tesla and is due to the
error in the Hall Probe used. The error in n−1

detected has been found using bootstrapping
as detailed in the text [10].
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D 5
2
states to move the ion back into the cooling cycle. The experimental demonstration

of this is described in § 6.4.1.

Another issue is that of the readout fidelity when using the S 1
2
→ D 5

2
transition as a

qubit. To decide whether the ion is in the S 1
2
or D 5

2
state the 397 nm lasers are switched

on together with the 866 nm lasers to repump the D 3
2
state. Photons at 397 nm should

be emitted if the ion is in the S 1
2
state while they should not if the ion is in the D 5

2
state.

Ideally we wish to decide which state the ion is in with the smallest error. A readout

time is chosen which is a compromise between building up enough statistics to make the

decision whilst not waiting too long so that the probability of the D 5
2
state spontaneously

emitting becomes significant.

If the ion is in the D 5
2
state then the J-mixing effect will not cause any error. However

if the ion is initially in the S 1
2
state the J-mixing adds the possibility of the ion decaying

from the P 1
2
state to the D 5

2
state and thus becoming dark. If just the number of photons

detected in the entire readout period is recorded then depending at which point the ion

became dark, enough photons may not have been collected to decide the ion was bright

and so the decision would be incorrect. This is similar to the case when an ion is in the

D 5
2
state and then spontaneously emits. The earlier this occurs in the readout period the

more likely the ion could be wrongly classified as being bright and hence in the S 1
2
state.

Methods have been developed by the ‘Ion Trapping Quantum Computation’ group in

Oxford to increase the readout fidelity by binning up the photons detected so that two

detection periods with the same number of total counts can be differentiated if most of

the counts occurred from a certain bin onwards. Using methods based on this, average

readout fidelities of 99.991(1)% have been achieved using a 40Ca+ ion [77]. A similar

method could be used to detect (and then discard or correct) detection periods where the

J-mixing effect has caused the ion to become dark after a certain bin.

The Oxford group requires 8.1 photons on average to decide with the above precision

that the ion is in the S 1
2
state. Assuming a similar background count rate we can estimate

that we would need a similar number in our setup. With our detection efficiency we would

require 2 ms to detect on average 8.1 photons. In this time the probability of spontaneous

emission from the D 5
2
state is ≈ 0.17%. The probability of the ion falling into the D 5

2
state

before 8.1 photons are detected is 0.8% at 1 tesla. This increases to 5.1% at 2.5 tesla.

The error in the readout fidelity is a small effect at the trapping magnetic field used.

Analysis of the readout data to see the shelving events is required however to achieve

readout fidelities similar to those obtained in Paul trap experiments.

We have discussed the effect J-mixing has on the readout fidelity of a 40Ca+ ion in a

Penning trap. There are however a number of other ions with similar D states below the
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∆ED (meV) ∆EP (meV) |∆ED|−2 (arb. units)

Ca+ 7.5 27.6 1

Sr+ 34.8 99.4 0.046

Ba+ 99.3 209.6 0.0057

Yb+ 170.1 412.9 0.0019

Hg+ 1864.8 1131.0 0.000016

Ra+ 205.6 602.3 0.0013

Table 5.1: Fine structure splittings of other ions [10]. The approximate shelving rates
relative to 40Ca+ are shown.

P 1
2
level used for cooling and detection and they will experience a similar effect. In the

small magnetic field approximation it can be seen by analysing equations 5.15 or can be

seen directly if the mixings are calculated using first order perturbation theory that the

mixing scales with the inverse of the fine structure splitting [51], [10]. It can also be seen

from the calculated n−1 that the number of photons emitted before shelving occurs scales

approximately with the inverse of the square of the fine structure splitting. Table 5.1

shows the fine structure splittings of the P and D states of a variety of ions together with

approximate relative D 5
2
shelving rates. It is seen that the other ions have smaller rates

and hence their readout fidelities would be affected to a lesser extent than Ca+.
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The electronic energy diagram of a 40Ca+ ion in the presence of a magnetic field together

with the relevant transitions was shown as figure 4.1. In chapter 5 it was seen that at a

magnetic field of 1 tesla the ion spends much of its time in the D 5
2
state due to the J-

mixing process (see figure 5.7). The ion would spend an even greater fraction of the time

out of the cooling cycle in future experiments in a 2.5 tesla magnet. For efficient Doppler

cooling the ion needs to spend most of its time in the cooling cycle and so repumping out

of the D 5
2
state using light at 854 nm is imperative. The rate at which the ion is repumped

must be large compared to the shelving rate. Another constraint on the repumping rate

occurs when pulsed spectroscopy is conducted on the S 1
2
→ D 5

2
transition (see chapter 7).

The quicker the repumping rate, the shorter the 854 nm pulse that can be used during

the pulsed spectroscopy. There were no 850 nm lasers available in the experimental setup

to address the D 3
2
→ P 3

2
transitions. Although this is not required it would be useful to

have the option to repump out of the D 3
2
state without coupling to the S 1

2
→ P 1

2
Doppler

cooling transition (as is the case when using 866 nm lasers). This should result in a greater

rate of 397 nm photons emitted from the ioni. It should be noted that even if 850 nm

and 854 nm lasers were used for repumping during Doppler cooling then 866 nm lasers

would still be required for state detection as there can be no coupling to the D 5
2
state

during this period. Fourteen lasers would be required to individually address the required

850 nm, 854 nm and 866 nm transitions. This is not very practical. Another option would

be to use fewer lasers and use an electro-optic modulator (EOM) to create sidebands at

iUsing the 866 nm lasers the population is approximately equally spread amongst the two S 1

2

, two

P 1

2

and four D 3

2

levels resulting in the ion spending approximately half its time in the S 1

2

→P 1

2

cooling

cycle.
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the desired frequenciesii.

Sidebands can be imposed on a laser by modulating the phase of its electric field.

This can be achieved by sending the laser beam through a material with a time-varying

refractive index. This modulation is achieved in an EOM via the Pockels effect. The

refractive index change is proportional to the electric field applied to the crystal. If

a sinusoidal voltage is applied to the EOM then the phase of the laser field will vary

sinusoidally and the total electric field leaving the EOM is

E = E0e
i(ωLt+α sin(ΩRFt)), (6.1)

where ωL is the angular frequency of the laser, α is the depth of the RF phase modulation

and ΩRF is the angular frequency of the RF field. It is possible to write the part of this

equation corresponding to the phase shift as an infinite sum of Bessel functions

eiα sin(ΩRFt) ≡
∞
∑

n=−∞
inJn (α) e

inΩRFt. (6.2)

Using J−n (α) ≡ (−1)n Jn (α) we can now write the total electric field as

E = E0e
iωLt

[

J0 (α) +
∞
∑

n=1

inJn (α)
(

einΩRFt + e−inΩRFt
)

]

. (6.3)

This describes a field consisting of light at the carrier frequency of the laser and also at

frequencies offset from the carrier by integer multiples of the RF frequency, ωL ± nΩRF.

The light at each of these new frequencies is called a sideband. The frequencies with

n = 1, 2... are the 1st, 2nd... order sidebands respectively. The amplitudes of the carrier

and sidebands are controlled by the Bessel functions, Jn (α). Their intensities are given

by

I = |E|2 = I0J
2
n (α) , (6.4)

where I0 = |E0|2 is the intensity of the laser prior to any modulation. For small modulation

depths the first sideband is appreciable but higher order sidebands become progressively

smaller. Larger modulation depths can result in a spectrum where a large number of

sidebands are of a similar height to the carrier.

In conventional ‘bulk’ free space EOMs the RF is applied to a pair of electrodes which

sandwich the crystal through which the laser passes. The refractive index change is pro-

iiAnother method is to modulate the current of the diode laser. This method has previously been used
to put sidebands on the 866 nm repumping lasers [78]. It is difficult to put a high percentage of the carrier
light into the first sidebands using this method and so a lot of laser power is lost.
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RF Electrode

Optical
Waveguide

LiNbO3

Figure 6.1: Cross-section of the fibre EOM travelling wave electrodes. The laser light is
confined to the optical waveguide created by doping the crystal with transition metals.

portional to the electric field between these plates and so is inversely proportional to the

distance between the electrodes. For a given refractive index change a larger phase modu-

lation will result the longer the EOM is. The capacitance of the plates is also proportional

to their length and inversely proportional to the distance between them. The bandwidth

of the EOM can thus not be increased indefinitely. The sideband spacing required in

our system is of the order of 10 GHz (approximately the size of the Zeeman splitting at

1 tesla). A significant phase modulation is difficult to achieve with this type of EOM above

≈ 1 GHz. Higher bandwidths are possible however using ‘travelling wave electrodes’ [79].

A schematic of the setup is shown in figure 6.1. The RF mode is travels partly through

the air and partly through the LiNbO3 crystal. The crystal is doped in a small region to

create an optical waveguide. So the laser and the RF travel in the same direction. The

dimensions are chosen so as to match the phase velocity of the RF and light waves in

the crystal so that the interaction can occur over large distances. Optical fibres are used

to deliver the light to and collect the light from the waveguide. This device will thus be

described in the following as a ‘fibre EOM’.

This technology has recently been developed in the wavelength region of our repumper

lasers. In the following sections a scheme is introduced whereby a single fibre EOM can

be used to repump the required transitions using just 4 lasers. The optimal parameters

required to do this are then deduced. The fiber EOM was subsequently calibrated and

laser cooling results using it are presented.

6.1 Multiple transition repumping scheme using a single fibre

EOM.

At low magnetic fields the Zeeman splitting of each mJ state is linear in B and depends

on the gJ factors of each state. These were provided in table ??. They are all rational
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Figure 6.2: The transitions which the scheme of figure 6.3 uses. From left to right are the
866 nm, 850 nm and the 854 nm transitions. A similar pattern is seen in each case where
the states are only repumped to the two outer P states. Both π, σ+ and σ− transitions
are required. The relative Zeeman splitting is to scale.

numbers. The frequency of a transition depends on a linear combination of the two relevant

gJ factors. The simple nature of these factors gives us a clue that putting the lasers at

850 nm, 854 nm and 866 nm through the same EOM with a judiciously selected set of RF

frequencies applied to it could provide us with sidebands at the required frequencies. It

turns out that it is possible to hit all 14 transitions required with one 850 nm laser, one

854 nm laser and two 866 nm lasers. The transitions which the proposed scheme addresses

are shown in figure 6.2. The lasers and sidebands required are displayed in figure 6.3.

The figure shows a single set of sidebands at a spacing νa which is a linear function

of magnetic field νa (GHz) = 5.5985B (tesla) such that the frequency of a sideband is

specified by νsideband = mνa where m is the order of the sideband. The 850 nm laser is set

at the transition frequency at B = 0 and so the transitions are symmetrical about zero in

the diagram. The 854 nm and 866 nm lasers are offset to the outer π transitions.
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866 nm

854 nm

850 nm

0 1 2 3 4-1-2-3-4

νsideband (νa)

Figure 6.3: Visual representation of how a comb of sidebands with a spacing of νa (GHz) =
5.5985B (tesla) can hit enough transitions to re-pump out of all the sub-levels at 850 nm,
854 nm and 866 nm. The frequency of a given sideband is νsideband = mνa where is m
is an integer which specifies the sideband. Each row of circles corresponds to a separate
laser (note the two 866 nm lasers required). The solid and open circles represent σ and
π transitions respectively. The carrier laser frequency is set to the zero position on the
horizontal axis. The vertical lines then give the available frequencies.
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6.2 Numerical calculation of RF power required

The scheme requires up to fourth order sidebands to address the required transitions. It

will be seen that even the fibre EOM can’t create large fourth order sidebands. Instead

two RF frequencies, νa and 3νa are applied to the fibre EOM. The nine frequencies in

the comb can then be created by just the carrier and first order sidebands. Labelling the

sidebands from −4 to +4 if we imagine the lower frequency RF acting first then sidebands

are created at ±1. Then the high frequency RF acts on these sidebands creating sidebands

at ±4 and ±2 (−1 → −4, +2 and +1 → +4, −2). If higher order sidebands are considered

then the ±2 sidebands can also be created by second order sidebands at the lower RF

frequency. Interference will occur between the light created via these two different routes.

We define a phase difference φ between the νa and 3νa RF signals at t = 0 (which can be

defined as one frequency is a harmonic of the other). The resulting electric field is

E = E0 sin [2πνLt+ α sin (2πνat) + β sin (2π3νat+ φ)] , (6.5)

where νL is the carrier frequency of the laser and α, β are the depths of the phase modu-

lation produced via the RF applied at νa and 3νa respectively. Depending on whether the

phase between the two RF signals is controllable it will either be a variable which we can

adjust to help us obtain the resulting electric field we desire or it will be averaged in time.

We wish to calculate the frequency spectrum created as a function of the amplitudes

of the RF fields and the phase between them. This can be achieved by expanding both the

phase modulation at νa and 3νa in terms of Bessel functions. The resulting expressions

are given in appendix B. Here we will sample equation 6.5 and then take the discrete

Fourier transform. We can then optimise for the ideal parameters.

To do this E is calculated at each value of α, β and φ for a set of values of t. The

discrete Fourier transform is then taken and then the modulus squared of this is calculated

to give the light intensity as a function of frequency. The intensity at the carrier and each

sideband is then saved for each set of α, β and φ.

First we have to put in values for the laser and RF frequencies. These two frequencies

differ by a factor of ≈ 104 and so it is difficult to see both these frequencies in a Fourier

transform. Instead we set the ratio between these two frequencies large enough so that the

results do not change if it is made larger. Setting νL = 10 and νa = 1 is adequate. The

number of values of t was chosen to be 2000 and t was scaled by 100 so that 200 cycles,

20 cycles and 60 cycles are sampled for νL, νa and 3νa respectively. α and β were scanned

from 0 up to 2.5 with a step size of 0.05. φ was scanned from 0 to 2π with a step size of
π
20 .
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Now we can search through our new data to find the optimal parameters that can be

applied to the EOM to get the most light at the transition frequencies we desire. The

resulting light field is a symmetrical comb at νa. The 850 nm, 854 nm and 866 nm

transitions all require different components of this comb to hit the target transitions. The

components required can be seen readily from figure 6.3. The optimal parameters will be

found individually for each laser. A compromise will then need to be found if more than

one of these lasers is being used at once. For each φ the amplitudes corresponding to each

α and β are scanned and the parameters which maximise the power in the least powerful

transition are found. The results of this procedure are shown in figure 6.4. Shown are

optimal RF amplitudes and the resulting percentage of the initial laser intensity that is

at the transition frequency with the smallest amplitude (%max). These are plotted as a

function of the phase between the two RF signals. If the phase is not controllable and

is jittering so rapidly that the ions will not respond to it then we must average over the

phase at each α and β. Figure 6.5 displays contour plots of %max as a function of α and

β. %max for each transition set is written in the caption.

6.3 Experimental Setup and Calibration of Fibre EOM

The fibre EOM used for the experiments in this chapter is a commercial 20 GHz phase

modulator from EOSPACE. The two RF frequencies for the fibre EOM originate from

different sources. For the experiment of § 6.4.1 where modulation at frequencies νa and

3νa is applied to the EOM the setup of figure 6.6 was used. The two RF signals were

combined using a splitter and then amplified before being applied to the EOM. The VCO

described has a frequency range which corresponds to an operating region of the trapping

magnetic field from 0.95 to 1.01 tesla. For other experiments where different frequencies

were required, different VCOs and function generators were used to create the RF but the

signals were combined in the same way. The EOM itself is rated to 20 GHz and has not

been tested above this. This corresponds to a magnetic field of 1.2 tesla in the described

scheme. One way to control the phase between the two RF signals νa and 3νa is to have

them originate from the same source. This can be achieved by using a VCO or function

generator to produce νa which is then split into two signals. A 3x frequency multiplier

can create the 3νa on one of the signals which is then recombined with the other signal at

νa.

The RF frequency produced by the VCO as a function on the voltage applied was

calibrated by performing a beat-note measurement. The electronic setup was the same as

in figure 6.6. The RF power from both the function generator and VCO was optimised to

produce first order sidebands as large as possible as seen on the transmission of the optical
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Figure 6.4: The optimised amplitudes of the phase modulation at νa and 3νa (left) and
the corresponding light intensity at the transition frequency with the lowest power (right)
as a function of the phase between the two RF signals. The dashed and solid lines in the
RF amplitude plots are for the α and β amplitudes respectively. Note that the transition
frequency with the lowest power can be change for different values of φ.

123



Chapter 6 Experimental Setup and Calibration of Fibre EOM

α

β

0

0

0

0

1.25 1.25

1.251.25

1.25

1.25

1.25

1.25

2.50 2.50

2.502.50

2.50

2.50

2.50

2.50

Figure 6.5: Numerically Optimised EOM modulation strengths (α and β) for a scrambled
phase. Clockwise from the top-left are the D 5

2
→ P 3

2
, D 3

2
→ P 3

2
, D 3

2
→ P 1

2
(σ) and D 3

2
→

P 1
2
(σ and π) transitions. Each contour denotes a 5% change in intensity. Black indicates

there is 0-5% of the maximum intensity (white). The maximum intensities are differ-
ent for the different plots. They are (clockwise from top-left) 6.3%, 8.7%, 22.0% and 11.0%.

Note that the transition frequency with the lowest power can change for different values of
α and β. To try and make sense of these plots lets look at the α = 0 and β = 0 cases. Each
set of transitions require the 2nd order sideband. As this sideband cannot be created via
the high RF, when α = 0 the power in the worst transition is always zero. When β = 0,
sidebands are only created by the lower RF. In the bottom-right plot (866 σ transitions)
the second order sideband is the only one required. This is thus always limiting and so
the β = 0 line follows the square of a 2nd order Bessel function. In the top-right plot
(850 transitions) the 4th order sideband is always limiting and so the β = 0 line follows
the square of a 4th order Bessel function. In the other two plots different sidebands are
limiting at different points along the β = 0 line. In the top-left plot (854 transitions) the
4th order sideband is limiting until α ≈ 2.3 when the carrier is limiting. In the bottom-left
plot (866 σ + π transitions) the 2nd order sideband is limiting until α ≈ 1.8 when the
carrier falls below it and becomes limiting.
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Function
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Splitter VCO

TUNE

AMP

EOM
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Figure 6.6: Diagram of the electronic setup for when RF at frequencies of νa and 3νa
are applied to the fibre EOM. The higher frequency was generated from a Agilent 83650L
function generator which could be used from 10 MHz to 50 GHz producing up to ≈ 20 dBm
of RF power. The VCO (ZX95-5580+) could be tuned from 5.33 to 5.63 GHz with an
output power of ≈ -0.5 dBm. The high frequency RF from the function generator had
to be transmitted by high frequency coaxial cable to reduce losses. The two signals were
combined on a resistive splitter (ZFRSC-183-S+) with a loss of ≈ 3.5 dB. The combined
signals were then amplified on a ZVA-213-S+ which has a gain of ≈ 26 dB between 0.8
and 21 GHz. The power of the two RF frequencies could be altered by inserting different
fixed attenuators at A and B. These also help to stop any damage from reflections back
into the RF sources.
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Figure 6.7: Calibration of the VCO (ZX95-5580+) output frequency as a function of
the the tuning voltage on it. The calibration was relative to a function generator whose
calibration had been checked relative to a counter. The beat note frequency between the
first order sidebands created by the VCO and function generator RF signals on the fibre
EOM was observed. A linear fit to the data is shown which has a y-intercept of 5.31 MHz
and a gradient of 0.065 V/MHz

spectrum analyser as described in § 4.2.5. The sidebands were overlapped in frequency

space. A photodiode was placed after the EOM, the signal from which was viewed using

the Fourier transform mode of an oscilloscope (300 MHz, digital). The function generator

frequency was scanned until a beatnote was seen in the Fourier transform. Noting both the

RF frequency from the function generator and the beatnote frequency, the VCO frequency

could be calculated. The voltage applied to the VCO was then stepped and the beatnote

frequency noted. This was continued until the VCO was calibrated over its voltage range.

The function generator frequency was moved to keep the beatnote under 100 kHz so it

could be easily observed. The results of this calibration are shown as figure 6.7. It is seen

that the frequency is an approximately linear function of the applied voltage.

Figure 6.8 displays the intensity of the sidebands produced by the EOM as a function

of the amplitude of the RF applied. The sidebands were seen via the transmission of the

same scanning cavity used for the beatnote measurement while the RF was applied to the

EOM using the setup of figure 6.6. The RF power was measured at the EOM using an RF
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Figure 6.8: The intensity of the carrier and sidebands on the 854 nm laser seen via the
transmission of a scanning cavity. The different plots are for different RF frequencies
applied to the EOM. From top to bottom the frequency applied is 1 GHz, 5.6 GHz and
16.8 GHz. The fits are Bessel functions of the form I0Jm (aV). Each sideband has been
fitted individually to obtain a value of a. Averaging this value of the carrier, first and
second sidebands we obtain a = 2.57, 2.06 and 2.15 for applied RF frequencies of 1 GHz,
5.6 GHz and 16.8 GHz respectively. The red, green, yellow, blue and grey data is that of
the carrier, first, second, third and fourth order sidebands respectively.
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power meter (Agilent U2000A). Each sideband of order m was fitted individually to the

corresponding Bessel function I0Jm (aV). The coefficient a, when multiplied by the voltage

applied, gives the amplitude of the phase shift, α as defined in equation 6.1 (for a single

applied frequency) and α and β of equation 6.5 (for the case of two applied frequencies).

The averaged a coefficients found over the carrier, first and second sidebands are 2.57,

2.06 and 2.15 for applied RF frequencies of 1 GHz, 5.6 GHz and 16.8 GHz respectively.

We see that significantly less RF power needs to be applied at 1 GHz than at 5.6 GHz or

16.8 GHz to achieve an identical phase shift depth.

6.4 Repumping Results

6.4.1 D5

2

→ P3

2

Transitions

The first experiment that we consider was performed with a single 854 nm laser sent

through the fibre EOM driven at RF frequencies of νa and 3νa to create a comb of fre-

quencies at νa (see figure 6.3) to repump the D 5
2
state via the six transitions as shown

in figure 6.2. This laser was then combined with four separate 866 nm lasers to repump

out of the four D 3
2
levels via the σ transitions. The optical setup is that of figure 4.9

except the combining with the 866 nm lasers is after the EOM, and not before as shown.

The optical setup of the cooling lasers and the combining of the lasers before the trap is

that of figures 4.10 and 4.11. The trap used was the Split Ring Trap (SRT) described in

§ 4.3.1. A magnetic field strength of ≈ 1 tesla was used with a single 40Ca+ ion loaded

into the trap. The 397 nm light emitted from the ion is observed on a PMT with the

optics and electronic setup of § 4.4.2. Approximately 100 µW of laser power from each

of the cooling lasers and the 866 nm repumping laser was focused at the ion with a spot

size of 90-100 µm. Axialisation (§ 3.1.2) was used to help cool it. The polarisation of the

854 nm laser was set to approximately 45 degrees so it could hit both π and σ transitions

as required in the scheme of figures 6.3 and 6.2. The wavelengths of all the lasers were

set using the commercial wavemeter described in § 4.2.2. The tunings of the 397 nm and

866 nm lasers were then optimised to produce the largest signal from the ion. The filter

used in § 5.2 was placed in the 866 nm beam to remove any 850 nm and 854 nm light so

repumping of the D 5
2
state is only done by the 854 nm laser.

We wish to look at the percentage of time the ion is dark as well as the length of

quantum jumps as a function of 854 nm power at the trap and whether the EOM RF is

switched on or off. The percentage of time the ion is dark is important for efficient laser

cooling as the ion is only being cooled when it is scattering 397 nm photons which obviously

cannot happen when it is in the D 5
2
state. The quantum jump length is important as it

128



Chapter 6 Repumping Results

PMT Counts in a 5 ms Bin

N
u
m
b
er

of
O
cc
u
rr
en
ce
s

Figure 6.9: Histogram of the number of counts in each 5 ms bin. There is no 854 nm
beam to repump the D 5

2
state. Summing up the number of bright and dark bins the ion is

found to spend 82% of the time in the D 5
2
state. A small sample of the raw data is shown

in figure 5.7.

gives an indication of the time the 854 nm laser takes to repump the ion out of the

D 5
2
state. This is important when considering the required duration of the repumping

pulse used when performing pulsed spectroscopy (see chapter 7). The power required is

important as there is usually a compromise in power between different lasers when they

are combined so a good understanding of this parameter allows a judicious choice to be

made. A number of repumping experiments have thus been conducted at different 854 nm

powers.

A typical trace is shown in figure 5.7 when there is no repumping from the D 5
2
state.

In figure 6.9 the number of counts in each bin for the trace have been histogrammed for

the data set of which figure 5.7 shows a sample. The histogram has been fitted to the sum

of two Poissonian distributions

f (x) = A

(

axe−a

x!

)

+B

(

bxe−b

x!

)

, (6.6)

where A, a, B and b are free variables.

The two distributions represent the two cases when either the ion is scattering 397 nm

photons and so is ‘bright’ or it is in the D 5
2
state and is ‘dark’. Defining a bright bin as

one in which more than 8 photons were detected we find that the ion was dark 82% of the

time. This means that the ion would only be cooled 18% of the time at a magnetic field
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Figure 6.10: Ion signal recorded on a PMT with a 1 µW 854 nm beam for repumping the
D 5

2
state. The upper and lower plots are for the EOM RF turned off and on respectively.

of 1 tesla and this time will decrease for higher fields.

Another consideration is the effect on the pulsed spectroscopy of the S 1
2
→ D 5

2
transi-

tion discussed in the next chapter. Here the probability of shelving the ion in the D 5
2
state

using a narrow linewidth 729 nm laser is measured as a function of the laser’s frequency.

To find the shelving probability the experiment must be performed many times. Before

repeating the experiment the ion must be ‘reset’ back to the S 1
2
state. If a repumping

854 nm pulse is not used when performing pulsed spectroscopy then we must wait for the

ion to spontaneously emit from the D 5
2
state. Using a larger data set (such as those used

in § 5.3) the lifetime of the D 5
2
state has been measured in our group [51]. The most accu-

rate measurement of this value performed by other groups is (1.168± 0.007) seconds [80].

To be sure that the ion has spontaneously emitted out of the D 5
2
state a time delay is

required which is much longer than the lifetime of the D 5
2
state. This is a long time to

wait and so a 854 nm repumping pulse is required.

First let us look at an experiment conducted with (1.0± 0.1) µW of 854 nm power at

the trap. A single ion was trapped in the Split Ring Trap (§ 4.3.1). With the two 397 nm,

four 866 nm and the single 854 nm laser directed at the ion the fluorescence was recorded

for 40 s. This data set was split up into 8000 5 ms bins. There is ≈ 4400 counts per

second from the ion when it is scattering which is enough signal to distinguish between
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when the ion is bright (in the cooling cycle) or dark (in the D 5
2
state). This can easily

be seen by histograming the number of counts in each bin. Figure 6.10 shows traces for

an experiment where the RF was applied to the EOM and one where it was not, with

corresponding histograms in figure 6.11.

The histograms have again been fitted to the sum of two Poissonian distributions

representing the dark and bright bins. The first thing to notice is that the ion spends

much more time in the cooling cycle when the RF is applied to the EOM and so it has the

desired effect. It can be seen however that quantum jumps do still occur. This shows that

the rate of repumping is too small to be sure of emptying the D 5
2
state within a fraction

of a 5 ms bin. The ion does however spend ≈ 97% of the time in the cooling cycle and so

efficient Doppler cooling is achievable with this 854 nm power. We can quantitatively look

at the repumping rate by defining an effective lifetime of the D 5
2
state. A program was

written which, given a threshold number of counts to distinguish between when the ion is

bright and dark (set manually by looking at the relevant histogram), creates a new array

of whether the ion is bright or dark in each bin. Scanning through this array the program

labels the start of a jump when there is a dark bin following a bright bin. The number of

bins in which the ion remains dark is then incremented until a bright bin is found defining

the end of the jump. The process is repeated until the whole data set has been scanned.

It then creates a histogram of the lengths of the quantum jumps. The result of this is

shown in figure 6.12.

An exponential fit to this histogram gives effective D 5
2
state lifetimes of 160 ms and

16 ms when the RF to the EOM is off and on respectively. It is noted that the lifetime

is shortened from the natural 1.17 s lifetime even without the EOM turned on but the

EOM does help to significantly shorten the jump length. When the EOM is turned off

the 854 nm laser is detuned by 4νa from the furthest transition but it still has some effect

through off-resonant repumpingiii. However, even with the EOM on, a 1 µW 854 nm

pulse of ≈ 90 ms would be required to have a good repumping success rate. This will be

seen to be a long time on the pulsed spectroscopy timescale and so an increase in 854 nm

power is required. An experiment was also conducted with (40± 20) nW of 854 nm light.

The histograms show a similar effect as the experiment with 1 µW of light however the

repumping is less efficient as expected and the ion spends a greater fraction of its time in

the D 5
2
state (see figure 6.13) and has a longer effective lifetime of 103 ms with the EOM

on (see figure 6.14).

iiiThis repumping could be due to laser noise or ASE. Another possibility is due to Johnson noise on
the EOM. The RMS voltage on the amplifier per Hz of bandwidth is 4kBTR. At room temperature after
being amplified this could result in 5 mV of noise on the EOM over a bandwidth of 100 MHz around each
transition resulting in the observed repumping.
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Figure 6.11: Histogram of the number of counts in each 5 ms bin. (1.0± 0.1) µW of
854 nm power is directed at the ion for repumping the D 5

2
state. The upper and lower

plots shows data collected with the EOM RF off and on respectively. Summing up the
number of bright and dark bins the ion is found to spend 37.9% of the time in the D 5

2
state

with the EOM off and 3.2% of the time with the RF on.
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Figure 6.12: Histogram of the quantum jump lengths in the data set where (1.0± 0.1)µW
of 854 nm power is directed at the ion for repumping the D 5

2
state. Samples of these data

are shown in figure 6.10. The upper and lower plots show data collected with the EOM
RF off and on respectively. From the exponential fit, effective lifetimes of 160 ms and
16 ms are found when the RF to the EOM is off and on respectively. This compares to
the natural lifetime of 1.17 s.
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Figure 6.13: Histogram of the number of counts in each 5ms bin. (40± 20) nW of 854 nm
power is directed at the ion for repumping the D 5

2
state. The top and bottom plots show

data collected with the EOM RF off and on respectively. Summing up the number of
bright and dark bins the ion is found to spend 64.6% of the time in the D 5

2
state with the

EOM off and 28.8% of the time with the RF on.
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Figure 6.14: Histogram of the quantum jump lengths in the data sets where (40± 20) nW
of 854 nm power is directed at the ion for repumping the D 5

2
state. The RF is being

applied to the EOM. The exponential fit gives an effective lifetime of the D 5
2
state of

103 ms. This compares to the natural lifetime of 1.17 s.

We have seen that 1 µW of 854 nm light shortens the lifetime of the D 5
2
state to

about 16.45 ms. Increasing the power to 10 µW the histograms shown in figure 6.15 are

obtained. Note that only 8 seconds of data has been taken which is split into 8000 bins of

1 ms. When the EOM is turned on there is no evidence of the ion being in the D 5
2
state.

We can conclude that the quantum jump length is less than on the order of 1 ms. For the

histogram with the EOM turned off although the fit to two Poissonions gives a negligible

coefficient for the one corresponding to the dark state there is quite a lot of bins with zero

counts and so there is some evidence that there are still quantum jumps.

Figure 6.16 shows the histogram with the EOM turned off when 120 µW of 854 nm

light is used. Here there is no evidence of quantum jumps and this shows that the EOM

need not be used to repump from the D 5
2
state if enough 854 nm light is available.

In summary 40 nW of 854 nm light directed at the ion with the RF frequencies applied

to the EOM does not provide adequate repumping. 10 µW of light with the RF on

does provide the repumping rate required while if 120 µW of light is used then adequate

repumping is achieved even without the RF applied to the EOM.

6.4.2 D3

2

→ P1

2

Transitions

It was seen in the previous section that if the 854 nm laser has enough power then it

is sufficient to repump the D 5
2
state without requiring sidebands to be put on it via the

EOM. With this in mind an experiment was conducted to repump the D 5
2
state using a
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Figure 6.15: Histogram of the number of counts detected in each of 8000 5 ms bins.
(10.0± 0.5) µW of 854 nm power was directed at the ion. The top plot is with the RF to
the EOM off while the bottom plot is of data with the RF on. The fits to two Poissonians
show the ion spends a negligible amount of time in the D 5

2
state. There is however a peak

at 0 counts in the data with the RF off. This suggests quantum jumps of a length longer
that ≈ 1 ms are still occurring with no RF present.
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Figure 6.16: Histogram of PMT counts with (120.0± 10) µW of 854 nm power directed
at the ion. The RF to the EOM was turned off for this data set. There is no evidence
that quantum jumps of a length longer that ≈ 1 ms are occurring.

single 866 nm laser. This requires different RF frequencies to be put on the EOM than

for the scheme described in figure 6.3. The EOM can thus not be used to put sidebands

on a 854 nm laser as the sidebands will not be resonant with the required transitions. It

was hoped that there would be enough 854 nm power to repump sufficiently anyway. The

advantage of a single 866 nm laser was deemed greater than the disadvantage of requiring

more 854 nm power. The 854 nm beam was thus combined with the 866 nm after the

EOM. Another difference from the optical setup of figure 4.9 is the beamsplitters which

were used to combine the 866 nm lasers were removed to maximise the 866 nm power

available from the single laser.

The RF frequencies that must be applied to the EOM to address the D 3
2
→ P 1

2
σ tran-

sitions are shown in figure 6.3. First order sidebands are required at 2νa and 1
6νa. The

higher frequency was created with the same function generator as used in the 854 nm

repumping experiments. The lower frequency was created by a second function generator

(Hewlett Packard 8643A) which is capable of providing signals between 0.02 and 1.03 GHz.

The polarisation of the 866 nm light was set to hit the σ transitions (see the top row of

figure 6.3). An experiment was conducted to see how much 866 nm light was required

to repump a single ion’s D 3
2
state sufficiently. A single ion was trapped and the signal

obtained was optimised. The RF power to the fibre EOM was then decreased to various

values and 10 seconds of data were recorded at each value. As the RF power was decreased

the amount of light at the frequencies of the σ transitions decreased. The amount of light
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Figure 6.17: Saturation of the D 3
2
→ P 1

2
866 nm σ repumping transitions as the sideband

power is changed via the LF RF
(

1
6νa

)

on the EOM.

at the σ transitions was calibrated by looking at the various peaks on the same optical

spectrum analyser described earlier. The height of the transmission peaks relative to the

carrier transition when no RF was applied was noted. This ratio multiplied by the total

866 nm power at the trap, (495± 5) µW gives the power in the sideband. The exper-

iment was conducted by changing the amplitude of the higher frequency (HF) or lower

frequency (LF) phase modulation individually. When either frequency is switched off there

is no sideband at any of the σ transitions. However when the HF is turned off there are

sidebands resonant with the π transitions and so if there is an error in the polarisation

then some repumping could occur. When the LF is off there are sidebands only ≈ 1 GHz

away from all transitions. There could therefore be some significant repumping from the

off-resonant light. Figures 6.17 and 6.18 show the saturation of the 866 nm transition via

the scanning of the LF or HF respectively.
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Figure 6.18: Saturation of the D 3
2
→ P 1

2
866 nm σ repumping transitions as the sideband

power is changed via the HF RF (2νa) on the EOM.
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Chapter 7
Pulsed Spectroscopy of the

S1
2
→ D5

2
Electric Quadrupole Transition

in 40Ca+

The first step to using the S 1
2
→ D 5

2
transition for coherent manipulation and sideband

cooling is to characterise the transition spectroscopically. In this chapter initial results

performed in an RF trap will be presented. This constitutes a proof-of-principle exper-

iment where the same techniques can be used in future experiments in a Penning trap.

To perform spectroscopy on an electric-dipole allowed transition such as those used for

Doppler cooling at 397 nm the laser frequency would be scanned and the rate of scattered

photons from the ion would be measured. It would be very difficult to use this simple

method on a quadrupole transition as the rate of photons emitted is simply too low to

measure. Instead we indirectly observe if the ion has been excited into the D 5
2
state using

Dehmelt’s electron shelving technique (quantum jumps) [81]. This entails observing the

plentiful number of photons scattered on the S 1
2
→ P 1

2
transition. This is achieved using

a series of laser pulses shown in figure 7.1.

First the ion is Doppler cooled and then optically pumped into one of the S 1
2
states.

The 729 nm laser is then switched on for a set time after which the ion should be in the

S 1
2
or D 5

2
state (or in a superposition state of the twoi). The 397 nm lasers are then

switched on to make a measurement (collapsing any superposition state). If photons are

detected from the ion then it must be in the S 1
2
state as the 397 nm lasers do not couple to

iAs the time required for the D 5

2

state to spontaneously emit a photon is much longer than the 729 nm

pulse time and the detection period it is assumed that only absorption and stimulated emission occurs. In
this regime the coherent dynamics analysis of § 3.2 is applicable.
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397a

397b

866

854

729

GATE

ADVANCE

Cooling

Detection

State Preparation Advance

Interaction

Time

Figure 7.1: The full sequence to be used in the future to perform pulsed spectroscopy on
the 729 nm transition. First the ion is Doppler cooled. This is required as it will heat up
if the pulse sequence is repeated a large number of times. A cooling time of 5 ms seems
to be adequate. State preparation is then performed. This differs for Penning and Paul
traps as explained in the text. A simplified sequence omitting the state preparation pulse
has been employed for the results presented here. The 729 nm transition is then addressed
using a 5-10 ms pulse. A 10 ms pulse is then used to detect the ion’s state. Triggers are
sent to both step the bin number and gate the counters as well as to change the 729 nm
frequency as explained in the electronic schematic of figure 7.2.
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the D 5
2
state. The 854 nm and 397 nm lasers are then switched on to repump the ion back

into the required ground state (and some Doppler cooling is performed to counteract any

heating that has occurred while the lasers were off). Repeating this sequence a number

of times a probability of excitation into the D 5
2
state for that combination of 729 nm

frequency, pulse duration and laser power is found. The 729 nm laser frequency is then

stepped and the process is repeated. Finally we can build up a spectrum of excitation

probability as a function of the 729 nm laser frequency. It is noted that the 866 nm lasers

can be left on throughout the sequence. They are required for Doppler cooling, state

detection and optical pumping and do not couple to the D 5
2
state during the 729 nm

pulse.

7.1 Electronic Setup

Figure 7.2 provides a schematic of the electronics used to perform the pulse sequence.

Labview is used to communicate (via a GPIB connection) with the function generator

used to produce the RF for the 729 nm laser AOM used as an optical switch. The RF

start, stop and step frequencies are set by the user via the Labview interface. When the

experiment is initiated Labview resets the function generator and sets its frequency to

the start frequency specified. A trigger is then sent to an Arduino Mega microcontroller

(§ 4.2.3). The Arduino produces the TTL pulses which toggle on and off the AOM switches

(see § 4.2.5 for a description of the AOM electronics). One of the Arduino digital pins

is defined as an output for each of the AOM switches. A laser pulse of a given length is

produced by setting the relevant pin high and then calling a function which performs the

assembler language function NOP (no operation performed) a specified number of times.

Pulse lengths can be produced which are multiples of the time a NOP command takes to

execute (0.69 µs). The minimum pulse time possible is that which calling the function

and performing no NOP commands requires (0.81 µs). This accuracy is adequate for the

∼ ms pulses used in the experiment. The rise-time of a laser pulse is limited by the AOM

switching speed (≈ 10 ns). There is a delay between the TTL pulse and the switching on

of the AOM which is limited by the distance the beam is from the AOM piezo (≈ 1 µs - the

propagation time of the acoustic wave). The pulse lengths and the number of times the

pulse sequence is repeated at each 729 nm frequency is specified via the Arduino program.

Two separate multi-channel counting cards are used (described in § 4.4.2). One (card

1) is used to view the number of photons observed during the detection period of each

pulse sequence. The Arduino has two further digital output triggers. One is a gate which

is sent to card 1 to restrict counts to the detection part of the pulse sequence. The second

trigger is sent to the bin advance of card 1 so the number of counts in each bin corresponds
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Figure 7.2: Schematic of the electronics used to perform pulsed spectroscopy. The pulse
sequence itself is specified in and produced from the Arduino microcontroller. This is sent
to the switches of the AOMs to create the laser pulses. Labview is used to specify and
communicate to the function generator the 729 nm AOM frequencies. Triggers are sent
between Labview and the Arduino to let each other know when their respective jobs are
complete. Two counting cards are used. One is used for viewing the counts detected in
each detection period (card 1) and the other is for counting the number of times the ion
finished in the D 5

2
state at each 729 nm frequency (card 2). The decision of which state

the ion is in is done in real-time using electronics contained in the ‘threshold detector’.
This is explained in figure 7.3.
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Figure 7.3: Schematic of the circuit used for deciding whether the ion is in the S 1
2
or

D 5
2
state after a pulse sequence. The 8-bit counter (74HC590) counts the TTL pulses

representing photons detected by the PMT. The threshold is chosen by putting a certain
number of the counter’s output bits into a NOR gate. A pulse is sent to the PMT
counting card when the number of counts detected is below the threshold set and when
the frequency is being stepped. This point in time is chosen via an AND gate (74HCT08)
with the counters output and the next frequency trigger as inputs. The NOT gate is based
on a transistor. The NOR gate is made by simply connecting together the outputs from
a set of these NOT gates.

to the number of counts in each detection period.

After each pulse sequence a decision must be made as to whether the number of photons

detected means the ion was in the S 1
2
or D 5

2
state. This requires a threshold number of

photons to be set as there will always be a background of photons detected which are

from the laser beam scattering off the trap electrodes or originating from the background

light. There will also be electronic dark counts giving a total background of ≈ 1 count

in a 10 ms detection period. We opted to make the decision in real time rather than by

post-analysing the actual number of counts. This is useful for taking preliminary results

as the results of the spectroscopy can be seen in real-time and any errors noticed during

the scan. A schematic of the circuit used to assess the ion’s state is shown in figure 7.3.

It is based on an 8-bit counter chip. The photons detected are fed directly into this

counter which is gated to only record counts in the detection part of the sequence via an

Arduino trigger. The trigger from the Arduino which states that the pulse sequence has
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ended is sent to the reset input of the counter. This trigger is first sent through a NOT gate

to ensure the counter is reset when the trigger is high as this is also required for advancing

the PMT card bin. The output from the counter is given in parallel with a pin for each bit.

A high is required from this output when the number of counts is above a set threshold.

To obtain this a number of the most significant bits are sent through a NOR gate. The

output is thus high only if all of the chosen bits are zero. This is the equivalent of saying

the output is high if the number of counts is below a certain number (the threshold). The

threshold is thus set by choosing the number of bits to include in the NOR gate. This

method is restrictive as the threshold cannot take any value. The maximum number of

pulses that can be counted using an 8-bit counter is 255 and the threshold must equal

1, 2, 4, 8 ... 128. For the detection length used the threshold required was always low

and so enough precision was available. This output is sent through an AND gate with

the Arduino trigger which is resetting the counter and so a pulse can only be produced

at the end of each sequence and this only occurs if the decision has been made that the

ion was in the D 5
2
state. This is sent to a second multi-channel counting card (card 2)

which counts the number of times the ion was in the D 5
2
state. This card moves to the

next bin after receiving a trigger from the Labview program that the 729 nm frequency

has been stepped. So the end result is the number of sequences in which the ion was in

the D 5
2
state as a function of the 729 nm frequency.

A trigger from a pulse generator to the Arduino allowed the experiment to be line

triggered. This will be a useful feature for future experiments where changes in the ambient

magnetic field may affect the Zeeman splitting of the states. The major contributions to

ambient magnetic field fluctuations come from mains noise. The Arduino would wait for

this trigger before beginning each pulse sequence. No change was seen in the spectra when

this was performed.

7.2 Trap and Optical Setup

The method required for state preparation is different depending on whether a Paul or

Penning trap is being used. In a Penning trap the magnetic field splits the different

∆mJ transitions between the S 1
2
and P 1

2
states by much more than the transition or

laser linewidths and so by simply turning off one of the 397 nm lasers and keeping on the

854 nm and 866 nm repumpers the ion will eventually fall into the S 1
2
sub-state which

is not being addressed. The situation is more difficult in the case of a Paul trap. The

397 nm transitions are overlapped and so the laser frequency cannot be used to pick a
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certain transition. Instead the laser polarisation is exploitedii. Two separate beams are

used for the σ+ and σ− 397 nm transitions for Doppler cooling and one of these beams is

switched off for state preparation. The preliminary results presented in this thesis were

conducted in a Paul trap. It was decided not to set up the optics required for state

preparation as the plan would be to move to a Penning trap as soon as possible. Instead

the ion would be in one of the S 1
2
sub-states when the 729 nm laser is switched on but

which one would be unknown. Averaging over the sequences performed at a given 729 nm

frequency the probability of exciting the ion up to the D 5
2
state would be halved if the ion

was being initialised randomly into either of the two ground states.

It is also expected that even when the 729 nm laser is resonant with the correct S 1
2
→

D 5
2
transition the probability of excitation would only be maximally 1

2 due to averaging of

the Rabi oscillations of different motional states of the ion. This averaging was discussed in

depth in § 3.2. The results presented in this chapter were conducted in the Split Ring Trap

(§ 4.3.1) acting as a Paul trap. The trap was held in the electromagnet used for the Penning

trap experiments in this thesis (§ 4.4.1). The trap potential was oscillating at ≈ 1.41 MHz

with a peak to peak voltage of ≈ 250 V. A lower estimate for the trap frequency would

be ∼ 100 kHz. At the Doppler limit the expected oscillation in the probability of being in

the S 1
2
and D 5

2
states is shown in figure 3.5 at this trap frequency. The Rabi frequencies

which are averaged over to create this probability are displayed in figure 3.4. In reality

the ion temperature is expected to be higher. The Doppler cooling lasers have a linewidth

which is of the order of the cooling transition and so it would not be expected to reach the

Doppler cooling limit as the laser frequency cannot be set precisely to an optimum value

(§ 3.1). There was also a lot of micromotion present as the trap was not compensated to

move the ion’s equilibrium position to the centre of the quadrupole field. See § 2.2 for a

derivation of the micromotion amplitude and a discussion of micromotion compensation.

Micromotion compensation was not conducted for the experiments discussed here as the

idea would be to move to a Penning trap where it is not required. When the cooling beams

were blocked for ≈ 1 second it would take on the order of seconds for the ion to cool back

in so the signal level was at the same level as before. It is thus expected that the ion

was hot enough so that enough different Rabi frequencies were averaged over to quickly

average out the oscillations shown in figure 3.5 so the maximum probability of exciting to

the D 5
2
state would be 1

2 . Thus together with the randomised state preparation we would

expect the maximum probability of excitation to be 1
4 .

The optical setup for the 729 nm laser has been explained in § 4.2.6. The AOM used

iiIt is possible to excite on the S 1

2

→ D 5

2

transition for frequency dependent state preparation in a

Paul trap. A small magnetic field splits the different ∆mJ transitions. Exciting on one of these and then
repumping the D 5

2

state with an 854 nm laser will prepare the ion in the other untouched S 1

2

sub-state [82].
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Figure 7.4: Fraction of maximum 729 nm power reaching the trapped ion as its AOM
frequency is scanned. The loss is due to a combination of AOM efficiency and fibre
coupling loss. The total frequency change (twice the frequency applied to the AOM) is
plotted. The maximum 729 nm power at the trap is ≈ 0.5 mW. This is focused to a spot
size of ≈ 85 µm at the ion.

to change the laser frequency which the ion sees is placed in a double-pass configuration

before the optical fibre which transmits the light between the optical tables. The AOM

was double-passed so that double the frequency change was achieved. It is preferable to

have as large a scan range as possible as this will decrease the likelihood of having to lock

the 729 nm laser to a high-order transverse mode of its reference cavity. Double-passing

the AOM also helps to keep the beam pointing in the same direction while its frequency

is scanned. The beam does however move slightly due to misalignment on the second pass

of the AOM when the frequency is scanned and so becomes misaligned from the fibre.

The AOM also has a peak in its frequency response. These two factors lead to the power

of the 729 nm laser being a function of AOM frequency. A calibration plot is shown in

figure 7.4. It is seen that an approximately 160 MHz scanning range is possible without

re-optimising the fibre coupling.
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7.3 Initial Experimental Results and Analysis

Initial results of pulsed spectroscopy on the S 1
2
→ D 5

2
transition are shown in figure 7.5.

The pulse sequence consisted of 5 ms of Doppler cooling, a 5 ms 729 nm pulse and then

10 ms of detection time. A threshold of 4 counts was used to distinguish whether the ion

was in the S 1
2
or D 5

2
state after the 729 nm pulse (≈ 40 counts were detected when the

ion was bright). The frequency shift provided by the 729 nm AOM was scanned from

400 to 560 MHz in 2 MHz steps. At each frequency 400 pulse sequences were conducted

and then the probability of being in the D 5
2
state, P

(

D 5
2

)

is calculated as the fraction

of the detection periods where the ion was assessed to be dark. The black and grey plots

represent the 729 nm laser being locked to two different transverse modes of its stable

cavity (see § 4.2.6 for a description of the lock). The black and grey plots correspond to

the laser being locked to the TEM0,2 and TEM6,0 transverse modes respectively. For a

symmetric cavity of length L, and mirrors with a radius of curvature R, the frequency

difference of two transverse modes TEMl1,m1 , TEMl2,m2 is [83]:

∆νl,m =
c

2πL
arccos

(

1− L

R

)

[(l1 +m1)− (l2 +m2)] (7.1)

For the parameters of our cavity (L = 0.100±0.001 m and R = 0.350±0.001 m) the mode

spacing is 1479±21 MHz and the FSR is 1499±15 MHz so the modes would be separated

by 20 ± 26 MHz. Note that the two transverse modes belong to different longitudinal

modes. For the ions to see the same laser frequency the AOM has to compensate for the

frequency difference between the cavity modes. The shift in frequency the AOM must

provide to see the same structure in the pulsed spectroscopy is seen from the plot to be

≈ 40 MHz. This is within the error of the expected shift. Although the error is large this

result gives us confidence that the structure seen is not an artifact.

A number of scans were then taken at different magnetic fields. A small current was

passed through the electro-magnet in which the trap is located. The results are shown in

figure 7.6. As the current through the coils is decreased the feature moves towards the

right of the scan and another similar feature appears from the right hand of the scan and

moves left.

The S 1
2
→ D 5

2
transition frequencies as a function of magnetic field strength are shown

in figure 7.7. There are 10 transitions in total. Only the 5 with a positive frequency shift

are shown in the figure as the other five behave symmetrically. It is postulated that the

structure moving towards the right in the scans is made from a number of the 5 transitions

with a negative magnetic field - frequency shift gradient. The structure appearing from

the right is then the symmetric set which has a positive frequency shift as the magnetic
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Figure 7.5: Pulsed spectroscopy on the 729 nm transition. The black and grey plots
show scans of the 729 nm frequency via its AOM when the laser is locked to the TEM0,2

and TEM6,0 transverse modes of its external cavity respectively. The shift in the feature
is ≈ 40 MHz which is within the error of the calculated distance between the modes
(20± 26 MHz).

field strength is increased.

When conducting the experiment it proved to be impossible to change the current

through the coils of the magnet such that the left and right structures overlapped. In

other words it was impossible to null the magnetic field which the ion felt. This implies

that there was a radial magnetic field, Br such that the total field is B =
√

B2
z +B2

r .

In figure 7.8 the transition frequency of the midpoint of the left structure (of the scans

in figure 7.6) is plotted as a function of the total current through the magnet’s coils. The

position of the structure has been converted into a transition frequency by plotting its

distance from the midpoint of the left and right structures (the point where B = 0). A

calibration of the magnetic field created for a given total coil current, I at fields up to

0.5 tesla shows a linear fit [51]. Assuming that the fit is still linear at the small fields we

are applying and the current only creates an axial field we have Bz = aI+b. A linear fit to

the points is shown in figure 7.8. This would be valid if Br = 0. However in reality there

is a radial field. Substituting in for the total field we obtain B =
√
cI2 + dI + e, where

the constant radial field has been absorbed into the constant e. The Zeeman effect is

linear in the magnetic field strength so the transition frequency is ∆ν = m
√
cI2 + dI + e.

This fit is shown in figure 7.8. As expected a minimum in the transition frequency is seen

(21.8 MHz). A current of 39.8 mA through the coils is required to null the axial magnetic

field.
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(a) (b)

(c) (d)

(e)
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Figure 7.6: Pulsed spectroscopy scans of the 729 nm transition at different magnetic field
strengths at the ion. Plots a to e are for total currents to the two coils of 90 mA to 50 mA
in 10 mA steps. Two features are seen to move towards each other as the field is decreased.
It is postulated that each of these features corresponds to a number of 729 nm transitions.
See the text for a discussion of which transitions they may be.
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Figure 7.7: 729 nm transitions with a positive frequency shift as the magnetic field is
increased. The relative transition strengths from top to bottom are: 1

30 ,
5
30 ,

2
30 ,

4
30 and

3
30 . The |∆m| = 0, 1 and 2 transitions are shown in red, blue and black respectively.
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Figure 7.8: The shift of the midpoint of the left structure in the scans of figure 7.6 as a
function of the total current through the magnet’s coils. A linear fit is shown (dashed line).
The solid line assumes a constant stray radial field and so fits to ∆ν = m

√
cI2 + dI + e

where m, c, d and e are constants.
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(a) (b)
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Figure 7.9: 729 nm laser propagation, k̂ and polarisation ǫ̂ directions with respect to the
magnetic field B = Bxx̂+ Byŷ + Bz ẑ. The shaded shapes to the left and right of (a) are
the pole pieces of the magnet. In (b) the pole pieces are denoted by the dotted circle.
The coils generate a magnetic field along the ẑ direction. The diagram on the right gives
a view through the iron core.

7.3.1 Tentative Attribution of Spectral Features

The 729 nm laser polarisation is linear and its direction relative to the magnet’s coils is

shown in figure 7.9. The selection rules for quadrupole |∆m| = 0, 1 and 2 transitions each

depend on the laser’s propagation direction, k̂ and polarisation direction, ǫ̂ (for a linearly

polarised beam).

The relative transition probabilities, g|∆m| are shown in figure 7.10. These are plotted

directly from the equations in reference [25]:

g0 =
1

2
|cosφ sin 2θ| (7.2)

g1 =
1√
6
|cosφ cos 2θ + i sinφ cos θ|

g2 =
1√
6
|cosφ sin 2θ + i sinφ sin θ|

Where θ and φ are the angles between the magnetic field and the laser beam and

polarisation directions respectively.

Let us first consider the case where Br = 0. It may be helpful to look at the left

diagram of figure 7.9 with Bx = 0. We have θ = π
2 and φ = π

2 and so from figure 7.10 only

the |∆m| = 2 transitions are allowed. If Bz = 0 then we have the situation shown in the

right diagram of figure 7.9. If the magnetic field points along x then θ = 0 and φ = π
2 .

If the magnetic field points along y then θ = π
2 and φ = 0. In both these cases only the

|∆m| = 1 transitions are allowed. If the radial field points somewhere between the x and
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|∆m| = 0 |∆m| = 1 |∆m| = 2

θ

φ

Figure 7.10: Quadrupole transition probabilities as a function of the angle between the
magnetic field and the laser propagation direction, θ and its polarisation, φ (linear polari-
sation). These are plotted directly from equations 7.2. The white regions give the highest
excitation probability.

y directions then we will be somewhere on a line from the bottom right to the top left of

each of the plots in figure 7.10 and so it is possible all transitions are allowed.

In plot (a) of figure 7.6 it is estimated that Bz ≈ 3Br. The magnetic field direction

should be close to being along z and so the |∆m| = 2 transitions should be strongly favored.

So it is possible that when Bz is low we are observing the |∆m| = 0, 1 and 2 transitions

while when it is high we only see the |∆m| = 2 transitions. There is evidence for this

if we look at the spread of the structure over the different scans. It stays at ≈ 60 MHz.

This wouldn’t be expected if it was the same transitions being observed, they would be

expected to spread out as B is increased (see figure 7.7). The frequencies of the |∆m| = 0,

1 and 2 transitions are spread over 3.36 MHz/gauss. The spread of just the |∆m| = 2

transitions is 1.12 MHz/gauss. If we assume that we are observing all the |∆m| = 0,

1 and 2 transitions when Bz ≈ 0 and a previous calibration of the current through the

coils of the electromagnet to the field of 0.53 gauss/mAmp (using a Hall probe) is valid

at these low fields then B increases from 10 to 30 gauss over the scans. The spread of the

|∆m| = 0, 1 and 2 transitions equals the spread of the |∆m| = 2 transitions at the higher

field and the structure’s width should stay constant as observed.

It is difficult to see individual transitions in the spectra taken. A possible reason

for this is that the transitions are being Doppler broadened to approximately 10 MHz.

This would correspond to an ion temperature of ≈ 47 mK. This compares to a Doppler

limit temperature of 0.35 mK. The uncompensated micromotion described earlier could

be a cause of this spectral broadening. The maximum velocity during the micromotion

oscillation is given by the amplitude of the micromotion multiplied by the oscillation
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Figure 7.11: A detailed scan of the mJ = 1
2 → −3

2 and mJ = −1
2 → −5

2 transitions. The
729 nm frequency is scanned in 1 MHz steps. 400 pulse sequences were conducted at each
frequency and the 729 nm pulse was 10 ms. A filter was placed in the 854 nm beam to
reduce light scattering into the 1st order of the AOM when its RF was turned off. It is
noted that the maximum probability of excitation to the D 5

2
state is ≈ 1

4 as expected.

frequency (assumed to be the frequency of the applied trapping voltage). This velocity

can be estimated by the size of the spectral feature seen to be ≈ 15 ms−1 and hence

the micromotion amplitude can be found (≈ 2 µm). The micromotion amplitude can be

linked to the ion’s distance from the centre of the pseudopotential by equation 2.26. This

suggests that the ion is ≈ 0.01 mm from the trap centre. This is a very small distance

and so could easily explain the spread of the spectral feature seen.

The fact that the structure moving towards the right is larger than the one moving

towards the left is attributed to the lower 729 nm power at those AOM frequencies (as

shown in figure 7.4). It is seen that the size of the two structures become more even as

the magnetic field is decreased to bring them closer. Here there is a smaller differential in

the 729 nm laser power.

It is noted that the probability of exciting the ion into the D 5
2
state never reaches

the 25% expected. Another scan was taken which does reach this value (figure 7.11).

Two changes were made for this new scan. Firstly the 729 nm pulse time was increased

to 10 ms. Also it was noticed that some 854 nm light was leaking through the optical

fibre and to the ions even when the RF to its AOM was switched off. A filter (≈ 1%

transmission) was used to reduce the 854 nm power such that no light was detected when

the AOM was switched off but enough light was let through when it was switched on to

repump the ion.
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Attempts were made to see motional sidebands by stepping the 729 nm laser by a

smaller frequency (4, 10 and 20 kHz steps). No structure was seen. There are two main

factors which are expected to the increase the observed width of the individual sidebands.

Firstly the the laser linewidth and drift over the timescale of the experiment. Secondly

the magnetic field instability causing a drift of the transitions.

The linewidth of the laser addressing the S 1
2
→ D 5

2
transitions has been estimated to

be less than 1 kHz relative to the stable cavity it is locked to. It may be possible that this

cavity is drifting over the timescale of the experiment or additional noise is added as the

laser passes through a fibre on its path to the ion.

The specified magnet supply current stability at low magnetic fields would lead to a

frequency drift of ±0.5 kHz/30mins for the 729 nm transition with the largest Zeeman

shift. It was explained in § 4.4.1 that this would be a lower estimate of the magnetic

field stability. The two coils of the electromagnet are connected in parallel so a relative

resistance change between the two leads to a change in the current passing through each

coil.

The broadening of the transitions between different mJ states resulting in them over-

lapping would make seeing the motional sidebands more difficult as there is a smaller

separation between any two sidebands. It was explained that this broadening could be

due to a combination of the high thermal state of the ion and it undergoing micromotion

as it is in an uncompensated trap. Figure 7.12 shows the five S 1
2
→ D 5

2
transitions with a

positive Zeeman shift. They are shown at a magnetic field of the order of that used in ob-

taining the spectra in this chapter (10 gauss). A purely thermal broadening is shown. The

ion temperature is chosen as 30 mK to demonstrate the overlap of the separate transitions.

Figure 7.13 shows a single transition at 0 K which is then broadened by micromotion.

The ion’s motion causes a frequency modulation of the laser and results in sidebands

separated by the micromotion frequency. The micromotion frequency is equal to the

estimated trap frequency of 100 kHz. At a high modulation index (high amplitude of the

ion’s motion) there are a lot of sidebands present and there are peaks corresponding to

the maximum velocity of the ion during its motion. The laser and transition linewidths

and jitter are assumed to be much smaller (on the timescale of the experiment) than the

trap frequency such that the sidebands are easily resolved.

Figure 7.14 shows what a spectrum at a lower temperature and with no micromotion

present would look like. The temperature chosen is 0.34 mK which is the theoretical

Doppler limit using the S 1
2
→ P 1

2
transition for Doppler cooling. There are now less side-

bands present and it would be conceivable to take a spectra resolving the whole structure.

It should then be possible to find and address the first red sideband to try and perform
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Figure 7.12: The five S 1
2
→ D 5

2
transitions which have a positive frequency shift as the

magnetic field is increased. The ∆m = 0, 1 and 2 transitions are shown in red, blue
and black respectively (following figure 7.7). A Gaussian spread of each transition due to
an ion temperature of 30 mK is shown. The Zeeman shift of the transitions is due to a
magnetic field of 10 gauss.
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Figure 7.13: An example of the spread of an electronic transition due to micromotion.
The amplitude of the motion has been chosen to produce an approximate 10 MHz spread
of the single transition (originally at the origin of the x-axis). Sidebands are seen spaced
at the trap frequency (0.1 MHz here). At high modulation amplitudes (as is the case here)
peaks are observed at the maximum frequency shift.
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Figure 7.14: A simulated spectrum of a single S 1
2
→ D 5

2
transition. The laser and transi-

tion linewidths and jitter over the timescale of recording the spectrum are assumed to be
much smaller than the trap frequency (100 kHz). The temperature of the ion is 0.34 mK.
This corresponds to the Doppler limit temperature at this trap frequency. The envelope of
sidebands is a Gaussian function. At lower temperatures the sideband amplitudes deviate
from this and the associated Legendre polynomials of equation 3.17 are required.

sideband cooling as described in § 3.3.

To be able to perform sideband cooling, the sidebands must be well resolved and the ion

must be at a low initial temperature. An ideal first step would be to see some sideband

structure. Changes can then be made to the experiment and the factor limiting the

resolution can be quickly found by observing the spectra obtained. To have the best chance

of seeing some structure for the first time, as high a trap frequency as possible should be

used to increase the sideband separation. Using a superconducting magnet at 2.5 tesla

(available in the laboratory) motional frequencies in a Penning trap of approximately

800 kHz can be obtained. The superconducting magnet will have a more stable field

and will shield from external magnetic fields. The different S 1
2
→ D 5

2
transitions will be

separated by of the order of 10 GHz and so will not be overlapped. There will also be no

micromotion present.
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Chapter 8
Conclusions and Future Outlook

8.1 Conclusion

In this thesis experiments using single 40Ca+ ions in a Penning trap have been described.

The experiments have been geared towards achieving sideband cooling in a Penning trap

for the first time.

First the observation of magnetic field induced quantum jumps was described. This

observation was explained by the ion being shelved in the D 5
2
state which was not be-

ing repumped. This electric-dipole forbidden transition becomes weakly allowed due to

magnetic field induced mixing of states with the same S, L and mJ but with different J

quantum numbers. The ion’s eigenstates as a function of magnetic field were calculated

and the rate of shelving in the D 5
2
state as a function of magnetic field was found. The

experimentally observed shelving rate was shown to agree well with the calculated rate.

The magnetic field induced J-mixing causes complications in using the S 1
2
→ D 5

2

quadrupole transition for coherent manipulation. It leads to a degradation in the readout

fidelity which is at a tolerable level for a 40Ca+ ion at 1 tesla. It also makes repumping

from theD 5
2
state crucial for efficient Doppler cooling in a Penning trap at 1 tesla. Without

repumping this state the ion is dark the majority of the time and so is not being cooled.

The ion must be repumped out of all six mJ sub-levels of the D 5
2
state. A scheme to

achieve this using a single 854 nm diode laser and a high bandwidth fibre EOM was

described. A quantum-jump free signal (where jump lengths > 1 ms are detected) is seen

at 1 tesla for the first time using this scheme.

The successful repumping of the D 5
2
state was a necessity before pulsed spectroscopy of

the S 1
2
→ D 5

2
transition could be performed even in a Paul trap. Without this repumping

a time delay much greater than the ≈ 1 s lifetime of the D 5
2
state would be required
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between each interrogation of the transition resulting in an unrealistically long experiment.

Preliminary results of pulsed spectroscopy on the S 1
2
→ D 5

2
quadrupole transition in a

Paul trap have been presented. The same method developed to pulse the lasers and detect

the state of the ion can be used in future experiments in the Penning trap.

As well as these specific experiments, improvements to the experimental setup have

been described in this thesis. This includes the use of photoionisation loading using a

pulsed, frequency-doubled YAG laser. This method has many advantages over the previous

method of electron bombardment. It is more efficient so a lower calcium oven temperature

can be used which results in a lower pressure at the trap and less coating of the trap

electrodes. There is also less charging up of the resistive materials around the trap due

to the electron beam. The charged material can modify the trap potential which the ion

sees. Also there are now less restrictions on future trap geometries as no longer must a

filament be included which would require a clear line of sight along the magnetic field

direction to the trap centre. This method of photoionisation does not currently appear

in the literature and so this will be reported when results of pulsed spectroscopy in the

Penning trap are published.

A great simplification to the experimental apparatus required to laser cool a 40Ca+

ion in a Penning trap is the reduction of the number of lasers required to repump from

the D 3
2
state from four to one. Sidebands were put on this single laser using a fibre EOM

with two RF frequencies applied to it. The stability of the RF frequencies applied to the

EOM is much better than the ≈ 20 MHz transition linewidth and so does not need to be

optimised from day to day. A single laser frequency therefore only needs to be set.

The method used to measure the wavelengths of the lasers has been improved. Now

a ≈ 60 m fibre link to another group’s laboratory enables the use of their commercial

wavemeter. This wavemeter is set up to read multiple wavelengths simultaneously, it also

requires less light than our previous wavemeter. This results in the ability to send some

of the laser light to the wavemeter so that the laser wavelengths can be read while the ion

is cooled and experiments are performed.

8.2 Future Outlook

The next logical step is to perform pulsed spectroscopy on the S 1
2
→ D 5

2
quadrupole

transition in 40Ca+ in a Penning trap.

As well as the electromagnet used in the experiments described in this thesis the

group has a superconducting magnet. The stability of the magnetic field produced by

the superconducting magnet should be at least an order of magnitude better than that

provided by the electromagnet. A higher stability results in a greater chance of resolving
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the sidebands which are separated by the trap frequency. It will also reduce decoherence

when coherently addressing the transition. The field that the superconducting magnet

can produce is also higher (2.5 tesla compared to 1 tesla). A higher magnetic field leads to

higher trap frequencies and hence a larger frequency separation between the carrier and

sideband transitions. This means the sidebands are more easily resolved. This also reduces

the amplitude of off-resonant transitions at the carrier and blue sidebands when the laser

is resonant with the first red sideband during sideband cooling. It has been shown (§ 3.3)

that this leads to a faster cooling rate and a lower final temperature. The amount of

energy removed per sideband cooling cycle is proportional to the trap frequency. This also

helps to increase the sideband cooling rate. The ion is also further into the Lamb-Dicke

regime after Doppler cooling. Being in this regime is a requirement for sideband cooling

and so it is more likely it will be effective.

A trap which fits inside the superconducting magnet has been developed by another

student (see reference [84]) and clouds of ions have been trapped and Doppler cooled at

1.75 tesla. This trap will be modified to effectively trap and image single ions.

It has been discussed that to perform conventional sideband cooling the ion needs to

be in the Lamb-Dicke regime. In this regime the ion usually does not change its phonon

number when it spontaneously emits. This regime requires that both the Lamb-Dicke

factor (which depends on the trap frequency and wavelength of light) and the average

phonon number are small. It is important to achieve an average phonon number close to

the Doppler cooling limit. It was observed that the linewidth of the Doppler cooling lasers

used is comparable to the linewidth of the Doppler cooling transition. A reduction in the

laser linewidth should help to reach a lower ion temperature prior to applying sideband

cooling. A PDH lock to a cavity for each 397 nm laser should reduce the laser linewidth

and help to reach the Doppler limit. The higher trap frequencies in the superconducting

magnet trap will also lead to a lower phonon number at the Doppler cooling limit. Unlike

the traps described in this thesis the superconducting magnet trap will have an axial

cooling beam so the axial motion can be effectively cooled.

It has been stated that to achieve a pulsed spectroscopy spectrum of the S 1
2
→D 5

2
tran-

sition with the best possible resolution of the sidebands as stable a magnetic field as pos-

sible is required. The stability over the timescale which the pulsed spectroscopy takes to

complete is important. This time can be reduced by increasing the 729 nm light intensity

at the ion resulting in a higher Rabi frequency. One option is to use a tapered amplifier

which is now available at this wavelength to increase the amount of 729 nm light available.

Another option is to use a master-slave arrangement. Here two diode lasers are used. The

first is an ECDL setup whose light is locked to an external stable cavity using the same
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PDH lock described in this thesis. This light is then used as the seed light of the second

diode. All of the light from this second diode can be used for the experiment (rather than

for feedback, for locking etc) and so more light is available and higher Rabi frequencies

can be achieved.

It was discussed that a possible use of sideband cooled 40Ca+ ions in a Penning trap

could be the manipulation of zigzag crystals. In previous experiments at 1 tesla it was

found that two ions were the maximum number that could be lined up along the magnetic

field direction [6]. The minimum number of ions required to create a zigzag crystal is

three. Using a higher trapping magnetic field to create a larger radial trapping force could

be the answer in achieving a three ion crystal. To align ions along the magnetic field the

axial potential must be reduced below a critical fraction of the radial potential. The more

ions along the trap axis, the smaller the trap depth at the outer ions of the crystal. A

higher magnetic field leads to a larger possible axial trap depth and so the ions are less

likely to be lost.

If the ion’s sideband spectrum is observed and sideband cooling is successful then

heating and decoherence rates can be accurately measured in a Penning trap. Attempts

will then be made to trap and cool a 3-ion crystal along the trap axis and manipulate it.
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Appendix A
Details of the P1

2
→ D5

2
Transition Rate

Calculation

This appendix contains some equations relating to the calculation of the P 1
2
→ D 5

2
transi-

tion rate caused by the J-mixing effect. See § 5.2 for the rest of the calculation and further

explanation.

The equations here relate to the calculation of n−1 defined in equation 5.21. They

follow from equation 5.25. The mixed states defined by the coefficients of equation 5.15

are first substituted in. This is shown for the P1+ 1
2
→ D2mJ

term as the first part of

equation A.2. The coefficients are combinations of normalisation and mixing coefficients

and are defined in equation A.1.

a
mJ ,m

′

J
= N2,mJ

N
1,m

′

J
M

1,m
′

J

b
mJ ,m

′

J
= N2,mJ

M2,mJ
N

1,m
′

J

c
mJ ,m

′

J
= N2,mJ

M2,mJ
N

1,m
′

J
M

1,m
′

J

dmJ
= N1,mJ

M1,mJ

emJ
= N1,mJ

(A.1)

The Wigner-Eckart theorem (equation 5.26) is then applied. The second part of

equation A.2 shows this for the P1+ 1
2
→ D2mJ

term. Using the same method for the

P1− 1
2
→ D2mJ

term we can obtain equation A.3. Similarly for the P1+ 1
2
→ SmJ

and

P1− 1
2
→ SmJ

terms we obtain equations A.4 and A.5 respectively.

The full solution for n−1 as a function of applied magnetic field is shown in figure 5.8.
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Appendix B
Analytical Expressions for the RF powers

required on the fibre EOM

In § 6.2 the results of a numerical calculation to find the required RF powers to put on

the EOM to create light at the required frequencies were presented. An expression was

written for the electric field of the laser after it has passed through the EOM as a function

of the amplitude of the two RF signals and the phase between them (equation 6.5). This

was sampled and the Fourier transform taken. Finding the modulus squared of this gives

the resulting light spectrum.

It was mentioned that this calculation could be performed analytically by expanding

the phase modulation due to both RF signals in terms of Bessel functions. The significant

terms in the electric field are

EνL = E0e
2πiνLtJ0 (α) J0 (β)

EνL±νa = ±E0e
2πi(νL±νa)t

[

J1 (α) J0 (β) + J2 (α) J1 (β) e
±iφ

]

EνL±2νa = E0e
2πi(νL±2νa)t

[

J2 (α) J0 (β)− J1 (α) J1 (β) e
±iφ

]

EνL±3νa = ±E0e
2πi(νL±3νa)t

[

J3 (α) J0 (β) + J0 (α) J1 (β) e
±iφ

]

EνL±4νa = E0e
2πi(νL±4νa)te±iφ

[

J1 (α) J1 (β) + J2 (α) J2 (β) e
±iφ

]

, (B.1)

where the symbols have the same meanings as in chapter 6.

Taking the modulus squared of theses expressions gives the intensity at each sideband.
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They are

IνL = |E0|2 |J0 (α) J0 (β)|2

IνL±νa = |E0|2
∣

∣

∣
J1 (α) J0 (β) + J2 (α) J1 (β) e

±iφ
∣

∣

∣

2

IνL±2νa = |E0|2
∣

∣

∣
J2 (α) J0 (β)− J1 (α) J1 (β) e

±iφ
∣

∣

∣

2

IνL±3νa = |E0|2
∣

∣

∣
J3 (α) J0 (β) + J0 (α) J1 (β) e

±iφ
∣

∣

∣

2

IνL±4νa = |E0|2
∣

∣

∣
J1 (α) J1 (β) + J2 (α) J2 (β) e

±iφ
∣

∣

∣

2
. (B.2)

In the current experiment the two RF frequencies originate from different sources and so

the phase will be scrambled. In this case we square the individual terms and then add to

obtain the resulting intensity. We find

IνL = |E0|2 |J0 (α) J0 (β)|2

IνL±νa = |E0|2
[

|J1 (α) J0 (β)|2 + |J2 (α) J1 (β)|2
]

IνL±2νa = |E0|2
[

|J2 (α) J0 (β)|2 + |J1 (α) J1 (β)|2
]

IνL±3νa = |E0|2
[

|J3 (α) J0 (β)|2 + |J0 (α) J1 (β)|2
]

IνL±4νa = |E0|2
[

|J1 (α) J1 (β)|2 + |J2 (α) J2 (β)|2
]

. (B.3)

Optimising these expressions for a required set of sidebands we obtain within the compu-

tational error the plots of figure 6.4 and 6.5.
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