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Abstract

This thesis presents novel designs of ion traps for different applications. The

first part introduces the topic of ion traps to clarify the local context of this

work. In the second part, the proposal of a novel design for a Penning ion

trap is presented. It is shown that this trap, called the wire trap, has many

advantages over traditional designs due to its open geometry and scalability1.

In the third part of this work, the development of two scalable RF wire traps

is presented. Both designs are based on the geometry of the wire Penning

trap and they share the open geometry and the scalability. In the fourth

part, the design, computer simulation, construction and testing of a wire

trap prototype is presented. This section ends with an explanation of the

future experiments that will be carried out with such a prototype. In the

fifth section, another novel design for a planar Penning trap is presented and

discussed in the text. This design, called the two plate trap, shares many

advantages of the wire traps, including the scalability2. The sixth section of

this work deals with the design of a cylindrical Penning trap for the storage

of highly charged ions3. Finally, in the last section, a summary of the original

contributions of this work is presented.

These studies were supported by CONACyT, SEP and the ORS Awards

Scheme.

1published article: Physical Review A, 72 013405 (2005).
2published article: Journal of Modern Optics, in press (2006).
3published article: Nuclear Instrument and Methods in Physics Research B, 235 201

(2005).
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1 Introduction

Ion traps are remarkable devices because they create conditions where charged

particles can be stored in an isolated environment. They have been widely

used since their discovery in the middle of the last century, [1]. As a con-

sequence, high precision measurements in many fields of physics have been

developed using ion traps as their main component. Typical applications

of ion traps include studies on high accuracy clocks [2], quantum chaos [3],

spectroscopy [4] and lifetime studies. These studies are possible because the

high quality environment created by ion traps allows studies with even a

single ion for long periods of time.

The basic principles of ion traps are very simple; the motion of a charged

particle is confined by electric and magnetic fields. Ion traps cannot be

constructed just with purely electrostatic fields because an electrostatic field

with minima in three dimensions cannot be constructed; this is easily proved

using Maxwell’s equations. Therefore, the trapping conditions of ion traps

result from a mix of electric and magnetic fields or by the combination of

static and dynamic electric fields. Ion traps that use magnetostatic and

electrostatic fields are commonly called Penning traps. On the other hand,

ion traps that run with static and dynamic electric fields are usually called

Paul or radio frequency (RF) traps. Traditionally, both traps have a three-

electrode setup consisting of a ring electrode and two end-cap electrodes; the

shape of these electrodes is shown on Fig 1.1.

This particular shape was chosen because it is able to produce precise

quadratic potentials radially and axially. A good quadratic potential implies

high-precision harmonic motion of ions and thus well defined frequencies.

Penning and Paul traps use an electrostatic potential across the ring-endcap

arrangement in order to confine ions axially, but they differ in the way the

radial confinement is produced. The Penning trap utilizes a magnetic field

along the z direction to produce the final confinement. On the other hand, in

Paul traps a RF voltage is applied between the endcaps and the ring electrode

[5]. This RF component, combined with the electrostatic potential, produces

axial and radial trapping conditions in the Paul trap and consequently Paul
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Figure 1.1: Three-electrode configuration in Penning and Paul traps

traps are also called RF traps. Penning and Paul traps are explained in detail

in the next subsections.

1.1 Penning traps

Nowadays, all ion traps with an axial magnetic field are called Penning traps

[5]. As mentioned before, in these traps, the magnetic field provides the radial

confinement while an electrostatic field produces the axial trapping potential.

Often, Penning traps have a configuration like the one shown in Fig. 1.1. In

order to achieve trapping conditions, the ring is kept at a potential U0 with

respect to the endcap electrodes producing an electrostatic potential of the

form:

φ(r, z) =
U0

R0
2 (r2 − 2z2) (1.1.1)

where R2
0 = r2

0 + 2z2
0 , r0 is the inner radius of the ring electrode and 2z0 is

the distance between endcaps. The potential U0 must be negative to trap

positively charged particles (U0 < 0). For negative ions the polarity of the

voltage is the opposite (U0 > 0). Fig 1.2 shows the electrostatic potential

described by Eq. 1.1.1 for normalized coefficients (U0 = −1 volts and R0 = 1

mm) and for U0 negative. From the curvature of this function, it is possible

to see that the potential in the plane φz is attractive, whereas in the plane
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Figure 1.2: Three-dimensional electrostatic potential in a Penning trap.

φr it is repulsive. The axial magnetic field in these traps is added to balance

the motion in the radial plane. As a result, the charged particles are then

forced to move in orbits around the direction of the field compensating the

electric force. In detail, the trajectories of ions inside a Penning trap can be

calculated by considering the Lorentz force which describes the movement of

a charged particle under the influence of magnetic and electric fields. This

force is given by

~F = q( ~E + ~v× ~B) (1.1.2)

where q is the charge of the particle, ~v is the velocity, ~E is the electric field

and ~B is the magnetic field. In our case, the components of the electric field

can be calculated from Eq. 1.1.1, as E = −∇φ. These components are:

Ex = −∂φ(x, y, z)

∂x
= −2U0

R2
0

x (1.1.3)

Ey = −∂φ(x, y, z)

∂y
= −2U0

R2
0

y (1.1.4)

Ez = −∂φ(x, y, z)

∂z
=

4U0

R2
0

z (1.1.5)
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At this point it is important to notice that this electric field (or any other)

must obey the Maxwell relationship ∇·E = 0. This fact will be useful in the

following sections when calculating and verifying electric potentials for new

configurations of ion traps.

Continuing with the expansion of the equation of motion, as the magnetic

field is axially orientated, the components of the term ~v× ~B are:

~v× ~B · x̂ = B
∂y

∂t
(1.1.6)

~v× ~B · ŷ = −B
∂x

∂t
(1.1.7)

~v× ~B · ẑ = 0 (1.1.8)

As a result, combining these equations, the components of the Lorentz

equation are:

∂2x

∂t2
=

qB

m

∂y

∂t
− 2qU0

mR2
0

x (1.1.9)

∂2y

∂t2
= −qB

m

∂x

∂t
− 2qU0

mR2
0

y (1.1.10)

∂2z

∂t2
=

4qU0

mR2
0

z (1.1.11)

where the axial motion is uncoupled and can be recognized as a harmonic

oscillator when U0 < 0 and q > 0. The frequency associated with this

harmonic motion is called the axial frequency and is given by

ωz =

√
4qU0

mR0
2 (1.1.12)

In contrast to the axial case, the motion in the plane xy is not equally

simple because it is dependent on both the electric and the magnetic field.

A simplified form of these equations is obtained by neglecting the effect of
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the electric field. This leaves Eq. 1.1.2 as

~F · r̂ = mac = qBv

where ac is the centripetal acceleration. Fig 1.3 schematically shows this mo-

tion: a charged particle under the influence of a magnetic field perpendicular

to its direction of motion. As the magnitude of this acceleration is given by

a = v2/r, it follows that
v

r
=

qB

m
.

where the right part of the equation is the angular frequency of the particle

defined as

ωc =
qB

m

where ωc is the called the cyclotron frequency.

Figure 1.3: Circular motion (cyclotron motion) of a charged particle under
the influence of a magnetic field. The dots indicate the magnetic field is
directed out the page.

Combining this result with Eqns. 1.1.9, 1.1.10 and 2.1.9, the equations

of motion for the x and the y directions can be rewritten as

ẍ = ωcẏ +
ω2

zx

2
(1.1.13)

ÿ = −ωcẋ +
ω2

zy

2
(1.1.14)

z̈ = −ω2
zz (1.1.15)
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With this new notation, it now easy to obtain the solution for the radial

motion. For this purpose Eqns. 1.1.13 and 1.1.14 are then combined to

obtain the following equation

ü = −iωcu̇ +
1

2
ω2

zu (1.1.16)

where u = x + iy. The well known solution for this differential equation is

u = e−iωt which gives the two following characteristic frequencies. The first

is

ω′c =
ωc +

√
ω2

c − 2ω2
z

2
(1.1.17)

which is called the modified cyclotron frequency. On the other hand, the

second frequency is

ωm =
ωc −

√
ω2

c − 2ω2
z

2
(1.1.18)

and it is called the magnetron frequency. A very important fact that results

from Eqns. 1.1.17 and 1.1.18 is the condition of the trap stability ω2
c > 2ω2

z ,

which implies that not all the combinations of trap parameters produce a

stable trap. The cyclotron frequency is always larger than the magnetron

frequency and in normal operating conditions ω′c ≈ ωc À ωz À ωm [5]. The

full motion in a Penning trap is given by the superposition of the components

of these motions. An example of the motion inside a Penning trap is given

in Fig. 1.4 for a singly ionized ion with a mass of 100 amu, see details in the

caption.

Through these results, it is shown that the Penning trap can confine ions

effectively. Many experiments have been carried out with Penning traps. As

an example, at Imperial College, calcium, nitrogen and Magnesium ions are

commonly trapped in a hyperbolic Penning trap [6], [7] and [8].

Although the Penning trap is widely used, it is not the only type of trap

that has been successfully developed. The radiofrequency trap is another

successful trap that has different properties and qualities.
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Figure 1.4: Simulation of the trajectory of a singly charged ion inside a
Penning trap. Here, U0 = 8 V, B= 5.87 T and m=100 amu and ω+ = 898
kHz, ω− = 3.4 kHz and ωz = 78 kHz, see [5]

1.2 Paul or radiofrequency traps

Paul or Radio Frequency (RF) traps utilize an AC electric potential combined

with an electrostatic potential to confine charged particles. As the potential

varies with time, ions feel a trapping and a repelling potential alternately.

These traps are able to confine ions because on average, the electrodynamic

potential generates a three dimensional pseudo-potential minimum. In the

following sections the two most common designs for RF traps are presented:

the hyperbolic and the linear RF traps.

1.2.1 Hyperbolic RF traps

Commonly, RF traps share with Penning traps the hyperbolic electrode ge-

ometry presented in Fig. 1.1. This is because this configuration is able to

generate the precise spatial quadrupole potential described by Eq. 1.1.1. In

fact, the electric potential in a hyperbolic RF trap has the same general form

as in a Penning trap, the only difference is that an AC component has been

incorporated into it, this is

φ(r, z) =
U0 − V cos Ωt

R0
2 (r2 − 2z2) (1.2.1)
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where V is the amplitude and Ω the angular frequency of the AC signal.

Following the same procedure as in the previous section, it is possible to the-

oretically determine the equation of motion of an ion through the use of the

Lorentz force. As in this case there is no magnetic field, the Lorentz equation

has only the term that corresponds to the electric field. Consequently, the

equations of motion of the ion are

r̈ = − 2q

mR2
0

(U0 − V cos Ωt)r (1.2.2)

and

z̈ = +
4q

mR2
0

(U0 − V cos Ωt)z (1.2.3)

which can be recognized as Mathieu differential equations [5] which can be

written in their canonical form1 as

∂2r

∂ζ2
+ (a′r − 2q′r cos 2ζ)r = 0 (1.2.4)

and
∂2z

∂ζ2
+ (a′z − 2q′z cos 2ζ)z = 0 (1.2.5)

where a′z = −2a′r = − 16qU0

mR2
0Ω2 , q′z = −2q′r = 8qV

mR2
0Ω2 and ζ = Ωt

2
.

Depending on the values q′ and a′, Mathieu equations have stable or

unstable solutions, [5]. Stable solutions correspond to bounded functions

and consequently they describe confined ion trajectories (a trapped ion).

Recursion algorithms are often used to calculate the stability diagram of

Mathieu equations in terms of the values q′ and a′. As an example of this,

Fig. 1.5 presents the stability diagram for the axial motion; these results

were obtained with a Sträng’s algorithm [9].

In an RF ion trap, the three dimensional confinement is achieved when

simultaneously the axial and the radial parameters produce stable motions.

An example of a three dimensional stability diagram is presented in Fig. 1.6,

1In the canonical form, Mathieu equations are usually presented with variables a and
q. However, in this work, to avoid confusion with the charge q, Mathieu equations are
presented with dashed letters (a′ and q′).
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Figure 1.5: Stability diagram for the canonical Mathieu equation (axial mo-
tion). The stable region is presented in colour, the un-stable in white.

in this figure, the stability diagrams of the axial and the radial case have

been superimposed.

In fact, as the stability regions depend on the parameters a′z, q′z, a′r and

q′r, and these on the mass of the ion, RF traps can be mass-selective because

only one ion species will produce a stable motion. This phenomenon is often

very useful when running an ion trap as undesired species are not trapped.

Although the ion motion inside a RF ion trap is described by the stable

solutions of Eqns. 1.2.4 and 1.2.5, a simple approximation can be made in

order to extract some information about the ion motion inside the trap [10].

Axially, the force due to the dynamic electric potential is given by

F = m
∂2z

∂t2
=

V cos Ωt

R2
0

z. (1.2.6)

If it is assumed that the motion in the axial direction follows the applied

potential and that the original position z0 is displaced an amount δ, then the

position at any time can be expressed as

z = z0 − δ cos Ωt



1.2 Paul or radiofrequency traps 24

Figure 1.6: Three dimensional stability diagram for canonical Mathieu equa-
tions. When applied to RF traps, the diagram depends on the mass of the
ion, its charge, and the applied voltages.

which implies that z̈ = Ω2δ cos Ωt. Substituting this value into Eq. 1.2.6 and

supposing small oscillations (z ≈ z0), it is possible to obtain the magnitude

of the displacement

δ =
4qz0V

mΩ2R2
0

.

Then, calculating the average force over one period of the radio frequency

(2π/Ω), the expression for the force becomes

m
∂2z0

∂t2
=

8q2V 2z0

mΩ2R2
0

which again has the form of simple harmonic oscillation with a natural fre-

quency of

ωz =
2
√

2qV

mΩR2
0

This is called the secular frequency and it is smaller than the radio frequency.

Many experiments have been carried out with Paul traps. For example,

unprecedented spectroscopic measurements on different ions have been per-
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formed using this type of ion trap. In particular, experiments with a single

Ba+ ion have been done since the early days of ion traps [5]. In addition to

this, the geometry of RF traps can be modified to present a linear scalable

design. This design is the so-called RF linear trap, which is explained in the

following subsection.

1.2.2 Linear RF traps

Linear RF traps are able to store strings of ions in a linear array. This is

possible because the linear trap provides confinement along one of the axes

(the z axis in this case, Fig. 1.7) where ions can be trapped at different

positions along it.

In a linear RF trap, the radial potential of the usual hyperbolic trap is

replaced with a two-dimensional potential given by

φ(x, y) =
U0 − V cos Ωt

R0
2 (x2 − y2) (1.2.7)

The electrode structure required to produce this potential is shown in Fig.

1.7, see [11] and [5]. Two opposite rods are connected to a RF potential(V )

meanwhile the other pair of rods is connected to an opposite potential (-V ).

Figure 1.7: Electrode structure of the linear Paul trap
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If the equation of motion is worked out as before, at the end three un-

coupled equations can be obtained. These equations are

ẍ = − 2q

mR2
0

(U0 − V cos Ωt)x (1.2.8)

ÿ = +
2q

mR2
0

(U0 − V cos Ωt)y (1.2.9)

z̈ = 0 (1.2.10)

where the first two equations, Eqns. 1.2.8 and 1.2.9, are Mathieu equations

and the last one is a simple linear ordinary differential equation [12]. It

is important to notice that the structure shown in Fig. 1.7 is not a three

dimensional trap, as the motion in the z direction is not confined. The

solution of the equation of motion for the axial direction is direct and it

shows that the charged particle follows a constant velocity along z. To solve

the motions in the x and y axis the treatment is the same as before. Using

the same substitution used for the hyperbolic RF trap, it is possible to obtain

the following relationships

d2x

dζ2
+ (a′ − 2q′ cos 2ζ)x = 0

and
d2y

dζ2
− (a′ − 2q′ cos 2ζ)y = 0

where, again, a′ = 8qU0

mR2
0Ω2 , q′ = 4qV

mR2
0Ω2 and ζ = Ωt

2
. As before, bounded ion

motions are given by stable solutions of both Mathieu equations; the stability

diagram is shown in Fig 1.8.

The three dimensional confinement is achieved by the addition of two

extra electrodes at both ends of the four-electrode array. These electrodes

are usually connected to DC potentials to produce an axial harmonic oscilla-

tion of the ions along the z-axis. When ions are confined in traps with such

electrodes, a string of ions can be created along the axial direction (along

the electrodes). This creates a scheme where studies of particle interactions
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Figure 1.8: Stability diagram for linear traps. The stability region for the x
motion is shown in blue and the stability region for the y motion is shown in
green. The region where both motions are stable (trapping regions) is shown
in red.

are possible. More important, this setup created the first scalable design of

traps, in the sense that a multiple array of ions were trapped simultaneously

in a trap. As a consequence, these traps have been constantly in the field of

quantum computation; this topic is further explained in Section 1.5.4. Nowa-

days linear RF traps are used in studies of electric interaction with different

ions, such as Ca+ or Mg+; see [13] for a detailed description. Usually in

such experiments, ions are stored in traps made of four cylindrical rods with

spacings of a few millimeters. Hyperbolic electrodes are often replaced by

cylindrical rods in order to improve the optical accessibility to the trapped

ions and also to facilitate the machining and construction of the trap [14].

These characteristics, the optical access and a simple design, play an im-

portant role in fields like spectroscopy and quantum computation, these two

properties are explained in detail in the following section.
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1.3 Other designs of ion traps

The recent application of ions traps in fields like spectroscopy and quantum

computation have required changes to the traditional trap geometries. Hy-

perbolic and linear ion traps are widely used in different fields of science, but

these designs have limitations. Hyperbolic traps restrict the optical access

to the trapped ions and, as a consequence, its geometry is often modified for

spectroscopy studies. These modifications include the drilling of holes into

the endcaps and the ring electrode to send and collect light during the ex-

periments. The price to pay for the extra amount of light collected, is a loss

in the harmonicity of the trapping potential as it depends on the size of the

holes. Bigger holes increase the solid angle for light collection but also imply

an imperfect quadrupole potential and a non-harmonic ion motion. Another

problem with the traditional design is that it is not scalable, a requirement

demanded by quantum computation. Linear traps with cylindrical electrodes

have to some extent overcome both problems but these traps are only scal-

able in one dimension. As a response to these limitations, other trap designs

have been developed to present a higher scalability together with an open

geometry and other capabilities. Some of these designs are presented in the

following subsections.

1.3.1 Cylindrical traps

One of the most important limitations of hyperbolic ion traps is the fact

that the optical access to the trapped ions is highly restricted by the trap

electrodes. Moreover, hyperbolic electrodes are difficult to construct and

their alignment is laborious and time consuming, [15]. Cylindrical traps were

developed, to overcome these limitations, by Gerald Gabrielse at Harvard

in 1984 [16]. The electrodes of the cylindrical trap can be connected to

DC potentials to produce a Penning trap or to RF drivers to create the

trapping conditions of a Paul trap, [16] [17]. In a cylindrical trap, both

endcaps and the ring electrode are replaced by axially aligned cylindrical

electrodes. This configuration can be modified by the addition of extra sets

of cylindrical electrodes (called compensation electrodes) to eliminate lower-
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order non-harmonic terms in the potential, [15]. A schematic view of a

cylindrical trap with an extra pair of compensation electrodes is shown in

Fig. 1.9. These traps work because an axial electric potential minimum is

generated at the centre of the ring electrode. As a result, this configuration

can create trapping conditions either by the addition of a magnetic field or

by connecting the electrodes to RF drivers.

Figure 1.9: Schematic view of a cylindrical trap. This configuration includes
two compensation electrodes to harmonize the electric potential at the centre
of the trap.

The geometry of cylindrical traps solved two important limitations of hy-

perbolic traps: these traps are easily machinable and aligned, and their design

permits the optical access to the trapped ions without further modifications.

In addition, the potential of cylindrical traps can be analytically solved but

the resulting potential is not purely quadratic, having anharmonicities rep-

resented as non-quadratic terms in the potential. However, as the expression

for the potential is analytic, the dimensions and the voltages applied to the

electrodes can be chosen to cancel out some anharmonic terms.

The electric potential generated by a Penning trap, as any other potential
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with azimuthal symmetry, can be expressed as an expansion of Legendre

polynomials as

V =
1

2
V0

∞∑
n=0

Ck

(r

d

)k

Pk(cos θ) (1.3.1)

where d is the trap parameter d2 = 1
2
(z2

0 + 1
2
r2
0), V0 is the magnitude of the

electric potential applied to the endcap electrodes with respect to the ring, r0

the inner radius of the trap, z0 the distance from the centre of the trap to the

endcap, and r and θ are the radial and angular coordinates. Furthermore, in

a perfect hyperbolic trap, all the non-quadratic terms are zero. In contrast, in

the case of cylindrical traps, all the even polynomial terms contribute to the

total potential; the odd terms are zero as the electric potential must be finite

in the centre [15]. As mentioned before, cylindrical traps can be formed with

any number of cylindrical electrodes. Consequently, each extra cylindrical

electrode contributes to the total potential. In the case of a trap with an

extra set of electrodes (as the one in Fig. 1.9), the total electric potential has

two contributions: one from the compensation electrodes and one from the

endcaps. As a consequence, V can be written as the superposition of both

potentials as

V = V0φ0 + Vcφc (1.3.2)

where the V0 is the magnitude of the electric potential applied to the endcap

electrodes with respect to the ring and Vc is the magnitude of the electric

potential applied to the compensation electrodes with respect to the ring.

As both potentials preserve the azimuthal symmetry, they are written as

φ0 =
1

2

∞∑
n=0

C
(0)
k

(r

d

)k

Pk(cos θ) (1.3.3)

and

φc =
1

2

∞∑
n=0

Dk

(r

d

)k

Pk(cos θ) (1.3.4)

Additionally, Eqns. 1.3.3, 1.3.4 and 1.3.2 can be combined to obtain the

relationship

Ck = C
(0)
k + Dk

Vc

V0

(1.3.5)
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As a result, any desired term (Ck) can be cancel out by adjusting the potential

applied to the compensation electrodes (Vc). For example, to cancel out the

first anharmonic term (C4 = 0), the potential of the compensation electrodes

has to follow the relationship

C4 = 0 ⇒ Vc

V0

= −C
(0)
4

D4

(1.3.6)

In the case of cylindrical traps, the terms (C
(0)
k and Dk) can be obtained by

simplifying Eqns. 1.3.3 and 1.3.4. These potentials can be expressed as zero

order Bessel expansions due to the cylindrical symmetry and the symmetry

under reflections across the z plane of cylindrical traps [15]. The potentials

are written as

φ0 =
1

2

∞∑
n=0

A(0)
n J0(iknr) cos(knz) (1.3.7)

and

φc =
1

2

∞∑
n=0

A(c)
n J0(iknr) cos(knz) (1.3.8)

where

kn =
(n + 1

2
)π

z0 + ze

, (1.3.9)

ze is the length of the endcaps, zc is the length of the compensation electrodes

and these equations have the boundary conditions presented in Fig. 1.10.

The coefficients of Eqns. 1.3.3 and 1.3.4, and 1.3.7 and 1.3.8, are related

by the expressions

C
(0)
k =

(−1)k/2

k!

πk−1

2k−3

(
d

z0 + ze

)k ∞∑
n=0

(2n + 1)k−1 A
(0)
n

J0(iknr0)
(1.3.10)

where

A(0)
n =

1

2
{(−1)n − sin (knz0)− sin[kn(z0 − zc)]} (1.3.11)

and for coefficients Dk

Dk =
(−1)k/2

k!

πk−1

2k−3

(
d

z0 + ze

)k ∞∑
n=0

(2n + 1)k−1 A
(c)
n

J0(iknr0)
(1.3.12)
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Figure 1.10: Boundary conditions for φ0 (a) and φc (b).

where

A(c)
n = sin (knz0)− sin[kn(z0 − zc)] (1.3.13)

By using the latter equations, any specific expansion coefficient can be cal-

culated and consequently tuned to zero to cancel out a specific anharmonic

term. Although the latter expressions are infinite sums, these coefficients

can be obtained by simple mathematical programming codes (a Maple code

is presented in the Appendix, Ref. 8.1). An example of these results is shown

in Table 1, [15].

Table 1: Expansion coefficients, Gabrielse design of 1989.

Expansion coefficients for a cylindrical trap with
r0 = 0.6 cm, z0 = 0.585 cm, zc = 0.488 cm and ze = 2.531 cm

C
(0)
2 = +0.544 D2 = 0.000 C2 = +0.544

C
(0)
4 = −0.211 D4 = −0.556 C4 = 0.000

C
(0)
6 = +0.163 D6 = +0.430 C6 = 0.000

To cancel out quartic anharmonicities: Vc = −0.3806 V0

Cylindrical traps have been successfully used in experiments where optical

access to the trapping volume is required, [18]. In addition, they are a good



1.3 Other designs of ion traps 33

alternative design to hyperbolic traps and their geometry is well suited to the

geometry of super conductor magnets. Cylindrical traps have been often used

since their proposal 20 years ago. During this time they have represented

the main alternative to hyperbolic traps, but this is now changing as new

alternatives have been proposed and operated in the last couple of years. In

the following sections, novel designs for ion traps are presented.

1.3.2 The planar Penning trap

Figure 1.11: Schematic view of the planar Penning trap.

The planar trap is a new concept for a Penning trap [19]. This design

was developed at the University of Mainz in Germany. From the point of

view of the application to quantum computation, this new concept has many

advantages over the conventional hyperbolic designs of traps. One of these

advantages is the fact that it presents an open geometry and consequently

trapped ions are easily accessible. A second advantage is that the trap itself is

very easy to construct as it consists of a planar disk electrode surrounded by

one or more planar rings. The number and the dimensions of the surrounding

electrodes can be varied to adjust the depth or the quality of the trapping

electrostatic potential. A third advantage, maybe the most important, is

that the trap design is scalable as a large number of traps can be made on

a single planar substrate. The geometry of the planar trap is shown in Fig.

1.11.
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Figure 1.12: Axial electrostatic potential for a two-electrode and a three-
electrode planar traps. Trapping conditions were chosen to trap positive
charged ions. In both cases: d1 = 5 mm, R1 = 5 mm, V1 = +5 V, d2 = 5
mm, R2 = 10 mm, V2 = −25 V and additionally for the three electrode case
d3 = 5 mm, R3 = 15 mm and V3 = −25 V.

This trap is essentially a Penning trap because the final radial confine-

ment is produced by a magnetic field perpendicular to the electrodes. When

the electrodes are connected to their respective voltage, a trapping region

above the plane of the electrodes can be produced. In this region the forces

acting on a charged particle generated by the the electrodes cancel out; the

particle feels an attractive force coming from the external ring which is com-

pensated by a repulsive force coming from the central disk. The final three

dimensional confinement is achieved by means of a magnetic field perpendic-

ular to the electrodes. The trapping conditions (sign, depth and the quality

of the potential, and the position of the trapping region) depend on the am-

plitude and sign of the voltages applied to the electrodes. Although the axial

electric potential is not a pure quadrupole, it can be expressed analytically

as

φ(z) =
n∑

i=0

φi(z) (1.3.14)

where φi represents the contribution from each individual electrode and has
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the form

φi(z) = Vi


 1√

1 + (Ri−di)2

z2

− 1√
1 +

R2
i

z2


 (1.3.15)

and

Ri+1 = Ri + di+1 (1.3.16)

where Ri is the diameter, di the thickness and Vi the voltage of the electrode

i (in this notation the central disk has a thickness and a diameter equal to

R1 = d1, R0 = 0) [19]. Two examples of the axial electrostatic potential for

different conditions are shown in Fig. 1.12. Recently, a prototype of a planar

trap was constructed at the University of Mainz. This trap was designed

to trap electrons and its setup includes an electronic detection scheme [20].

The prototype was successfully tested, and there are plans for making a

scalable setup. In addition, thinking about the construction of such a trap,

some problems emerge when the connections to the electrodes are taken into

account as they have to be connected from underneath making the scalable

construction somehow difficult. A single trap of three electrodes would need

three connections, a set of 4 would need 12 and set of n traps would need

3n. Consequently, a large number of these traps would require an even larger

number of connectors. However, the technology to control these connections

is already available [19].

Planar traps in principle provide an open configuration that allows the

construction of a two dimensional array of traps, overcoming two of the main

limitations of traditional designs of ion traps. However, this design is not the

only one to achieve these goals as at least other two proposals have been

recently put forward. One of these alternative novel proposals is called the

chip trap and is presented in the next section.

1.3.3 Chip RF trap

Linear RF and planar traps are some scalable examples among an increas-

ing list of novel ion trap designs. In particular, it is common to find RF

linear traps with a non-hyperbolic geometrical profile. In these cases the
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Figure 1.13: Schematic view of the RF Chip trap. Central electrodes are
connected to the RF signal whereas the external wires are connected to DC
potentials to generate the ion confinement.

hyperbolic-shaped electrodes have been replaced by sets of cylindrical or

rectangular rods. A recently successful variation of these traps is the chip

trap [21]. Although this trap is basically a linear RF trap, its design has been

modified in such a way that the novel configuration leads to a scalable system

where individual manipulation of ions is permitted. This novel design for a

RF trap consists of rectangular electrodes divided into different segments.

The design takes its name from the fact that the trap is built using tech-

niques that are often used in semiconductors. The trap is created from three

alternating layers of conductor material (AlGaAs) and two non-conductor

layers of substrate (GaAs). Conductive and non-conductive layers are then

etched to form electrodes, connectors and the trapping volume. A schematic

view of this trap is presented in Fig. 1.13.

The chip trap consists of three sets of four rectangular electrodes. To

produce trapping conditions, the central set of electrodes is connected to the

RF drivers and the other two sets to DC potentials. A scalable design is

straightforwardly created by adding more electrodes at the end of each trap.

As the trap contains individual electrodes, the operation of each trap is in-

dependent. The expression for the potential in this trap cannot be written

analytically, but the trap parameters were studied using computer simula-
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tions and ultimately the characterization of the trap was done empirically

[22]. A prototype of this trap was very recently built and tested with 111Cd+

ions in the University of Michigan, USA [21].

Although the optical access in this trap is restricted by the substrate,

the chip trap has many advantages over traditional designs as it can be

miniaturized and is scalable; these are two important properties for quan-

tum computation applications. In addition, the trap allows an independent

manipulation of different ions in an array of traps.

In a later section (Section 2.2), a design that shares some of the ad-

vantages of the traps described above is presented and explained. This trap

configuration is called the wire-trap and is one of the original contributions of

this thesis. In the next section, some techniques used to perform experiments

in ion traps are explained.

At this point, the basic principles of ion traps have been presented. Ion

traps are more than a scientific or a mathematical curiosity: they are used in

many fields of Physics. For example, ion traps are used to determine phys-

ical constants such as ion masses, transition frequencies and ion lifetimes.

Furthermore, as these types of systems present a clean and an isolated envi-

ronment, they provide excellent conditions for high resolution spectroscopy

studies and provide a good setup for the construction of frequency standards.

As the precision of these studies is limited by the velocity of ions, due to the

Doppler effect, some techniques have been developed to decrease the velocity

of the ions inside ion traps. In the following section these techniques are

explained.
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1.4 Cooling of trapped ions

Spectroscopic studies can be performed in ion traps with excellent resolu-

tion. This is because ion traps provide isolated environments where ions are

confined and can be slowed down. As the frequency associated with a quan-

tum transition is modified by Doppler effects, the best spectroscopic results

are achieved when ions are cooled. In fact, spectroscopic measurements of

narrow transitions in cooled trapped ions are currently being proposed as fre-

quency standards due to their resolution [1]. In the following sections some

mechanisms to cool ions inside traps are presented.

1.4.1 Laser cooling

The initial kinetic energy of trapped ions depends on the way they were

created. If ions were created by, for example, atomic evaporation and electron

bombardment in a trap with a trap bias of a few volts, their initial kinetic

energy is in the region of a few electronvolts. Assuming thermal equilibrium,

the temperature (T) of any particle, e.g. a trapped ion, can be estimated

by kBT ∼ K, where kB is the Boltzmann constant and K is the kinetic

energy. From this relationship, given the mentioned initial kinetic energy, the

temperature of the ions reaches more than thousands of Kelvin. In practice,

trapped ions must be slowed down to perform high resolution experiments. In

addition, slow ions can be confined easier and for longer times because their

amplitude of oscillation is small. One common method to cool ions is laser

cooling. This technique is often used to cooled down the ions in spectroscopy

measurements to produce results at a very high resolution. The first laser

cooling experiments in Penning traps were carried by Wineland and in RF

traps by Dehmelt, both in 1978 [23] and [24].

The laser cooling technique works because of the transference of momen-

tum between light (a laser beam) and neutral atoms or ions. In this process,

an atomic transition is excited by a photon and depending on the direction

of the ion with respect to the photon, this effect can slow down or speed up

the ion. If the ion is moving towards the photon, the ion will be effectively

slowed down. However, if they are moving in the same direction, the effect is
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the contrary. The ion stays in the same state until the photon is released. If

the photon is re-emitted by stimulated emission, the emission will maintain

the same direction as the laser beam and consequently no change in will be

observed. On the other hand, if the photon re-emission occurs through spon-

taneous emission, the photon will be emitted in a random direction and on

average (after the absorption/emission process is done many times) the mo-

tional state of the ion is changed. The average force due to the spontaneous

emission is also known as scattering force.

Figure 1.14: Schematic view of the laser cooling process. The horizontal
velocity is effectively reduced only if spontaneous emission occurs.

A way to only slow down the ions is by Doppler cooling. The absorption

of photons only takes place when a transition is excited by the right light

frequency. If a laser is tuned to the frequency to excite an atom moving

towards the laser beam, it will be at the wrong frequency to excite an ion

moving in the opposite direction because the transition levels are modified

by Doppler effects. This is useful because a “red detuned” laser (detuned

to lower frequencies) just affects particles moving towards the light. As a

consequence, a red detuned laser only slows down. Laser Doppler cooling is

a dynamic process as a change on the velocity changes the effective transition

frequency, and a change of the laser frequency must be made to continue the

cooling process as the amount of the Doppler shift depends on the speed.

Each photon that is absorbed and emitted removes a small quantity of energy,

equivalent to the energy due to the detuning of the laser. This energy is h̄δ,
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where h̄ is the Planck constant divided by 2π and δ is the detuning from

resonance. The minimal temperature reached by the laser cooling is achieved

when the scattering force compensates the dissipation [1]. Practically the

optimum detuning is in the middle of the linewidth (δ ≈ γ/2), see [6]. At

the minimal temperature point

K = kBT =
1

2
h̄γ

This gives the equation for the limiting temperature given by

Tmin =
h̄γ

2kB

which is called the Doppler limit. For ions like Mg+ or Ca+, γ is typically

around 108 Hz, which allows temperatures of the order of 1 mK, see [1] and

[6].

Laser cooling technique is not compatible with all the atomic species.

This technique is only suitable for a few elements with the right transition

structure and with a fast transition rate for fast cooling. A suitable structure

for laser cooling can contain metastable states, but extra lasers must be used

to pump these transitions until the system is sent back to the cooling cycle.

In practice, this condition is very hard to achieve because the transition of

each metastable level must be in the region where lasers are available. An

example of an atomic structure that is commonly used in laser cooling is

the structure of 40Ca+ in Fig. 1.15. This ion has a strongly allowed dipole

transition (S1/2 → P1/2) in the blue part of the visible spectrum. However,

the excited state (P1/2) can decay into an intermediate state, the D3/2, as

Fig. 1.15 shows. If the D3/2 is populated then the laser cooling effect is

switched off. To solve the problem an extra laser at 866 nm must be used to

depopulate the state. In this particular experiment, both wavelengths (397

nm and 866 nm) can be obtained using diode lasers. The main cooling effect

is given by the transition S1/2 → P1/2 because its rate (≈ 20 MHz) is around

20 times larger than the rate of the transition P1/2 → D3/2 (≈ 2 MHz).
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Figure 1.15: Example of energy levels, this case corresponds to 40Ca+, with-
out the presence of a magnetic field (RF traps).

1.4.2 Sympathetic cooling

A cooling process that can be applied when two ion species are present in

a trap is sympathetic cooling [5]. It works through the application of laser

Doppler cooling to one of the ion species loaded into the trap. This technique

is useful when the ion to cool does not present the correct energy structure

necessary for the laser cooling. The cooling species is cooled by the usual

technique and then, by momentum transfer (collisions), the laser cooled ions

sympathetically cool the other ion species to their temperature. With this

process, the main limitation of the laser cooling technique is overcome. As

it was shown, laser cooling can be applied just to elements with appropriate

transition energies, but applying the sympathetic cooling an indirect momen-

tum transference can be made. In general, there are no limitations on the

application of sympathetic cooling, which implies that any ion can be cooled

by this technique. Other good characteristics of this type of cooling is that

the internal states of the ion are not excited, which allows clean spectroscopy

measurements of the trapped ion. One successful experiment involving sym-

pathetic cooling is the cooling of 198Hg+ through the laser cooling of 9Be+

in a Penning trap [25]. In this experiment, laser cooling was applied to the
9Be+ exciting the 2s2S1/2 → 2p2P3/2 transition (313 nm laser beam). Af-

ter the cooling, the 9Be+ species was cooled down to 0.2 K whereas the ion
198Hg+ was sympathetically cooled to a temperature of 1.8 K. The two ion
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species never reach the same temperature because of their centrifugal sepa-

ration. Once both ion species are trapped in a Penning trap, they move in

different orbits with different frequencies due to their difference in mass [26].

This effect produces a weak interaction between the ions and consequently

they do not achieve thermal equilibrium.

1.4.3 Resistive cooling

One other cooling process applicable to ion traps is resistive cooling [27]. This

technique works by coupling an external resistive electronic circuit to the trap

electrodes. In this case the cooling process is generated by the dissipation

Figure 1.16: Schematic diagram of the resistive cooling

of energy through a resistive element (R). In the trap, each single charged

particle (q) generates an image charge q′ on each electrode (endcaps). This

image charge has the opposite sign to q and depends on its position in the

way

q′ = −z0 ± z

2z0

q

where the ± indicates the electrode situated at +z0 or −z0 respectively. As

was demonstrated before, inside the trap, ions are oscillating axially with

frequency ωz. Then, as any charged particle in movement can be seen as an

electric current, the ion inside the trap produces a current over the external

circuit. The value of this current is given by

dq′

dt
= i = − d

dt
(
z0 ± z

2z0

q) = ∓ q

2z0

〈
dz

dt

〉

As the circuit is a closed loop, the energy will be dissipated at the rate
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i2R, this is

−dE

dt
= i2R =

q2

4z0
2

(〈
dz

dt

〉)2

(1.4.1)

where 〈dz
dt
〉 is the mean value of the axial velocity. As the ion motion inside

the trap is harmonic, the axial velocity (dz
dt

) can be written as

dz

dt
= vz cos ωzt

therefore, E = 〈m(dz
dt

)
2〉 = 1

2
mv2

z . Incorporating this result to Eq. 1.4.1, the

dissipation of energy is

−dE

dt
=

q2R

2mz0
2
E

In addition, Eqn. 1.4.3 is a linear differential equation, [12]. To estimate

the minimum temperature achieved by this method, Eq. 1.4.3 has to be

integrated over the cooling time, this is

tf∫

t0

dE

E
= −

tf∫

t0

q2R

4mz0
2
dt

where the dissipated energy is calculated from t0 (the initial time) until tf

(final time). The solution to this integral is

ln
E(tf )

E(t0)
= − q2R

4mz0
2
(tf − t0)

Applying the approximation E ≈ kBT , the last equation can be expressed as

kBT (tf ) = kBT (t0)e
− q2R

4mz0
2 (tf−t0)

or, in the simplified expression

T (tf ) = T (t0)e
− q2R

4mz0
2 (tf−t0)

where the term q2R
4mz0

2 is called the natural time constant of the cooling process

[5], T (t0) is initial temperature and T (tf ) is the final temperature.
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Figure 1.17: Typical temporal evolution of the resistive cooling

A typical curve of resistive cooling is presented on Fig. 1.17. This cooling

curve is evaluated with typical experimental values [5] for a Mg+ ion with

m = 4 × 10−26 kg, T (t0) = 10 kK, q = 1.6 × 10−19 C, with a dissipative

circuit of R = 1 MΩ, and for a trap with z0 = 1.4 mm. From this curve, it

is possible to determine that a single ion can be drastically cooled in a few

minutes. In addition, the resistive cooling is in principle applicable to any

ion and to any quantity of them.

1.4.4 Buffer gas cooling

Another widely used cooling technique is buffer gas cooling. This is a fast

cooling method which is commonly used because, like the sympathetic tech-

nique, it is independent of the type of the trapped ions to be cooled. It

works by the transference of momentum between some inert gas like Helium

or Argon and the trapped ions. Inert and light gasses are preferred to avoid

recombination processes and a fast cooling rate. When the thermal equilib-

rium is achieved, the final temperature of the ions is equal to the temperature

of the buffer gas. An effective cooling is achieved when the buffer gas is kept

at a lower temperature. In practice, the buffer gas is in temperature equilib-

rium with the trap container, usually kept at cryogenic temperatures. When

the thermal equilibrium is achieved, the velocity of the ions can be esti-
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mated using the relationship E ≈ TkB. When atoms of Helium are used, in

cryogenic environments, temperatures of 4 K can be achieved.

At this point, the general properties and capabilities of ion traps have

been presented. These attributes have made ion traps a very powerful tool

when performing experiments at high precision. There is a large number

of applications of ion traps in science and technology; most of them related

with the measurement of atomic properties. Some applications of ion traps,

maybe the most common ones, are explained in the following section.
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1.5 Applications of ion traps

Ion traps are capable of producing well isolated systems in which studies at

high resolution can be performed. These studies range from measurements of

mass and magnetic moments to quantum computation processes. Moreover,

in the near future there are many proposed experiments on ion traps which

will increase the precision of measurements of atomic and nuclear quantities,

see [28], [29] and [30]. This section deals with experiments that can be

currently carried out and also with one experiment that is under development

and construction.

1.5.1 Mass measurements and electronic detection

As mentioned before, the motion of ions inside a Penning trap can be de-

scribed as the combination of three oscillations. The frequencies related to

these oscillations are called the modified cyclotron (ω′c), axial (ωz) and mag-

netron frequency (ωm). For a derivation of these expressions see Section 1.1.

Usually these frequencies are not harmonic frequencies of one another which

implies that they are easily distinguished. These frequencies are defined by

ω′c =
ωc +

√
ω2

c − 2ω2
z

2

ωz =

√
4qU0

mR0
2

ωm =
ωc −

√
ω2

c − 2ω2
z

2

where m is the mass of the ion, q is the charge of the ion, U0 is the magnitude

of electrostatic potential, R2
0 = r2

0 + 2z2
0 and ωc is called the “true” cyclotron

frequency. The cyclotron motion is the motion of a charged particle in a

constant magnetic field, and its frequency is given by

ωc =
qB

m
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where B is the magnitude of the magnetic field. However, as the radial

motion in the Penning trap is not due just to the magnetic field, the cyclotron

frequency (ωc) is modified by the presence of the electric field.

The important fact is that the three frequencies (ω′c, ωz and ωm) depend

on atomic quantities as well as on external parameters (i.e. mass, charge,

magnetic field, ...). Consequently, by the measurement of any of these fre-

quencies and by the control of the external parameters, estimations of atomic

properties can be performed. The confined charged particle inside the trap

Figure 1.18: Schematic diagram of a non-resonant electronic detection
scheme coupled into an ion trap.

can be detected in different ways, for example through the detection of fluo-

rescence from laser excitation of the ions or by the electronic detection of the

motion at the axial frequency. The second case can be described as the in-

verse of the resistive cooling. In resistive cooling, the axial motion of the ion

is coupled into an external circuit with electronic resistance R through the

endcaps. This resistance component damps the oscillatory motion of the ion

and it dissipates the kinetic energy of the ion cooling it. On the other hand,

electronic detection is typically also made through the coupling of an external

circuit to the endcaps; see [31] and [32] for references. Instead of modifying

the motion of the trapped ions, this circuit monitors it. There are basically

two types of electronic detection schemes: resonant and non-resonant. The

non-resonant electronic detection scheme consists only of a detection device

coupled into the endcaps, as shown in Fig. 1.18. With this setup, the elec-
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Figure 1.19: Schematic diagram of a resonant electronic detection scheme
coupled into an ion trap.

tric signal generated by the moving charges and induced in in the endcaps is

amplified and recorded by an external acquisition system. Finally, a Fourier

transform of the data shows the frequency associated with the axial motion

of the ions and from this frequency the mass of the ion species can be ob-

tained. This type of detection is regularly used in non-harmonic traps with

very low-noise environments (i.e. under cryogenic environments). For other

traps, preferably harmonic traps, a resonant electronic detection setup is

recommended. The only difference between a non-resonant and a resonant

electronic detection scheme is that the latter incorporates a LC component

in the setup. This change generates better results as the scheme is only sus-

ceptible to one frequency, making it less sensitive to environmental noise. In

the resonant setup, a weak oscillating voltage is applied to the endcaps. For

detection, the oscillation frequency of the trapped ions is changed until it

matches the resonant frequency of the LC circuit; the frequency of the ions

is usually changed by varying the trap bias. When both frequencies are the

same, a drop in the amplitude of the oscillating drive is detected. At this

point, the frequency of the drive is in resonance with the axial frequency of

the ions and energy is transferred from the circuit to the ion. In other words,

the energy is efficiently absorbed by the ion from the drive and then, a drop

in the magnitude of the voltage will be observed. In practice, the amplitude

of the applied voltage must be small, because in resonance the ion absorbs
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Figure 1.20: Resonant response of calcium ions inside a harmonic trap at
Imperial College. The driver amplitude is 10.0 mV with a frequency of 145.5
kHz (which matches the resonant frequency of the LC circuit), endcaps are
grounded and the trap bias is continuously scanned from -7.0 to -1.0 V.

energy efficiently, implying that it is perturbed also efficiently (heated). As

a result, the resonant electronic detection is an intrusive technique as the

ions are lost once they are detected. Consequently, this detection technique

requires a continuous loading of ions into the trap. This is a disadvantage of

the resonant setup; the non-resonant scheme is passive (it does not affect the

motion of the ions). Resonant detection provides best results with highly-

harmonic traps, where well-characterized motional frequencies are produced.

In practice, this is difficult to achieve as most traps are not perfectly ma-

chined or are not designed to be harmonic. As a consequence, these traps do

not produce a harmonic motion, and consequently the oscillation frequency

of the ions is not a unique value but spread out over a wider spectrum.

A schematic diagram of the electronic detection scheme is shown in Fig.

1.19. In experimental conditions, the values of the LC components are chosen

to produce an adequate resonant frequency. For example, Fig. 1.20 presents

the response of a resonant electronic detection scheme for a hyperbolic Pen-

ning trap with R0 = 7 mm when used to trap 40Ca+. The resonant frequency
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of the electronic setup is at 145.5 kHz, and is resonant with trapped ions in

a trap bias of -4.5 V. During the detection, the trap bias is scanned between

the range -7 to -1 V. The resonance effect is observed every time the scan-

ning trap bias passes the resonant point. The hysteresis effects shown by

the data in Fig. 1.20 are due to the direction of the scanning and the dy-

namics of the drive emptying the trap. These processes are complex because

many phenomena are happening simultaneously. When the trap bias is being

scanned from negative values towards zero, the trap is fully loaded as a large

trapping potential depth allows the trapping of more ions. As the potential

depth is being decreased, the trap losses ions. On the other hand, when the

scan is being performed from lower potential depths towards large values,

the amount of trapped ions is being increased, from a low number up to a

maximum (at some point the trap becomes unstable). In addition to the lat-

ter effect, the ions does not respond instantaneously to the driver, an effect

that also depends on the amount of trapped ions. Furthermore, it is well

known that the motional frequencies (i.e. the axial frequency) can be shifted

according to the number of ions [33]. Collectively, all these phenomena are

reflected in the signal as hysteresis. For mass spectroscopy studies, the scan-

ning range is usually large to cover the resonances of different ion species

at different trap biases. Using the technique explained before, the masses

of more than 150 isotopes have been successfully measured in Penning traps

[34] with accuracies of δm/m ≈ 1× 10−7.

Although the measurement of ionic masses in Penning traps has been a

useful application of ion traps, there are many other applications for which

these traps are also being used. One frontline application of Penning traps

is in the field of quantum optics, as outlined in the following examples.

1.5.2 Quantum jumps

As was stated before, the most impressive characteristic of ion traps is the

possibility of carrying out experiments with a single ion. However, the prepa-

ration of a single ion in a trap can be difficult. To achieve this, the trap can

be operated at the edge of the stability region while ions are loaded into
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the trap. Doing this, just a few ions will be trapped and, as the trap is

almost unstable, the extra ions will be eventually lost. Alternatively, ions

can also be created and loaded into the trap in a very small numbers using

a well-characterized oven. In such experiments [8], single Mg atoms are cre-

ated by heating magnesium deposited inside an oven. The oven consists of a

small tantalum tube coiled by a tungsten wire. When an electrical current

is passed through the wire, it heats the oven and the atoms escape through

a small hole in the wall of the tube. Finally, the ionization is produced by

electron bombardment; the electrons came from a hot filament near to the

oven. After a detailed characterization, the oven is able to produce reliably

very small numbers of atoms, [8]. Once a single ion is trapped and cooled,

it can be used in experiments for long periods and in these cases, highly

accurate measurements can be made. In this section, an optical method to

determine the number of ions trapped is presented.

When the ions are trapped, in order to minimize the Doppler effect, they

must be cooled. Laser cooling is a technique that provides a way to cool

the trapped ions but also a way to detect them because the light scattered

by spontaneous emission can be monitored. However, laser cooling is only

applicable to a relatively small selection of atomic ion species. For efficient

laser cooling and optical detection, a fast spontaneous emission frequency

is required. For the transitions in Ca+, shown in Fig. 1.21, the linewidths

of the 397 nm, 854 nm and 729 nm transitions are 1.4 ×108 Hz, 9.9 ×106

Hz and 1.3 Hz respectively. Consequently, the 397 nm transition is used for

laser cooling and fluorescence detection; the 866 nm transition has to be also

addressed to pump the system back into the cooling cycle. In addition, if the

ion gets into the D5/2 state by off-resonant light, it must be re-pumped into

the cycle S1/2 ←→ P3/2 in order to detect fluorescence again; this is done

with a 854 nm laser. Once fluorescence is detected, the frequency of the laser

can be tuned until one obtains efficient laser cooling. As an ultimate result,

the detection of fluorescence can demonstrate the presence of individual ions

through the observation of the so-called quantum jumps.

A quantum jump is a process in which an ion (or an atom) changes its

energy level. These jumps are produced due to the absorption or emission
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Figure 1.21: Example of energy levels, this case corresponds to Ca+ without
Zeeman splitting. Energy levels not to scale.

of photons. When a large quantity of ions is trapped, the fluorescence due

to a change in the state of only one ion can not be observed because of the

simultaneous emission of other ions. However, when the number of trapped

ions is small, the direct observation of quantum jumps to a long-lived level is

possible. In Fig. 1.22 a set of quantum jumps produced by two trapped cal-

cium ions is presented. In Fig. 1.22 it is easy to identify the quantum jumps

from two ions, as two well differentiated amplitudes can be distinguished.

The largest amplitude corresponds to the case when the two ions are fluo-

rescing, while the middle amplitude corresponds to the fluorescence of one

ion. When the fluorescence falls to zero, both ions are in D3/2 state. The

Figure 1.22: Fluorescence of 397 nm from two ions of Ca+ in a RF trap,
quantum jumps can be observed, experiment at Imperial College.
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experimental observation of quantum jumps was a breakthrough in physics

as it is tangible evidence of a quantum mechanical process. Ion traps are

able to go further and test theories like Quantum Electrodynamics (QED).

In such cases the experimental accuracy obtained can be even greater than

that of the theoretical predictions. The next example is an application of ion

traps that will provide unprecedented measurement of physical systems.

1.5.3 Spectroscopy of trapped ions,

the HITRAP project

As has been mentioned, Penning traps allow the storage of ions for long pe-

riods of time and in such conditions that measurements at high resolution

can be carried out. Some of these experiments allow critical tests of mod-

ern theories. Experiments proposed to generate, slow down and trap Highly

Charged Ions (HCI4) in Penning traps fall in this category, [28] and [29]. In

particular, hydrogen-like ions are the most interesting case as they present

a simple system to study as electron-electron interactions, electronic screen-

ing effects, electronic spin-spin interactions, and angular momentum-spin

interactions are non-existent in them. Due to these properties, calculations

carried out for hydrogen like ions are simpler because few approximations

need to be done. On the other hand, the hyperfine transition levels of highly

charged ions are situated in the visible spectrum, which allows experiments

in the range where lasers are available. As HCI are nowadays being pro-

duced at particle accelerators, a collaboration between different institutions

in the European community has been proposed to perform a range of ex-

periments including the spectroscopy study described above. The HITRAP

project involves the design, construction and implementation of an ion trap

for decelerating, capturing, and cooling highly charged ions [28]. The final

experiment will be located in Darmstadt, Germany, where highly charged

ions are produced at the GSI complex. Upon completion of this project,

different high-sensitivity measurements of the ions will be possible as the

project is a collaboration between groups specialized in different areas.

4The acronym HCI (Highly Charged Ions) should not be confused with HCl (HCl
Hydrogen chloride or chlorhydric acid).
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Figure 1.23: Schematic diagram of the HITRAP project [28].

One of the aims of the HITRAP project is to achieve the confinement

of HCI in an ion trap. To fulfill this aspect, Imperial College has taken the

responsibility to design, construct, test and operate a Penning trap for such

purposes. Fig. 1.23 shows schematically the setup for HITRAP. The highly

charged ions, like U91+, are regularly produced at GSI; this complex includes

an accelerator consisting of a Heavy Ion Synchrotron (SIS in the German ab-

breviations) and the Experimental Storage Ring (ESR). In this complex, two

mechanisms are responsible for removing the electrons from neutral atoms.

The first mechanism is by collision with solid targets of copper, see [28]. In

this mechanism, called ionization by impact, singly ionized atoms are accel-

erated by the use of magnetic and electric fields inside the SIS. When the

velocity of ions are similar to the velocity of the bound electrons, ions are

deviated to hit a solid target (usually made of copper). The result of the

collision is a multiply charged ion. The second mechanism used to remove

the remaining electrons to create the highly charged state (or even the totally

ionized state), is called ionization by electron bombardment. In this process,

the previous multiply-charged ions are bombarded by electrons with at least

three times the maximum binding energy of the remaining electrons; this

condition guarantees no recombination. After this, HCI are left with ener-

gies of around 7 MeV. Under the HITRAP setup, these highly charged ions
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Figure 1.24: Wavelengths of the 1s ground state hyperfine splitting in the
visible spectrum for atomic number Z [30].

will be cooled down to the level of a few electronvolts in the post-decelerator.

This process is carried out in a Radio Frequency Quadrupole (RFQ) trap,

where ions are cooled in a chain of electrostatic wall potentials. After the

ions are cooled by this technique down the level of a few electronvolts, they

will be transferred to the cooler trap. There, the ions will be cooled by resis-

tive cooling (explained in section 1.4.3) down to temperatures of 4 K (meV)

and made available in a low energy beam. As a HITRAP participant, the

Imperial College team will perform spectroscopic studies on these ions in an

separate Penning trap. It is expected that the HITRAP project will be ready

at the end of 2007. At the moment, the RFQ trap, the cooler trap and the

spectroscopy trap are under design and/or construction.

Once the HCI are cooled down to the few kelvin regime, many interesting

experiments can be carried out. The Imperial College HITRAP proposal of-

fers to perform spectroscopic studies of the hyperfine splitting (HFS) of the

1s ground state of hydrogen-like highly charged ions. In HCI, electronic tran-

sitions are generally in the far UV or X-ray regions of the electromagnetic

spectrum. However, since the 1s ground state HFS scales with the atomic

number Z as Z3, the ground state HFS of some HCI is situated in, or close

to, the visible spectrum where lasers are actually available, see Fig. 1.24,
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and thus spectroscopy studies of these lines can be carried out [30]. Mea-

surements of these transition wavelengths will provide information about the

spatial distribution of the nuclear magnetisation, a phenomenon that is not

completely understood. Specifically, experiments with hydrogen-like lead

(Pb+81), hydrogen-like bismuth (Bi+82) and lithium-like bismuth (Bi+80) are

proposed to be performed in the HITRAP facility. These experiments are

until now, impossible to perform as no other source of HCI is available to

produce ions at rest [28]. The design of the Imperial College HITRAP ion

trap has to satisfy many requirements. The trap has to be able to: produce

highly harmonic trapping potentials, support cryogenic environments, con-

tain only Ultra-High Vacuum components, provide optical access and allow

the collection of fluorescence from the trapped ions and finally, fit in the

project specifications. The design of this trap is presented in Section 6.

1.5.4 Quantum Computation

One of the most promising applications of ion traps is in the field of quantum

computation. The ultimate aim of this field is the creation of a computational

device where the data storage and their operations are performed by means of

quantum properties. In this scheme, data units can be described by any two-

state quantum mechanical system; one state represents 0 (|0〉) and the other

represents 1 (|1〉). By analogy with a classical computer, these data units

are commonly named qubits. As a qubit is defined as a quantum system, its

state must be represented as a quantum superposition of its internal states.

The state of a qubit is written as

φ = α|0〉+ β|1〉 (1.5.1)

where α and β are the amplitudes for finding the qubit in the state |0〉 or |1〉
respectively. Naturally, |α|2 + |β|2 = 1 as the total probability is always 1;

α and β are complex numbers. This quantum representation of the system

shows an important difference with respect to the classical analogy. The

state of a classical bit can only take two discrete values, 1 or 0. In contrast,

the state of a qubit must be represented as the superposition of both states
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and, as α and β are continuous variables, the number of superposition states

is infinite, [35]. A way to represent the state of a qubit in a more geometrical

way is by re-writing α, β and the condition |α|2 + |β|2 = 1 in terms of

trigonometrical relationships of three real numbers, θ, ϕ and γ, as

φ = eiγ

(
cos

θ

2
|0〉+ eiϕ sin

θ

2
|1〉

)
(1.5.2)

where γ corresponds to a global phase without observable effects ([35]). This

notation defines the state of a qubit as a point on a spherical surface in a

three dimensional space. Using this notation, the Bloch sphere is a useful

graphical representation of a qubit; an example of the sphere is shown in Fig.

1.25. As the number of points in the surface of the Bloch sphere is infinite,

Figure 1.25: Bloch’s representation of a qubit state. In this diagram it is
easy to understand that there are an infinite number of points (superposition
states, red dot) in the sphere surface.

so is the number of superposition states. The idea of quantum computation

was born from the fact that any operation performed on a qubit will be

carried out on all the possible superposition states. As expected, when the

operation is finished and then the results read, all the superposition states

collapse into one state or the other making the operation no different from

a classical process. However, the main idea in quantum computation, is to

continue working with the superposition states by quantum operations or
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algorithms until, from all the possible answers, only the desired one is likely

to be obtained.

Computers work by the use of logic gates and, in principle, quantum

computers will not be an exception to this rule. There are many types of

logic gates, but it can be proved that any logic gate can be created from a

combination of simple gates (one input, one output) and control gates (two

or more inputs, two or more outputs). Consequently, any quantum computer

scheme has to be able to produce a realization of these gates [35]. One of

the simplest gates, that can be reproduced in a quantum system, is the NOT

gate. This gate only inverts the logic value of the input. For example, if the

input of a NOT gate is |0〉, then the output is |1〉 and viceversa. Practically,

this gate can be realized in any two-level quantum system. A trapped ion

with a narrow transition offers a good setup for this gate. The lowest level

of the ion can be named as |0〉 and the upper one as |1〉. If the |0〉 state is

populated, a single excitation (a photon) of the transition |0〉 −→ |1〉 will

transfer the ion to the |1〉 state, a second photon will provoke the stimulated

emission of the first photon and then the system will go back to the |0〉 state.

Effectively, single photons in this system act as a NOT gate transferring one

state to the other and, if desired, back.

Unfortunately, the creation of a mechanism to simulate a control gate is

not as simple as the one used in the NOT gate. Many proposals have been

presented for a control gate, the most successful being the Cirac and Zoller

scheme for a c-NOT (c for control) [36]. Basically, in the a c-NOT logic gate

has a control input, a target input, a control output and a target output.

The control output, after the logic operation, preserves the logical value of

the control input. In contrast, the logical value of the target output depends

on the values of the control and the target inputs. If the control input is true,

the target output takes the value of the target input. On the other hand,

if the control input is false, the value of the target output takes the inverse

value of the operational input.

In the Cirac and Zoller scheme, the c-NOT gate is a three-step process

in a two-ion/two-qubit system, [36]. To initialize, the two-ion system must
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be cooled down to the motional ground state. In the first step a π pulse5 of

frequency ω0−ωm is sent to the control qubit. In the second step, a 2π pulse

is sent to the target qubit to excite the transition |g1〉 −→ |aux0〉. Finally, in

the last step, another π pulse of frequency ω0 − ωm is sent to control qubit.

These steps have the effect of a control gate because only the control qubit is

restored to its original state [36]. In Fig. 1.26 a diagram of these three steps

Figure 1.26: c-NOT gate. This scheme consists of two qbits in a three
step process. Ions are in different vibrational states that are energetically
separated by a phonon with an energy 2πωmc (were c is the speed of light).
The total result of the three-step process is that for certain initial conditions,
the system is able to gain a phase.

process is presented; in the figure the subindex refers to the motional state.

This graphic is only true when the control qubit is originally in its internal

excited state (|e0〉) and the target qubit in its internal ground internal . In

the first step, the π pulse of frequency ω0 − ωm is sent to the control qubit

having the effect

|e0〉 −→ −i|g1〉 (1.5.3)

5The length of a π pulse is Ω/π where Ω is the Rabi frequency for the transition.
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where a (-i) phase was introduced. In the second step, a 2π pulse sends the

target qubit to an auxiliary level and back producing a phase of -1, this is

−i|g1〉 −→ i|g1〉 (1.5.4)

and finally, in the third step, a π pulse with the negative phase of the first

pulse sends the control qubit back to its original motional state.

i|g1〉 −→ |e0〉 (1.5.5)

If the control qubit is in the ground state during the first step of the

process, nothing happens as the system cannot go further down the ground

state (this the reason why the system must be in the motional ground state).

The gate contains this specific steps so the qubits sometimes do not change

their states because the pulses are not at the right frequency to excite them.

The overall effect of these three pulses is to introduce a −1 phase factor only

when the control qubit is initially in the state |e0〉 and the target qubit in

|g0〉.
Computational processes, classical or quantum, require not only systems

able to produce logical gates. Five requirements are compulsory; this set

of conditions are usually refereed as the Vicenzo’s criteria [35]. Any sys-

tem that is proposed to perform computational processes is required to fulfill

these criteria. Any system used to perform computational processes has to

contain

1)Universal set of gates.

2)Long coherence times.

3)A mechanism to initialise bits (or qubits).

4)A way to measure the state of bits (or qubits).
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5)A scalable design.

Ion traps are good candidates to produce quantum computational pro-

cesses because they are one of the proposals that fulfill all the criteria. Ion

traps can produce logical operations through the use of quantum gates, as

was firstly proposed by Cirac and Zoller [36]. In addition, ion traps are able to

produce systems where trapped particles can be stored for practically an in-

definite amount of time at low temperatures and at ultra high vacuum where

interactions with the environment are neglected. Thus both, the quantum

and motional states can be created and maintained. Long coherence times

(the time in which the internal and the motional states are well-defined) of up

to minutes have been measured in ion traps [37]. In environments produced

by ion traps, the state of a qubit can be reinitialised by electromagnetic ra-

diation interactions. Finally, as a qubit represents a unit of information, a

computational process requires a scalable design where an array of qubits

can be independently addressed. For this requirement, one and two dimen-

sional multi-trap arrays (linear RF and planar traps) have been constructed

or are under development. These designs are called scalable because their

geometries allow the construction of a number of traps in an array that can

be used to produce an array of qubits.

From all the points discussed above, the scalability of ion traps is a field

that has not evolved as fast or widely as one would expect. Currently, only

a few configurations for ion trap configurations are able to produce an arbi-

trary number of traps in an array of electrodes: the linear RF trap and the

planar trap (the chip trap is a modified RF linear trap). Historically, the lin-

ear RF trap was the first geometry to provide a scalable design. As a result,

this trap has been extensively used in applications for quantum computation;

the first implementation of the Cirac and Zoller logic gate was performed in

these traps [38]. Although the linear RF trap is one-dimensional scalable,

this capability is only useful for small numbers of ions. Recently, some pro-

posals have also been presented where an array of cylindrical Penning traps

are proposed as a quantum processor [39]. Penning traps have some impor-

tant advantages over RF traps in quantum computation applications. The
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major source of decoherence in radiofrequency traps is due to magnetic field

fluctuations. In RF traps with a scheme to correct the magnetic field fluc-

tuations, coherence times up to 10 seconds have been achieved [40]. On the

other hand, in Penning trap with similar schemes, coherence times up to 10

minutes have been achieved [37]. Another advantage of Penning traps is that

they use constant electric and magnetic fields so the RF heating does not ex-

ist in these traps. With the arrival of the novel designs of ion traps, scalable

Penning traps are now available for applications in quantum computation.

The planar trap [19] is a good step forward but scalable designs of this trap

have not been tested yet and some technical problems could arise during its

construction due to the difficulty in connecting the electrodes among other

things. To overcome these difficulties, in the following sections, alternative

designs for ion traps are presented.

This section, was presented to give to the reader a brief perspective of

the utility and use of ion traps. In the following sections, new designs of

ion traps are presented together with the capabilities and advantages that

they bring. These designs are an attempt to produce conditions where many

ions can be individually addressed and are easily accessible. It is believed

that these conditions will open a new range of applications for ion traps,

ranging from quantum computation processes up to the transport of charged

particles. Most of the following designs are original and they represent the

main contribution of this work. Particular attention is given to the “wire-

trap” as it is the design that is considered to be the most complete. The

wire-trap is a design that was proposed, computer simulated and eventually

tested at the Imperial College. The other novel designs are in some way

based on the wire-trap.
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2 Proposal of novel Penning planar traps

Ion traps have evolved in response to scientific needs and, as a consequence,

they are widely used in different fields of science. Each new application of

ion traps has brought changes either to the geometry of the ion traps or

in their functions. RF traps allow the confinement of particles without the

means of a magnetic field. Cylindrical traps provide easy optical access to

the trapped ions and linear traps offer a scheme where a string of ions can

be created (one-dimensional scalability). Planar traps were proposed as a

response to the higher scalability needs of quantum computation and, as an

alternative design, wire traps were developed based on an array of wires with

an emphasis on the optical access and an easy construction. The geometries

of two planar designs are presented in Fig. 2.1; Fig 2.1a shows the planar-

rings trap and Fig. 2.1b shows the geometry of the planar guide. The planar

trap has been explained in a previous section (Section 1.3.2); the planar guide

and the wire trap are described below.

Figure 2.1: Two planar geometries for ion traps.

The planar guide, and its counterpart the wire trap, are novel designs of

ion traps. The planar guide is able to confine the motion of ions along an

array or wire electrodes. The wire trap has many advantages over traditional

designs as it is able to create trapping conditions in three different spatial

regions, is scalable in three-dimensions and is easy to construct as an array.

Both designs, the guide and the trap, have an analytic trapping potential

and so approximate values for motional frequencies can be found. From the

manufacturing point of view these traps also have good properties, as an array
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of traps can be formed simply using long straight wires and the open geometry

of this design means that the structure can be miniaturized using well-known

techniques. Consequently, these traps are considered as excellent candidates

for applications in quantum computation, mass and optical spectroscopy.

2.1 The planar guide

Figure 2.2: Schematic view of the planar guide. The simulated trajectory
corresponds to a 40Ca+ ion with 0.1 eV. The central electrode is connected to
+5 V and the external ones to -5 V, a magnetic field of 0.3 Tesla is pointing
perpendicular to the direction of the wires.

In this section a novel design for an ion guide [41] is presented. The trap

is simply made of three thin wire-electrodes or lines of charges. For trapping

positive ions, the central wire would hold a positive charge (or be held at

a positive voltage) and the external wires would hold a negative charge (or

be held at a negative voltage). Under these conditions, trapping regions are

created above and below the wires. In such zones the force coming from

the central wire is compensated by the force coming from the outer parallel

wires, Fig. 2.1 (b). Although this configuration is only able to trap ions

along a line above the central wire, a closed loop or the addition of another

perpendicular set of wires is enough to confine ions in all directions (see

Section 2.2). The advantages of this trap over traditional designs are: it is



2.1 The planar guide 65

scalable in a straightforward way, the expression for the electric potential can

be analytically solved, and it is easy to implement in the laboratory.

In principle, any electrostatic potential can be obtained by solving Pois-

son’s equation. In practice, charge distributions are usually too complicated

and their associated Poisson equations cannot be solved analytically. How-

ever, for a few cases, the electrostatic field can be solved analytically through

Gauss’s law which can be expressed as

∇· ~E =
q

ε0

where ~E is the electrostatic field, q is the enclosed charge and ε0 is the

permittivity of free space. The latter equation can be also written in its

integral form as ∫
~E · dS =

q

ε0

(2.1.1)

where S is a surface which surrounds the charge. For example, Eq. 2.1.1 can

be easily used to find the electrostatic potential of an infinite line of charges.

Using a cylindrical surface surrounding a line of charges parallel to x (Fig.

2.3), the solution of this problem is

Figure 2.3: Geometry of the line of charges.

E =
σ

2πε0r
(2.1.2)

where σ is the linear charge density [42]. Using Eq. 2.1.2, the electric poten-
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tial can be easily calculated by direct integration and it is

φ(r, z) =
σ

4πε0

ln
R2

r2

Or, expressed in Cartesian coordinates

φ(y, z) =
σ

4πε0

ln
R2

(y − d)2 + (z − z0)2
(2.1.3)

which is the well known potential for an isolated line charge at (y = d, z =

z0), where R is an arbitrary distance at which the potential is set to zero,

R À d [42]. Following this result, by means of the superposition principle,

the potential for a set of three equally-spaced charged lines placed along x,

at z = 0, with line charges −σ at y = −d, σ at y = 0 and −σ at y = +d (see

Fig. 2.1 b), is

φ = − σ

4πε0

(
ln

R2

(y + d)2 + z2
− ln

R2

y2 + z2
+ ln

R2

(y − d)2 + z2

)
(2.1.4)

This arrangement generates a trapping potential along z for positively charged

ions; if σ < 0 the trapping potential would be suitable for negatively charged

ions. The form of the axial normalized potential, for d = 0.1 mm and R = 1

mm, is presented in Fig. 2.4.

Figure 2.4: Electrostatic potential along the z axis, at y = 0 mm, d = 0.1
mm and R = 1 mm

The fact that two real minima are found, (ymin = 0, zmin = ±d), implies
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that charged particles can be trapped above and below the lines of charge at a

distance d from the central wire. Although the expression for the potential is

not accurately quadratic, as for a hyperbolic Penning trap, such a potential

can be approximated by a Taylor expansion to second order around the

stationary points ξ(y = 0, z = zmin), i.e.

φ(y, z) = φ(ξ) +
∂2φ

∂y2

∣∣∣
ξ
y2 +

∂2φ

∂z2

∣∣∣
ξ
(z ∓ d)2

where
∂2φ

∂x2

∣∣∣
ξ

= 0

∂2φ

∂y2

∣∣∣
ξ

=
σ

2πε0

(
− 8d2

(d2 + z2)2
+

4

d2 + z2
− 2

z2

)

∂2φ

∂z2

∣∣∣
ξ

=
σ

2πε0

(
− 8z2

(d2 + z2)2
+

4

d2 + z2
+

2

z2

)

Consequently, the second order Taylor expansion around the stationary

points becomes

φ(y, z) ≈ σ

2πε0

(
ln

2d

R
− y2

d2
+

(z ∓ d)2

d2

)
(2.1.5)

Using this potential, the components of the electromagnetic field are

Ex = −∂φ(y, z)

∂x
= 0 (2.1.6)

Ey = −∂φ(y, z)

∂y
=

σ

πε0d2
y (2.1.7)

Ez = −∂φ(y, z)

∂z
= − σ

πε0d2
(z ∓ d) (2.1.8)

which are the formulae needed to obtain the equation of motion for a charged

particle around the potential minimum along z. If a magnetic field (B) along

z is added (as in the Penning trap), the equation of motion is found from the

Lorentz force equation.
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~F = q( ~E + ~v× ~B) = m~a (2.1.9)

where ~F is the Lorentz force, q the charge of the particle, ~v the velocity, ~E

is the electric field, ~B is the magnetic field, m is the mass of the particle and

~a is the acceleration. This equation of motion describes the movement of a

charged particle under the influence of magnetic and electric fields. Under

the conditions described above, this equation can be easily solved for the

component along z because this motion is independent of the magnetic field:

a similar deduction can be found in [5] for the Penning trap. Consequently,

in the axial direction, the Lorentz force is

Fz = qEz

which leaves the equation of motion in z as

d2z′

dt2
= − qσ

πmε0d2
z′ (2.1.10)

where z′ = z∓ d. The axial frequency associated with this harmonic motion

is ωz =
√

qσ/πmε0d2.

On the other hand, the movement in the xy plane is more complicated

because the equations of motion for these dimensions are coupled. They are

given by

ẍ = ωcẏ (2.1.11)

ÿ = −ωcẋ + ω2
zy (2.1.12)

where the cyclotron frequency is defined by ωc = qB/m. For the arrangement

described above, the equations of motion are not symmetric as they are in

the Penning trap, but they still have an analytical solution. The solution for

this system is given by the expressions

x(t) = c1 + vo
xt + c2 sin ω1t + c3 cos ω1t

y(t) = vo
x

ωc

ω2
z

+
ω1

ωc

(c2 cos ω1t− c3 sin ω1t)
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Figure 2.5: Motion of an 24Mg+ ion over the planar guide.

where ω1 =
√

ω2
c − ω2

z and consequently the oscillating solutions require the

condition ωc > ωz. These equations represent an elliptical motion plus a

linear drift along x (vo
x). An example of this motion is presented in Fig. 2.5

for 24Mg+ under typical trapping conditions: ωc = 630 kHz and ωz ≈ 283

kHz, c1 = 1 mm, c2 = 1 mm, c3 = 1 mm, and vo
x = 100 mm/s; [7].

Figure 2.6: Schematic view of the direction of the ion drift velocity (vo
x).

From these results it is easy to see that the potential produced by the

three straight lines is not able to trap in three dimensions; the electrostatic

potential traps axially and the magnetic field confines in one other dimension;

the free dimension is the one along the charged lines. Consequently, we

propose this setup as an ion guide because, under trapping conditions, ions

would follow the “path” of the lines, see Fig. 2.6 for a schematic view.
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A more general expression for the electrostatic potential created by the

geometry of the planar guide, Eq. 2.1.4, can be found when the lines have

different charge densities. Doing this, the position of the potential minimum

along z can be modified. If different charge densities are taken in account,

then the new potential can be written as

φ = − 1

4πε0

(
σ− ln

R2

(y + d)2 + z2
− σ+ ln

R2

y2 + z2
+ σ− ln

R2

(y − d)2 + z2

)

where −σ− is the linear charge density of the outer lines and σ+ is the charge

density of the central line. Then, the expression for the position of the

potential minima is

zmin = ±
√

γ

2− γ
d (2.1.13)

where γ is the ratio of charge densities between the lines (γ = σ+/σ−). The

variation of the position is presented graphically in Fig. 2.7. The position of

Figure 2.7: Relationship between the relative position of the minima along
z and the ratio of the relative charge in the wires.

the minimum can be adjusted with this method until the total charge is zero

(γ = 2); after this point charged particles cannot be trapped (this potential

corresponds to a linear charge quadrupole).

So far, the motion of the trapped ions has been solved assuming lines of

charges. This would however be very hard to realize in practice. Fortunately,

thin conductors connected to some potential are a good approximation to a

line of charges and are easy to implement in the laboratory. A procedure to
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Figure 2.8: Schematic geometrical profile of the ion guide.

find the equivalence between linear charge densities and voltages, when the

lines have the same magnitude of charge density, is through the following

equations. From Fig. 2.8, the voltage at the surface of the outer wires can

be approximated as

V− = − σ

2πε0

(
ln

R

a
− ln

R

d
+ ln

R

2d

)
= − σ

2πε0

ln
R

2a
(2.1.14)

where a is the radius of the wire, as long as a ¿ d. On the other hand, the

voltage at the surface of the middle wire is

V+ = − σ

2πε0

(
ln

R

d
− ln

R

a
+ ln

R

d

)
= − σ

2πε0

ln
Ra

d2
(2.1.15)

Using these equations the following relationship is obtained

V−
V+

=
ln(R/2a)

ln(Ra/d2)
(2.1.16)

Therefore, if these voltages are applied to the three wires, the potential gen-

erated is equivalent to that created by the three lines of charges. To illustrate

this, the equipotential lines generated by a charge density (|σ| = 1.16×10−10

C/m) along the lines and the simulated equipotential lines generated by finite

wires connected to the equivalent voltages (V+ = 2.00 V and V− = −9.28 V)

are shown in Fig. 2.9 for R = 50 mm, a = 1 mm and d = 10 mm.

The immediate application of the ion guide presented here is in the trans-

port of charged particles, however, an ion trap can also be made using this

configuration. If the guiding wires are given a slight curvature, a closed track

would then be able to produce the extra confinement required to trap the

ions. If the radius of curvature (rc) of the lines is much greater than d, the

equations presented above would be a good approximation. The angular ve-
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Figure 2.9: Equipotential lines for a) three lines of charge and b) three con-
ductors at fixed voltages (simulation using SIMION). The potential lines are
evaluated at the same voltages in both cases. In the case of b), the equipo-
tential lines are limited by the position of the ground at R = 50 mm.

locity around the centre of the ring would come from the initial tangential

velocity of the ion and is related to the linear drift term presented above as

vo
x.

Using wires connected to fixed voltages and with a grounded plate at

some large distance, simulations were carried out confirming trapped ion

trajectories. In Fig. 2.10 a simulated flight of an ion with m = 60 amu,

d = 10 mm, a = 1 mm, rc = 70 mm, B = 0.50 T, initial kinetic energy of 1

eV, V− = −9.28 V and V+ = 2.00 V (equivalent to |σ| = 1.16×10−10 C/m) is

presented. These values were chosen to show a clear motion in the simulated

trap.

The planar guide provides a novel way to confine ions in a two dimensional

space, or alternatively in a path defined by the configuration of the wires.

However, some applications of ion traps require the position of the ion to be

well defined and all the directions of motion to be controllable. In order to

overcome this aspect, a three-dimensional design based on the planar guide

geometry is presented on the next section.
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Figure 2.10: Simulation of the motion of an ion above the ion guide, B = 0.5
T, V− = −9.28 V and V+ = 2.00 V. Simulation using SIMION.

2.2 The wire trap

The natural step to generate a three-dimensional trapping potential from

the architecture of the guide trap, is to try to symmetrize Eq. 2.1.4. This

is done, by adding to the existing two dimensional potential (in the plane

yz) the potential generated in a perpendicular plane (xz) by another set of

charged lines parallel to the y axis. The geometry presented in Fig. 2.11

produces such an effect.

Figure 2.11: Schematic view of the wire trap, the scale is not preserved.

The potential generated by this geometry can be obtained by the super-

position of two perpendicular planar guide potentials. Consequently, the full
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three-dimensional potential is

φ(x, y, z) =

− σ

4πε0

(
ln

R2

(x + d)2 + (z + z0)2
− ln

R2

x2 + (z + z0)2
+ ln

R2

(x− d)2 + (z + z0)2

)

− σ

4πε0

(
ln

R2

(y + d)2 + (z − z0)2
− ln

R2

y2 + (z − z0)2
+ ln

R2

(y − d)2 + (z − z0)2

)

which represents the potential due to two perpendicular sets of three charged

lines, separated by 2z0. The separation between charged lines in a single set

is d. Now, following the same procedure used before it is possible to find the

stationary points along the z direction. These points are zmin = 0 and

zmin = ±
√

z2
0 ±

√
4z2

0d
2 + d4 (2.2.1)

On the other hand, if the lines have different relative charge, the positions

of the minima are given by

zmin = ±

√
d2

0(γ − 1) + z2
0(2− γ)±

√
4γ(2− γ)z2

0d
2 + d4

2− γ
, (2.2.2)

where γ is the charge ratio between the lines. The main point is that in

both cases (same charge or not), up to five stationary points can be found.

The first stationary point is above the wires, the second one is below the

wires, and, depending on the geometrical conditions, one or three points

are situated symmetrically between the wires, see Figs. 2.12a) and 2.12b).

Therefore, in principle, this trap would be able to trap ions above, below and

between the lines.

The number of trapping points between the wires is conditioned by the

number of real values of Eq. 2.2.1. For three stationary points, two potential

minima and one potential maximum, the condition is

(z0/d)4 ≥ 1 + 4(z0/d)2 (2.2.3)

which implies that (z0/d)2 > 2 +
√

5 for the potential minima and z = 0 for



2.2 The wire trap 75

the potential maximum. So, there is always a stationary point at z = 0 but,

depending of the values of z0 and d, other two real points can be created. In

fact, the values of d and z0 change the concavity of the stationary point at

z = 0. This can be easily seen from the sign of the second derivative of the

potential evaluated at z = 0. If this value is positive, the potential around

this point would be concave and it would be able to trap positive ions (Fig.

2.12a). In contrast, if the value is negative, the potential between the wires

would be convex and it would be able to trap negative ions (Fig. 2.12b).

The condition to store positive ions at this point is then

∂2φ

∂z2

∣∣∣
0,0,0

=
σ

4πε0

(
−16

z2
0

(d2 + z2
0)

2
+

8

d2 + z2
0

+
4

z2
0

)
> 0 (2.2.4)

which implies that (z0/d)2 < 2 +
√

5. In other words, depending on the ge-

ometry, Eqns. 2.2.3 and 2.2.4, the potential has either one or two trapping

regions for positive ions between the sets of lines. Continuing with the so-

Figure 2.12: Potential along the z-direction. a) z0/d = 1 and b) z0/d = 5.

lution for the motion of the trapped ions and following the same procedure

as before, the potential around the minimum ξ = (x = 0, y = 0, z = zmin) is

approximately

φ(x, y, z) = φ(ξ) +
∂2φ

∂x2

∣∣∣
ξ
x2 +

∂2φ

∂y2

∣∣∣
ξ
y2 +

∂2φ

∂z2

∣∣∣
ξ
(z − zmin)2
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where

∂2φ

∂x2

∣∣∣
ξ

=
σ

2πε0

(
2

d2 + (zmin + z0)2
− 1

(zmin + z0)2
− 4d2

(d2 + (zmin + z0)2)2

)

∂2φ

∂y2

∣∣∣
ξ

=
σ

2πε0

(
2

d2 + (zmin − z0)2
− 1

(zmin − z0)2
− 4d2

(d2 + (zmin − z0)2)2

)

∂2φ

∂z2

∣∣∣
ξ

=
σ

2πε0

(
2

d2 + (zmin + z0)2
+

1

(zmin + z0)2
− 4(zmin + z0)

2

(d2 + (zmin + z0)2)2

)

+
σ

2πε0

(
2

d2 + (zmin − z0)2
+

1

(zmin − z0)2
− 4(zmin − z0)

2

(d2 + (zmin − z0)2)2

)

where the following relation is preserved (as expected from Maxwell’s equa-

tions)

∂2φ

∂x2

∣∣∣
ξ
+

∂2φ

∂y2

∣∣∣
ξ
+

∂2φ

∂z2

∣∣∣
ξ

= 0 (2.2.5)

Then, the final equations of motion for trapped ions, assuming the existence

of a magnetic field parallel to the z axis, are

ẍ = ωcẏ + ω2
xx (2.2.6)

ÿ = −ωcẋ + ω2
yy (2.2.7)

z̈′ = −ω2
zz
′ (2.2.8)

where ω2
x = −2q

m
∂2φ
∂x2

∣∣∣
ξ
, ω2

y = −2q
m

∂2φ
∂y2

∣∣∣
ξ
, ω2

z = 2q
m

∂2φ
∂z2

∣∣∣
ξ

and z′ = z−zmin. Again,

the equation for the axial motion is uncoupled and easily recognized as the

harmonic oscillator equation.

In the case of the motion around (zmin = 0), Eqns. 2.2.6 and 2.2.7 can

be simplified because

ω2
x = ω2

y =
ω2

z

2
=

qσ

mπε0

(
2

d2 + z2
0

+
1

z2
0

− 4z2
0

(d2 + z2
0)

2

)
(2.2.9)
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Using these relations, the equations of motion are

ẍ = ωcẏ +
ω2

z

2
x (2.2.10)

ÿ = −ωcẋ +
ω2

z

2
y (2.2.11)

z̈ = −ω2
zz (2.2.12)

where the motion in the xy plane is symmetric and its solution is the same

as in the Penning trap [5] and consequently stable ion motion parameters are

when ω2
c > 2ω2

z .

However, as mentioned before, ions can also be trapped in the other

minima where ωx 6= ωy. There, their movement in the xy plane can be

understood as an elliptical motion, [43]. A solution to Eqns. 2.2.6 and 2.2.7

can be proposed as

x = x0e
−iωxyt

y = y0e
−i(ωxyt+π/2)

where ωxy is the frequency associated with the plane xy. Substituting these

expressions in the equation of motion, the following relationships are obtained

(ω2
xy + ω2

x)x0 − iωxyωcy0e
−iπ/2 = 0

iωxyωcx0 + (ω2
xy + ω2

y)y0e
−iπ/2 = 0

which have solutions

ω2
xy =

(ω2
c − ω2

x − ω2
y)±

√
(ω2

c − ω2
x − ω2

y)
2 − 4(ω2

xω
2
y)

2
(2.2.13)

and
y2

0

x2
0

=
ω2

xy + ω2
x

ω2
xy + ω2

y

(2.2.14)

Finally, the full radial motion in the trap would consist of the linear super-

position of the two solutions for ωxy.

Although the latter equations are applied to lines of charges, the expres-
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Figure 2.13: Equipotential lines at x = 0 mm for a) two perpendicular sets
of linear charges (these calculations were performed using Maple) and b) two
perpendicular sets of three conductors at fixed voltages (simulations using
SIMION).

sions presented in Eqns. 2.1.15 and 2.1.14 can be used to approximate the

equivalent voltages (when z0 << R). In Fig. 2.13 equipotential lines are

presented for a trap with the following characteristics: |σ| = 1.2 × 10−10

C/m (equivalent to V+ = 0.50 V and V− = −8.26), R = 40 mm, a = 0.5

mm, d = 5 mm and z0 = 10 mm. The main differences in such graphs are

because the simulations are limited in size, which restricts the size of R.

To demonstrate that the wire is able to trap charged particles, simulations

were carried out using 40Ca+ with the geometry z0 = 5 mm, a = 1 mm,

d = 8 mm, R ≈ 50mm, B = 0.60 T and initial kinetic energy of 1 eV (typical

experimental values [7]). Wires connected to V− = −13.04 V and V+ = 1.00

V were used (equivalent to |σ| = 2.25× 10−10 C/m). The motion of such an

ion in the upper trapping zone is shown in Fig. 2.14. Here ω+
xy = 856.95 kHz

and y0

x0

+ = 0.88, ω−xy = 9.83 kHz and y0

x0

− = 0.05 for the two motions.
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Figure 2.14: Simulation of the motion of a 40Ca+ ion on the top of a wire
trap. Electrodes are connected to voltages: V− = −13.04 volts and V+ = 1.00
volts.
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2.3 The two-wire trap

Figure 2.15: Simulation of the motion of a 40Ca+ ion in a two-wire trap. Ion
kinetic energy = 1 × 10−2 eV, a = 0.5 mm, z0 = 2 mm and B = 1.3 T.
Simulated with SIMION.

In fact, it is easy to demonstrate that a wire trap can also be designed with

just two wires [44]. Using the same notation as in Eq. 2.1.4, the electrostatic

potential of two crossing wires separated by 2z0 is

φ =
σ

4πε0

(
ln

R2

y2 + (z − z0)2
+ ln

R2

x2 + (z + z0)2

)
(2.3.1)

or, using a similar analysis to that in the previous section, the potential can

be written in terms of voltages as

φ =
V+

ln(R2/az0)

(
ln

R2

y2 + (z − z0)2
+ ln

R2

x2 + (z + z0)2

)
(2.3.2)

where V+ is the electric potential of the wires are connected with respect

to a ground at R. The axial potential in Eq. 2.3.2 presents a minimum at

z = 0 where positive charged particles can be confined, see Fig. 2.16. To

trap negatives ions the voltage at the wires has to be negative.

Following the same procedure as in previous sections, the potential around

the minimum ξ = (x = 0, y = 0, z = zmin) can be approximated by

φ(x, y, z) = φ(ξ) +
∂2φ

∂x2

∣∣∣
ξ
x2 +

∂2φ

∂y2

∣∣∣
ξ
y2 +

∂2φ

∂z2

∣∣∣
ξ
(z − zmin)2
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Figure 2.16: Potential along the z direction, V+ = 4 volts, a = 0.5mm, z0 = 2
mm and R = 20 mm.

where, in this case,

∂2φ

∂x2

∣∣∣
zmin

= − 2V+

ln(R2/az0)

(
1

(zmin + z0)2

)

∂2φ

∂y2

∣∣∣
zmin

= − 2V+

ln(R2/az0)

(
1

(zmin − z0)2

)

∂2φ

∂z2

∣∣∣
zmin

=
2V+

ln(R2/az0)

(
1

(zmin + z0)2
+

1

(zmin − z0)2

)

Consequently, the approximated potential for the two-wire trap is given

by

φ =
2V+

ln(R2/az0)

(
2 ln

R

z0

− 1

z2
0

x2 − 1

z2
0

y2 +
2

z2
0

z2

)
. (2.3.3)

The two-wire trap has been designed as a Penning trap, as a result, a

magnetic field has to be incorporated to the equation of motion. Conse-

quently, according to the Lorentz force equation, the motion of the ions will

be determined by the electrostatic potential, Eq. 2.3.3, and a constant axial

magnetic field (B). The result is a set of three equations of motion that
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govern the three directions of motion of the ions. These equations, as in

hyperbolic Penning traps, are

ẍ = ωcẏ +
ω2

z

2
x

ÿ = −ωcẋ +
ω2

z

2
y

z̈ = −ω2
zz

which are the familiar equations of motion of an ion inside a Penning trap,

where m is the mass of the ion, ω2
z = 8qV+/mz2

0 ln(R2/az0) and ωc = qB/m.

The two-wire and the six-wire traps differ on their properties. Although

the two-wire trap has a very simplistic design and an even better optical ac-

cess than the six-wire design, it does not have all the properties that make the

six-wire design more suitable for quantum computation applications. Firstly,

the two-wire trap does not produce trapping regions above and below the trap

geometry, so it is not as versatile as the six-wire counterpart. Secondly, nei-

ther the harmonicity nor the shape of the potential can be modified in the

two-wire trap as there is only one independent parameter (the voltage in both

electrodes). Thirdly, the six-wire design allows the control of the position of

the trapping zones above and below the wires; the two-wire trap does not

even produce such trapping points. The latter property is an important re-

quirement in applications where trap-trap interactions have to be controlled;

this is explained in Section 4.5. In contrast, the geometry of the two-wire

trap is easier to construct and scale. Although the two-wire trap does not

have all the properties of the six-wire design, its design provides an excellent

setup for spectroscopic studies. In Fig. 2.15 a simulation of a trapped Ca+

is presented when the electrodes of a two-wire trap are connected to +4 V,

see details in the figure caption.
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2.4 Scalability

Figure 2.17: Schematic view of the planar multiple trap. In practice, the
potential at the different trapping points are not all the same since this
depends on how close a trap is to the edge of the whole structure.

One of the great advantages of the wire trap is its high scalability, see

Fig. 2.17. The equation to solve for a large square array of wires, when n2

wires are used to produce m2 traps (where n is the number of wires in a

plane and and n = 2m + 1), is

φ(x, y, z) =

+
σ

4πε0

n∑
i=1

(−1)i

(
ln

R2

(x + id)2 + (z + z0)2
+ ln

R2

(x− id)2 + (z + z0)2

)
+

+
σ

4πε0

n∑
i=1

(−1)i

(
ln

R2

(y + id)2 + (z − z0)2
+ ln

R2

(y − id)2 + (z − z0)2

)
+

+
σ

4πε0

ln
R2

x2 + (z + z0)2
+

σ

4πε0

ln
R2

y2 + (z − z0)2

Following the same procedure as before, the following relationships are found

for the potential minima

xmin ≈ ±2mxd (2.4.1)

ymin ≈ ±2myd (2.4.2)

where mx and my are finite integers and−n ≤ mx, my ≤ n. The relationship

to find all the minima in z is too complicated to be shown here, instead of
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this, the relationship at m = 0 (at the centre) is presented below.

∂φ

∂z

∣∣∣
0,0,0

=

n∑
i=1

(−1)i+1

(
zmin + z0

(id)2 + (zmin + z0)2
+

zmin − z0

(id)2 + (zmin − z0)2

)
− zmin

z2
min − z2

0

= 0

where the minimum at zmin = 0 is obvious. This equation is an alternat-

ing series which converges because of the Leibniz criterion, ai > ai+1 and

lim
i→∞

(ai) = 0 (where ai is the factor inside the sum (
∑

(−1)i+1ai). The con-

vergence of this series indicates that eventually the minimum in z is mainly

influenced by the nearest wires. As before, voltages can be found for each line

charge to give the same potential distribution as the analytical calculations.

There are other modifications that can be made to the proposals in this

thesis, for example, the addition of extra wires to decrease the higher order

term O(x4, y4, z4, ...) in the Taylor expansion (improving the quadratic be-

haviour of the potential). Another interesting case is when the two sets of

wires do not have the same relative values of voltages, when it can be shown

that even in the external trapping zones a circular motion can be found (like

in the Penning trap). Finally, another scalable design where the interaction

between the traps can be neglected is shown in Fig. 2.18.

Figure 2.18: Alternative scalable geometry.
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3 Novel RF Ion Trap designs

As mentioned in the Introduction, (Section 1), ions traps can be classified in

two main groups: Penning and Paul traps. They differ in the way in which the

ion confinement is produced. Briefly, Penning traps work with a combination

of static electric and magnetic fields. In contrast, Radio Frequency (RF)

traps utilize a driving AC electric potential applied to the electrodes. In

practice, both designs of traps only require the ability to produce a potential

minimum in one of the directions of motion and a symmetric potential in

the other two. Electrode configurations that fulfill these two requirements,

can create conditions for trapping . In the following sections, based on this

statement, it is proved that the planar guide and the wire trap geometries

can also be operated as RF traps. The design based on the planar guide

retains the nature of linear Paul traps but with a simpler and an even more

open geometry. The second design, based on the wire-trap, yields a scalable

full three-dimensional confinement with an open geometry. Both designs

consist of electrodes made of conducting wires and they can consequently

be miniaturized. In addition, a novel configuration that encompasses both

designs is also proposed; this architecture is scalable and allows the motion

of ions between different traps.

3.1 The Three-wire Linear RF trap

Commonly, RF and Penning traps share a hyperbolic electrode structure [5].

This geometry has a clear advantage over other designs: it is able to produce

a highly harmonic quadrupole electric potential. As a consequence, the mo-

tions of trapped ions have well-determined frequencies. In contrast, for other

designs, like wire, planar and cylindrical traps, [41] [19] [15], it is necessary

to approximate their potential to harmonic oscillators or to numerically solve

their equations of motion to determine the ion frequencies. However, these

designs have properties that balance their lack of an analytical potential by

presenting an open or a scalable geometry. Of all the different ion trap ge-

ometries available, linear RF traps have received special attention due to

their ability to store simultaneously a chain of ions in a linear array. Usually,
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a linear RF trap consists of four cylindrical electrodes arranged in a square

profile (Fig. 1.7). In the trap, two opposite rods are connected to a RF

potential while the other pair of rods are connected to the opposite potential

or to earth. When the surfaces of the rods are hyperbolic and parallel to the

y axis, the two-dimensional potential produced by this setup is

φ(x, z) = −U − V cos Ωt

2R0
2 (x2 − z2) (3.1.1)

where U and V are the DC and AC potential amplitudes respectively, Ω is the

angular frequency of the RF signal and R0 is a parameter that describes the

size of the trap [5]. The potential presented in Eq. 3.1.1 leads to a Mathieu

equation, the stable solutions of which define the ion motion. Based on

the same principles, this section presents the development of an alternative

geometry to linear traps.

Linear RF traps present one of the most open geometries of all the types

of ion traps as they consist of only four cylindrical electrodes. In contrast,

the novel proposal presented below consists of three cylindrical rods placed

in the same plane producing an even more open geometry. This proposal is

based on the planar guide, its design is schematically shown in Fig. 3.1.

Figure 3.1: Schematic view of the three-wire linear RF trap.

The electric potential generated by the geometry presented in Fig. 3.1,

when the three equally-spaced charged lines are placed along x, in z = 0,

with charge densities −σ, +σ and −σ, centered at y = 0 and each separated

by a distance d is determined by

φ = − σ

4πε0

(
ln

R2

(x + d)2 + z2
− ln

R2

x2 + z2
+ ln

R2

(x− d)2 + z2

)

where the charge density can be substituted by voltages by the approximate
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relationships (developed in Section 2.1)

V− = − σ

2πε0

(
ln

R

a
− ln

R

d
+ ln

R

2d

)
= − σ

2πε0

ln
R

2a
(3.1.2)

and

V+ = − σ

2πε0

(
ln

R

d
− ln

R

a
+ ln

R

d

)
= − σ

2πε0

ln
Ra

d2
(3.1.3)

where a is the radius of the wire, as long as a ¿ d. Combining Eqns. 3.1.2

and 3.1.3, the potential difference (4V ) is

4V = V+ − V− = − σ

2πε0

(
ln

Ra

d2
− ln

R

2a

)
=

=
σ

2πε0

ln

(
d2

2a2

) (3.1.4)

which provides the relationship between the charge densities and the poten-

tial difference in the wires. Following this calculation, the electric potential

of the wire RF geometry, in cartesian coordinates, can be expressed as

φ(x, z) = − 4V

2 ln(d2/2a2)

(
ln

R2

(x + d)2 + z2
− ln

R2

x2 + z2
+ ln

R2

(x− d)2 + z2

)

where d is the distance between wires, a the radius of the wires, R is an

arbitrary distance to the electrical ground and 4V the potential difference

between the wires [44] [41]. As mentioned in Section 1.3.2, the electric po-

tential close to the trapping volume can be approximated to a quadrupole

potential by a second order Taylor expansion around the trapping points.

Following this statement, the potential close to the trapping region, z = ±d,

becomes

φ(x, z) =
4V

ln(d2/2a2)

(
ln

2d

R
− x2

d2
+

(z ± d)2

d2

)
. (3.1.5)

Furthermore, if the potential difference applied to the electrodes has a DC

as well as an AC component, then Eq. 3.1.5 takes the form:

φ(x, z) =
U − V cos Ωt

ln(d2/2a2)

(
ln

2d

R
− x2

d2
+

(z ± d)2

d2

)
. (3.1.6)
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The equations of motion for a charged particle under the potential de-

scribed in Eq. 3.1.6 lead to three uncoupled expressions:

∂2x

∂t2
=

2q

md2 ln(d/
√

2a)
(U − V cos Ωt)x (3.1.7)

∂2y

∂t2
= 0 (3.1.8)

∂2z′

∂t2
= − 2q

md2 ln(d/
√

2a)
(U − V cos Ωt)z′ (3.1.9)

where q and m are the charge and the mass of the particle and z′ = z±d. As

no force is acting along y, a charged particle would have a constant velocity

in this direction. On the other hand, the motion in the xz plane will be given

by stable solutions of Eqns. 3.1.7 and 3.1.9, both being Mathieu equations.

These equations can be written in their canonical form as

∂2x

∂ζ2
− (a′ − 2q′ cos 2ζ)x = 0 (3.1.10)

and
∂2z′

∂ζ2
+ (a′ − 2q′ cos 2ζ)z′ = 0 (3.1.11)

where

a′ =
8qU

md2 ln(d/
√

2a)Ω2
(3.1.12)

q′ = − 4qV

md2 ln(d/
√

2a)Ω2
(3.1.13)

and ζ = Ωt
2

. In this general form, these equations have characteristic re-

gions where the final motion is stable (spatially bounded). Finally, the two-

dimensional stability diagram is produced when both x and y stability di-

agrams are superimposed on each other. Then, the xz-motion is bounded

when the motion along both axes are simultaneously stable [5]. There are

many ways to find the stability region of the Mathieu equation, for example,

in Fig. 3.2 stable points have been calculated for Eq. 3.1.10 using a Sträng’s

recursion algorithm [9] for a 40Ca+ ion in a trap where the wires are sepa-
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rated by 3 mm. The stability diagram for the canonical Mathieu equations,

dependent on a′ and q′, was presented in Section 1.2.2.

Figure 3.2: Stability regions for the x and z Mathieu equations. The x stable
region is presented blue-shaded and the z stable region is shown green-shaded.
The red-shaded regions represent conditions where both simultaneously x and
z motions are stable for a 40Ca+ ion in a trap with d = 3 mm and RF drive
of 2 MHz.

The general stability diagram depends on the values of the parameters

a′ and q′, and so on the mass of the ion. This characteristic has been used

as a mass selector in linear Paul traps and would be also applicable to this

configuration.

As in linear Paul traps, the three-dimensional confinement in these traps

would be achieved by the addition of electrodes at both ends of the linear

array; these extra electrodes are schematically presented in grey in Fig. 3.1.

By the addition of these electrodes, the confinement of ions would be pro-

duced all along the path of the electrodes and the inter-ion spacing would

be determined by ion-potential and ion-ion interactions producing a string of

ions in a three dimensional confinement as in the traditional linear RF trap,

[13].
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3.2 The six wire RF trap

Figure 3.3: Wire trap design for an ion trap. The simulation of the motion
of a 40Ca+ ion was perform using SIMION. Ion kinetic energy =1 ×10−2 eV,
V=30 V, Ω/2π = 2 MHz, U=0. The diameter of the wires (a) is = 1 mm,
wires are separated (d) by 3 mm and the sets of wires are separated by 4 mm
in the axial direction (2z0).

Linear Paul traps have offered a good framework for quantum computing

experiments because they can produce a string of ions. In contrast, a two-

dimensional array of ion traps can be implemented using a configuration

similar to the three-wire linear RF trap. This trap design is made using two

perpendicular linear RF traps placed at different planes: this would be a RF

version of the Penning wire-trap [41]. A schematic view of this trap is shown

in Fig. 3.3.

This trap, a six-wire RF trap, provides a better scalability together with

an open geometry. Depending on the dimensions chosen, this design is able

to have three or four trapping points, one above, up to two in the middle

and one below the wires (in Fig.3.3 the simulation shows a Ca+ ion trapped

in the middle trapping point). For simplicity, in this work only the case of

the central confinement is studied. As a result, an approximate quadratic

RF potential in the middle point x = 0, y = 0, z = 0 can be expressed as

φ(r, z) =
U − V cos Ωt

R0
2 (ξ − r2 + 2z2) (3.2.1)
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where ξ = −2R0 ln Rz0

d2+z2
0

and R0 can be understood as an effective trap

parameter defined as

1

R2
0

=
1

ln d2/2a2

(
2

d2 + z2
0

+
1

z2
0

− 4z2
0

(d2 + z2
0)

2

)
(3.2.2)

where d is the separation between wires in a single set and 2z0 is the separa-

tion between sets. Following the same procedure as before, the equations of

motion of the ion are

r̈ − 2q

mR2
0

(U − V cos Ωt)r = 0 (3.2.3)

and

z̈ +
4q

mR2
0

(U − V cos Ωt)z = 0 (3.2.4)

which can be recognized again as Mathieu differential equations. In their

canonical form these equations are written as

∂2r

∂ζ2
+ (a′r − 2q′r cos 2ζ)r = 0 (3.2.5)

and
∂2z′

∂ζ2
+ (a′z − 2q′z cos 2ζ)z′ = 0 (3.2.6)

where

a′r =
8qU

mR2
0Ω

2
a′z = −2ar (3.2.7)

q′r =
4qV

mR2
0Ω

2
q′z = −2qr (3.2.8)

and ζ = Ωt
2

. Stable solutions for Eqn. 3.2.3 and 3.2.4 correspond to bounded

trajectories where the ion is confined radially and axially. In Fig. 3.4 an

example of the stability diagram is shown for a 40Ca+ trap with a = 0.5 mm

d = 3 mm, z0 = 2 mm and Ω = 2 MHz.
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Figure 3.4: Stability diagram for a 40Ca+ three-wires linear RF trap, wires
have 1 mm diameter, sets of wires are 4 mm apart, wires are 3 mm apart
within a set, and the RF driver has a frequency of 2 MHz. The red star
marks the values used in Fig. 3.3.

At this point, the theoretical development of some novel geometry designs

for ion traps has been presented. Calculations and simulations were carried

out to demonstrate that these geometries can be run as Penning traps and

also as RF traps. In addition, the most important characteristics and prop-

erties of these designs have been explained and supported with simulations

or/and calculations. However, one important element has been missing: the

experimental realization of these traps. In the next section, the design, con-

struction and testing of a wire trap prototype is presented together with

some experimental results. This prototype provides a good starting point

for many more experiments that could and will be carried out in the further

development of some of the ideas presented in the previous sections.
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4 The wire trap prototype

Figure 4.1: Schematic view of the prototype wire trap.

In order to experimentally demonstrate the viability of the wire trap, a

prototype of this trap was designed, built and tested at Imperial College.

The prototype was developed to run as a Penning trap with an electronic

detection circuit connected to its electrodes. As the design of the wire trap

allows good optical access to the trapped ions, this prototype was designed in

such a way that it also allows the possibility of optical detection experiments.

The design can be modified to permit the access of lasers and the recording

of fluorescence from the trapped ions. A schematic view of the trap is shown

in Fig. 4.1.

The prototype was intentionally designed to trap calcium and molecular

nitrogen ions at the centre of a six-wire Penning trap. In addition, the pro-

totype was designed to fit inside ultra-high-vacuum components and systems

that were already available in the Ion Trapping group. Many factors were

considered before the construction of the trap was carried out; the prototype

was built based on two three-dimensional computer-prototypes that were

created to assure a straightforward construction and operation. The first

computer prototype was carried out in a three-dimensional design software
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to guarantee a good fit of all the components (Inventor 11.0). The second

digital prototype was made in SIMION to simulate the motion of the ions

taking in account the actual dimensions of the electrodes and the magnetic

and electric fields that can be produced in the laboratory. When these two

digital prototypes were successfully tested, the construction of the trap was

then carried out. All the considerations made during the construction of the

prototypes (digital and real) are explained in the next section. Some of the

experimental results of the trap prototype can be found in [44].

4.1 Experimental setup

A three dimensional sketch of the wire trap prototype is shown in Fig. 4.2;

this computational model was drawn in Inventor 11.0. Basically, the trap

consists of the two sets of wire electrodes, a calcium oven, a filament and

their mounts. As mentioned in the last section, before the design and con-

struction of the trap prototype was carried out, some material was already

available in the Ion Trapping Group at Imperial College. Two of these pieces

of equipment played a fundamental role in the design of the trap, as they

influenced directly the dimensions of the prototype. These elements were

the electromagnet and the existing vacuum pumps. In combination, both

elements forced the prototype trap to fit into standard DN40 CF vacuum

components. The internal diameter of these components was critical for the

design of the trap as it determines the separation of the electromagnet pole

pieces and consequently the amplitude and quality of the magnetic field.

DN40 CF ultra-high-vacuum (UHV) tubes with an internal diameter of 38

to 40 mm were chosen because at such distances well-characterized calibra-

tion curves are available for the electromagnet used (water cooled Oxford

Instrument 4” Electromagnet Model SCT-200-15) [45]. During the testing of

the trap prototype, and according to measurements made with a gaussmeter,

and in agreement with the magnet calibration, magnetic fields of up to 1 tesla

were generated with a 10 amps current flowing through the electromagnet

coils.

Another important element that influenced the design of the prototype
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Figure 4.2: A three dimensional model of the wire trap prototype. Design
created with Inventor (Autodesk).

was the electronic detection setup. This setup consists of a resonant circuit

coupled to a signal amplifier and an AC/DC converter circuit. Basically, the

resonant part of the circuit consists only of a 60-turns coil, making the setup

almost non-tuneable as the impedance of the system was fixed once the trap

was constructed and connected. The only way to slightly adjust the reso-

nant frequency in this setup was by changing the length of the BNC cables

after the UHV feedthrough or by adding a capacitor to the resonant circuit.

Many different ways to achieve a tuneable resonant circuit exist (an easy

way to achieve a tuneable resonant frequency is simply by coupling a vari-

able capacitor to the coil), however it was decided to keep the detection setup

unchanged as it is a very reliable design, (this setup has worked unchanged

for 10 years [46]). Originally, this electronic detection setup was constructed

and later refined to test a hyperbolic Penning trap. In the original setup,
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both endcaps of the hyperbolic trap were connected to the electronic detec-

tion circuit, whereas the ring was connected to a scanning voltage power

supply; Fig. 4.3 shows a diagram of this setup. In contrast, in the wire trap

prototype, the central wires played the role of the endcaps and the exterior

wires replaced the ring electrode; Fig. 4.3 presents a diagram of these con-

nections. As mentioned previously, the motion of the trapped ions inside a

Figure 4.3: Schematic view of the experimental setup for the electronic de-
tection scheme. The simulated trapped ion trajectory shown in the figure
corresponds to Ca+ at 1× 10−2 eV in a trap with similar dimension to those
of the prototype, the potential difference between central and external wires
is 4V = −1.3 V (at this voltage, the axial frequency of ions corresponds to
the resonant frequency of the detection circuit). The magnetic field of 1 T is
oriented perpendicular to both set of wires. Simulation made in SIMION.

Penning trap can be described as a combination of three oscillatory motions.

The frequencies of these motions depend on the electric potential difference

between the ring and the endcaps, and the physical dimensions of the trap.

As the electronic detection setup was constructed to test a hyperbolic trap

(with z0 = 3.5 mm and r0 = 5 mm), similar dimensions for the wire trap

prototype were chosen to produce oscillation frequencies in a similar range
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to the original design. In this way, it was expected that the trapped ions

would be easily detected by the existing setup. This consideration was not

trivial, as the dimensions of wire traps and hyperbolic traps are not straight

forwardly comparable. Consequently, the final dimensions of the trap were

decided through the use of computer simulations. These simulations were

performed in SIMION in order to determine the trapping potential depth

produced by different trap configurations. Several simulations were done un-

til a complete system was created; the final simulation included the vacuum

chamber, the metallic supports, all the electrodes and a magnetic field. In

Fig. 4.4 a snapshot of the final SIMION project is presented. The simulation

corresponds to a 40Ca+ ion with kinetic energy of 1× 10−1 eV in a wire Pen-

ning trap with the physical dimensions of the prototype; in this simulation

the central wires are connected to 0 V, exterior wires are connected to -2.5

V, the supporting base and the vacuum chamber are electrically grounded

and the magnetic field of 1 T is perpendicular to the supporting base. Ad-

ditionally, in Fig. 4.3, the same SIMION project was used to simulate the

flight of a +Ca40 ion but under different trapping conditions (central wires

are grounded and external wires are connected to -1.3 V).

After all these considerations were taken in account, Inventor was used

to create a three-dimensional model of the prototype. The program Inventor

from Autodesk was chosen because it is capable of producing, manipulat-

ing and bringing together individual components. This property was very

useful as different components could be designed and modified to achieve a

better fit or better component connection. The basic layout of the proto-

type consists of the trap electrodes, two calcium ovens, a filament and the

electrical connections from all these elements to the electrical feedthrough.

In total, the prototype contains eight or ten connection lines: one for the

upper central wire, one for the lower central wire, a common connection to

the upper external wires, a common connection to the lower external wires,

two connections to the filament, and two or four connections to one or two

ovens respectively. Two sets of three stainless-steel cylindrical rods of 1 mm

diameter and approximatively 35 mm long were used as electrodes, as shown

in Figs. 4.2, 4.4 and 4.5. The length of the electrodes was determined by
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Figure 4.4: Simulation of the flight of a +Ca40 ion in a wire Penning trap.
This simulation corresponds in a perfect scale to the trap prototype that was
later constructed. External wires are connected to -2.5 volts, and the central
wires, the supporting plate and the four-way cross are electrically grounded
(0 volts).

the size of the vacuum housing, and their diameter and separation were de-

termined by the machining specifications of Macor. In fact, these rods were

chosen because 1 mm holes are easily machinable in ceramic materials and

because stainless-steel is UHV compatible. In order to maximize the length

of the wires, or minimize the effect of finite electrodes, different configura-

tions were produced in Inventor. Finally, L-shape mounts were designed and

made of Macor to support and fix the electrodes in predetermined positions.

The wire electrodes and their mounts are shown in detail in Fig. 4.5.

The design of L-shape mounts proved to be very practical, as they were

easy to machine and align. In addition, the shape of the mounts saved some

space because the electrode connections could be accommodated on the back

of them. These mounts were built of Macor, which is a highly machinable

ceramic compound that is ultra high vacuum compatible. The technical

drawing for the mounts is presented in Fig. 8.2 in the Appendix.
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Figure 4.5: Supports made of Macor were chosen to hold the wire electrodes.
The L-shape of the supports allows the optical access, saves space for the
electrode connectors and is easily machinable.

Within a set, wire electrodes are separated by d = 3 mm and sets are

2z0 = 4 mm apart in the axial direction. The ceramic mounts were fixed onto

an oxygen-free copper base which provides a general support for all the other

components but also shields the six-wire configuration from the electric fields

produced by a filament and its connectors placed underneath. The base has

a thickness of 2 mm, and contains 10 M2 threaded holes to provide mounting

points for other elements. In addition, a 2 mm hole at the centre of the base

was drilled to permit the access of electrons from the filament placed behind

it; the technical drawing is presented in Fig. 8.2. The electron gun (a coiled

thoriated tungsten filament) was placed behind the base and fixed by 5 × 3

× 2 mm Macor supports, Fig. 4.2.

The prototype was designed in such a way that the centre of the trap was

placed at the three-dimensional centre of a four way cross vacuum chamber.

In this configuration, one arm of the chamber was used to provide the electri-

cal connections, in a second arm a viewport was placed to monitor the ovens

and the filament, in the third arm a leak valve was fitted for the injection of

nitrogen gas, and the last arm was used to connect the system to the vacuum

pumps and the pressure gauges. A schematic view of the vacuum chamber

configuration is presented in Fig. 4.6. The base plate was firmly fixed to the
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Figure 4.6: Schematic view of the vacuum chamber. The second four-way
cross has a line perpendicular to the plane of the page, the rotary and sorption
pumps (or a turbo-molecular pump) were connected here.

vacuum chamber through two pedestals made of oxygen-free copper. The

length and depth of the pedestals were arranged to place the centre of the

trap at the centre of the four way cross, the width of the pedestals was cho-

sen to provide enough space for the connections to the feedthrough. Two

M2 threaded holes were located at the top of the pedestals to support one

calcium oven (atomic oven, not shown in figure). In addition, two smaller

pedestals were designed and built to provide a base for two other atomic

ovens on the top of the prototype. The dimensions of both pedestals are

presented in Fig. 8.3 in the Appendix.

To support all the trap components, a special DN40 CF flange was de-

signed and made of stainless steel, Fig. 8.4 in the Appendix. The profile of

this flange contains a 7.5 mm track with four M3 threaded holes to fix the

lower trap pedestals at the right position to locate the centre of the trap at

the center of the flange and consequently at the center of the vacuum cham-

ber. Additionally, the flange contains copper gasket supports at both ends to

connect the system to the vacuum chamber and to the electrical feedtrough.

The complete view of the prototype, including the filament and the atomic

ovens, is presented in Fig. 4.2. The filament and both ovens were supported

by 5 × 3 × 2 mm Macor supports. The base plate and the pedestals were
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electrically connected to earth. In addition, some ceramic washers were used

around the connectors to prevent electrical contact between the ovens, fila-

ments and the vacuum chamber.

When the prototype design was complete, its construction was carried

out by Mr. Brian R. Willey in the Blackett Laboratory workshop. The parts

of the prototype were assembled in the Ion Trapping Laboratory at Imperial

College. The operation of this prototype is explained in the following section.
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4.2 Operation of the prototype and experimental results

As mentioned before, the prototype trap was designed to work with calcium

and molecular nitrogen ions. In the prototype, calcium atoms were generated

by atomic ovens and molecular nitrogen gas was injected into the vacuum

chamber using a leak valve. Both atomic species are ionized by electron

bombardment to produce Ca+ or N+
2 . Generally, in an atomic oven, the

required element (calcium in this case) is placed inside a metallic chamber

that is connected to an electric current supply. To produce Ca atoms, a

high electric current (≈ 1.5 A) is sent to heat the chamber by electrical

resistance. When the chamber is heated, the material inside the chamber

is evaporated and the resulting vapour is ejected from the chamber in the

desired direction. Atomic ovens are widely used to evaporate metals because

they can be well-characterized to provide small numbers of atoms, are easy

to make and easily to align, [7]. The injection of a gas into the trap is much

simpler as the amount of atoms or molecules is simply controlled by the gas

regulator and a leak valve. While the trap was operating, the nitrogen gas

was injected through the leak valve up to a pressure of 1× 10−7 mbar.

The atomic ovens of the prototype were made of a 1 mm diameter tanta-

lum tube1 spot-welded onto a 0.25 mm tantalum wire2. Granular calcium

was placed inside the tantalum tube and then both ends of the tube were

crimped closed. A hole (≈ 0.2 mm diameter) on the side of the tube al-

lows the exit of atoms when the oven is heated by an electrical current sent

through the tantalum wire. The filament, which produces the electron bom-

bardment, was made of a coiled thoriated tungsten wire3 with a diameter

of 0.25 mm. Thoriated tungsten filaments are often used in electron bom-

bardment experiments as they produce electronic emissions many times that

of pure tungsten filaments at similar temperatures [47]. In the trap, ovens

and filaments were connected to the electrical feedthrough by Kapton wires
4 and stainless-steel barrel connectors with a 3 mm diameter. Typically, the

1Goodfellow 713-389-90
2Advent TA550515
3Goodfellow W-145400
4Kapton wire is a UHV compatible wire that is electrically insulated by a film of
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calcium ovens were operated at 1.53 amps and the filament at 4.4 amps with

a DC bias of −30 V.

During the assembly of the prototype, care was taken to ensure a good

ultra high vacuum (UHV) compatibility. As previously indicated, the pro-

totype trap components were made of only four UHV compatible materials:

Macor, alumina, oxygen free copper and stainless-steel. Kapton wires and

stainless-steel barrel connectors were used to electrically connect the compo-

nents. Before the assembly of the prototype was carried out, all the ceramic

components were cleaned in an ultrasonic bath with a solution of detergent

and water for 4 minutes at 50 Celsius. Oxygen free copper components were

cleaned with Copper-brite5 for 1 minute, then washed with distilled water

and finally cleaned in the ultrasonic bath with ethanol for 4 minutes at 40

Celsius. Stainless-steel components were cleaned in the ultrasonic bath with

acetone for 4 minutes at environmental temperature (25 Celsius). Kapton

wires, ovens and filaments were only superficially cleaned with ethanol.

After being cleaned, the trap was assembled and placed inside its vac-

uum chamber. Then, the setup was pumped out by a chain of pumps to

2.5 ×10−8 mbar. From atmospheric pressure, the trap was pumped out by

a rotary pump (AEGTyp ADEB63K2R0) to 1 × 10−3 mbar. This process

took approximatively 25 minutes. An sorption pump (Vacuum Generators)

was then used to pump out the trap to 2−3×10−5 mbar in approximatively

20 minutes. Finally, an ion pump (Meca 2000) pumped out the remain-

ing background gas to a pressure of around 2.5 × 10−8 mbar in around 48

hours. Once the assembling and evacuation of the trap were complete, all the

connections were individually tested. Electrical conductivity was measured

between the connectors of the ovens, the filament and the vacuum chamber

(electric ground). These simple tests confirmed which connections were op-

erative. In fact, the vacuum chamber had to be opened three times because

a short circuit was found between the filament and the vacuum chamber. It

was found that when the filament was heated its ends were deformed in such

polyamide. Kapton wires with diameter of 1 mm can carry electrical currents up to 5
amperes.

5Copper-brite is the commercial name of a metal cleaner solution containing a mixture
of acids: 75% HNO3, 23% H2SO4 and 2% HCl.
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Figure 4.7: Filament electronic emission at different electrodes. Results with
a magnetic field of 1 T. In shadow, the operational range of the filament
during the electronic detection experiments. The separation between the
filaments is of 4 mm.

a way they became in electric contact either with the vacuum chamber or

with the trap base. This problem was permanently solved by surrounding

the filament connectors with ceramic cylinders (Macor). On the other hand,

the connections from the electrical feedthrough to the trap electrodes were

tested by running the filament and detecting the electronic emission to the

electrodes.

The emission of electrons was monitored by measuring the voltage across

a 1 MΩ resistor connected between the chosen electrode and the electrically

biased filament. The same procedure was carried out on all the electrodes as

this provided an insight into the number of electrons that entered the trap-

ping volume (the space between the central wires). During the operation of

the trap, the filament was biased to -28 V to achieve the ionization of Ca

atoms and to -30 V for N2 molecules. The characterization curve for the fila-

ment electronic emission is presented in Fig. 4.7; these results correspond to
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a -30 V biased filament in the presence of a 1 T magnetic field perpendicular

to the trap base. During the electronic detection experiments, the filament

was typically run in the range of -4.3 to -4.5 A.

As previously explained, during the electronic detection experiments, the

central wire electrodes were connected to the resonant circuit whereas the

exterior wire electrodes were connected to a scanning DC power supply. A

schematic diagram of these connections was presented in Fig. 4.3. The

circuit formed by the central wires and the electronic detection setup had

a resonant frequency of 145.5 kHz, a value that was very similar to the

frequency found in the original setup consisting of the same detection circuits

but with a hyperbolic trap (148.0 kHz). Furthermore, during the testing of

the prototype trap, this hyperbolic trap was often used to check the smooth

functioning of the electronic detection system (an example of a measurement

performed with the electronic detection scheme in the hyperbolic trap was

presented in Fig. 1.20, in Section 1.5.1). For the detection, a 10 mVp−p drive

was coupled to the central wires to excite the motion of the trapped ions

whereas the external wires were scanned in the range from -4.0 to -0.0 volts;

the circuit diagram is presented in Fig. 4.3. During this process, the motional

frequency of the ions changed until it matched the resonant frequency of the

detection circuit. At this point, the ions absorb energy from the drive and

this is detected as a dip in the output signal at a particular value of the

electronic detection circuit.

Some simulations were carried out to determine the axial frequency of the

trapped ions in terms of the electric potential applied to the external wires (or

trap bias as central wires are grounded). The SIMION project described in

Section 4.1 (Fig. 4.4) was used to obtain the electric axial potential between

the central wires at different trap biases. Two axial electric potentials, trap

biases of -2 V and -8 V, are presented in Fig. 4.8. From these data, quadratic

functions were fitted to obtain the harmonic trapping potential and finally

the axial frequency for 40Ca+ and N+
2 (molecular mass of 20 amu). Quadratic

term coefficients for trap biases ranging from -10 to 0 volts are shown in Fig.

4.9. After the quadratic coefficients were calculated, a simple analysis was

performed to obtain the axial frequency in terms of the mass of the ion
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a) b)

Figure 4.8: Axial electric potential for two different trap biases. In both cases
both central wires were electrically grounded, in a) exterior wire electrodes
were connected to -2 V, and in b) exterior wire electrodes were connected to
-8 V. Simulations using SIMION.

species. This is essentially a mass spectroscopy analysis. The quadratic

coefficients (a) are directly related to the field as

E(z) = 2az (4.2.1)

Consequently, a particle with charge q and mass m under the influence of

this field, would feel a force F of the form

F = m
∂2z

∂t2
= qE(z) = 2qaz (4.2.2)

that leads to a harmonic oscillatory motion

∂2z

∂t2
=

2qa

m
z (4.2.3)

which frequency (νz) is determined by

νz =
1

2π

√
2qa

m
(4.2.4)

The axial frequencies in terms of the species mass are obtained by com-
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Figure 4.9: Quadratic coefficient for different trap biases. Each coefficient
was individually calculated by fitting a quadratic curve to the axial potential
generated by the corresponding bias in SIMION.

bining this relationship with the results shown in Fig. 4.9 and with the

physical properties (charge and mass) of the ionized species (Ca and N2 in

this case). The results are shown in Fig. 4.10. During the experiments, these

results were use to find the operating range of the prototype, as they show

that for 40Ca+ the 145.5 kHz resonance is expected at approximately -1.3

V and for N+
2 at -0.9 V. In addition, according to the condition of stability

(ω2
c > 2ω2

z), the trap bias scan could be narrowed to operate between 0 and

-4 volts for 40Ca+ and to 0 to -6 volts to N+
2 . The stability region condition

is determined by the magnetic field applied to the trap (1 Tesla in this case,

ωc = qB/m): for 40Ca+ the critical axial frequency is at 281 kHz and for
28N+

2 is at 401 kHz.

After all the previous calculations and simulations were carried out, the

prototype was fully characterized; the scanning range was determined, the

stability region was known and the axial and magnetron frequencies were

established. With this information and the prototype construction finished,

the experiments were performed in the Ion Trapping Laboratory at Imperial

College during 2006.
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Figure 4.10: Axial frequency in terms of the trap bias for two different ion
species. In red, the resonant frequency of the electronic detection setup.
Axial frequencies higher than the critical frequency produce unstable ion
motions.

The operation of the prototype trap can be summarized in three steps:

the activation of the magnetic field, the firing of the filament and the heat-

ing of the atomic oven. Every step is easily identified in the output of the

electronic detection setup. The first step takes approximatively 45 mins as

the electromagnet used during the experiments has a warm-up time of 30

minutes. This warming up time was usually used to prepare the detection

circuitry. In this process the amplifiers that are part of the electronic de-

tection setup were turned on and their output was connected to a computer

interface for the data acquisition. As no charges are present in the trap

during this process, a flat response on the output of the detection setup is

observed all the time.

During the second step (the firing of the filament), as electrons are be-
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ing produced, a drop in the signal is observed. This drop is produced by the

collision of electrons onto the central wires (or onto the endcaps in the hyper-

bolic trap). This process is very important because it can be used to verify

a good alignment of the filament and also to check the presence of the scan-

ning potential in the external electrodes (or the ring in the hyperbolic trap).

An aligned filament made of the right material produces a large number of

electrons and, as a result, a larger drop of the signal. In the prototype, two

filament materials were tested: tungsten and thoriated tungsten. Under the

same operating conditions, the thoriated tungsten filaments produced signal

drops four times larger than the ones obtained with tungsten wires. As a

consequence, only thoriated tungsten filaments were used during the test of

the prototype. In some experiments, usually after running the filament with

a current above 4.5 A, the signal drop faded away without an apparent ex-

planation. When the trap was opened and analyzed, it was discovered that

the filament was deformed by heating effects due to the high temperatures

created by the high electric current. In the prototype, the filament was fixed

in such a way it was located behind a plate with a 2 mm hole to protect

the trap from the electric field generated by it (this was explained in Section

4.1). The hole in the plate was aligned with the centre of the trap to permit

the transit of electrons from the filament to the trapping region. A deformed

filament usually suffered a displacement from its original position missing

its original alignment and blocking the flow of electrons towards the central

wires. This problem was solved by tightening the coils during the production

of the filaments and by limiting the current in the filament up to 4.5 A (the

filaments were made by coiling a 0.25 mm thoriated tungsten wire, this was

explained in Section 4.1). While the filament was operating, the shape of the

electronic detection output signal was also used to indicate whether or not the

potential in the external electrodes (or the ring) was being scanned. When

the potential on the wires was being scanned from zero to negative voltages,

the electrons were repelled outside the trapping region and consequently less

electrons were detected on the central wires. On the other hand, when the

scanning potential took the value of zero volts, the electrons were not forced

outside the trap and as a result more electrons were detected on the central
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wires. This phenomenon produced the arched shape of the signal observed

in the experimental results. Finally, the production and ionization of neutral

ions was carried out in the last step of the operation of the prototype. There

were two ways to inject neutral ions in the trapping region: by the use of

atomic ovens or by the injection of gas through a leak valve. The first method

was used for calcium atoms and the second one for molecular nitrogen. The

injection/production of atoms is also reflected in the signal output of the de-

tection scheme. While atoms were created or injected into the trap, electrons

were absorbed and consequently less electrons were detected on the central

wires producing a rise in the signal. The exception to this rule is when the

scanning voltage on the external electrodes matched the electric potential

required to produce the axial frequency of the ions that resonates with the

electronic detection circuitry. In that point, a dip was observed demonstrat-

ing the presence of trapped ions. The production of calcium atoms from the

atomic oven was not immediate, usually 20 seconds were needed to observed

the dip in the signal. A simple vacuum chamber with an atomic oven fitted

inside was built to study this phenomenon. The oven had a metallic plate

placed in front of its output to observe the ejection of calcium atoms in a

form of coating. The oven was operated under the same conditions as in the

prototype (≈ 1.5 amperes) until a coating was observed in the plate. After

these experiments were carried out, it was confirmed that a time of around

20 to 25 seconds is required to heat the oven until the calcium atoms were

evaporated and observed as coating.

The experimental results of the operating prototype are shown in Fig.

4.11 for Ca+ and in Fig. 4.12 for N+
2 . In Fig. 4.11, the circles represent the

signal from the electronic detection system when the filament that produces

ionizing electrons and the oven producing calcium atoms are switched off.

The triangles are the result when the electron filament is on but the oven is

switched off. The stars result when both electrons and calcium atoms are

present. As previously mentioned, the calcium feature was predicted from

simulations to occur at -1.35 V and is observed within the range of −1.5 to

−1.1 V. On the other hand, for molecular nitrogen, Fig. 4.12, the resonance

was expected to appear at -0.9 V and is observed within the range of −1.5
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Figure 4.11: Experimental results of the electronic detection scheme for Ca+.

to −0.5 volts.

From the experimental results of the wire trap prototype, one can observe

that the response of the detection is not as clear as in the hyperbolic trap

used to test the electronic detection. This is not surprising because the

prototype is significantly smaller than the hyperbolic trap. A smaller trap

size implies that less ions can be trapped and consequently the electronic

signal generated by the image charges on the endcaps is smaller than in a

trap with a larger size. The number of ions inside a trap can be estimated

by making some simple approximations; in the exact case the number of

trapped ions depends on all the ion-ion and ion-potential interactions, and

the relative position of the ions (which is not homogenous). In the simple

picture, one can assume that the trapped ions are homogenously arranged in

a sphere at the centre of the trap. The electric potential produced by this

sphere of charges, at a distance z (axial case), is given by
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Figure 4.12: Experimental results of the electronic detection scheme for N+
2 .

φions =
Nq

4πε0z
(4.2.5)

where N is the number of trapped ions and q their individual charge. In a

stable trap, these ions would be confined by the quadrupole electric potential

produced by the trap electrodes. This potential (φtrap), around the centre of

the trap, is

φtrap(z) = A0z
2 (4.2.6)

where A0 is a constant and depends on the electrode voltages and the trap

dimensions; to be precise A0 = −2U0/R02 in a hyperbolic trap. In a stable

trap, a charged particle feels a force coming from the electrodes and a force

from the other ions. As all the particles are confined, all the forces acting

over the particle must cancel out. If the gross force exerted by the ions is

approximated by that of a sphere of charges, in equilibrium it is possible to
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write
Nq

4πε0z2
= 2A0z (4.2.7)

Consequently, the number of ions is approximately

N = 8πε0A0z
3 (4.2.8)

Figure 4.13: In a simple approximation, the confined ions in an ion trap
can be described by a perfect sphere with a homogeneous density. In this
approximation, the electric field at a distance z0 would be given by that of a
single point with charge Nq, where q is the charge of a individual ion.

This result is a only a very rough treatment as it is not expected that

the ion cloud would extend all the way to the electrodes; however it gives a

useful indication of the scaling of the number of trapped ions with z0 (and

consequently the amplitude of the electric signal in the trap electrodes). Eq.

4.2.8 shows that the number of ions grows to the power of three with the

size of the trap. This is, at a distance z0 from the trap centre N ∝ z3
0 . For

example, in the hyperbolic trap, the endcap electrodes are separated by 7

mm, in contrast in the wire trap prototype, the central wire electrodes are

separated by 4 mm. According to these values, under this approximation,

it is possible to determine that the wire trap prototype confined around
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five times fewer ions than the hyperbolic trap. This result is in agreement

with the difference of signal amplitudes between the two traps; the signal

dip shown by the hyperbolic trap has a depth of 0.13 volts whereas the dip

depth in the wire trap prototype is 0.025 (0.13/0.025 =5.2).

The experimental results obtained with the prototype, like the examples

shown in Figs. 4.11 and 4.12, demonstrate that the wire trap geometry oper-

ates successfully as a Penning trap. As a consequence, some new experiments

have been proposed to explore some other applications that this trap design

offers. The first of these experiments to be carried out in the future is the

optical detection of calcium ions in the prototype running as a Penning trap.

The next experiment is to run the prototype with a RF driver, as the ex-

perimental setup for these two experiments is very similar. On the other

hand, middle and long term goals include the design of a scalable prototype

to trap and transport ions between different trapping points. Some of these

experiments are explained in the next section.
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4.3 Future work with the wire trap.

As explained in previous sections, wire traps offer many advantages over tra-

ditional designs. Future applications of the wire traps are many, and some of

them are already under development in the Ion Trapping Group at Imperial

College. Modifications made to the prototype have opened the possibility

of performing optical detection experiments with 40Ca+ ions. Furthermore,

this new setup would be suitable for performing experiments with the pro-

totype being run with a radio frequency (RF) drive; this will allow a direct

experimental proof of the viability of the RF design. In addition to these

experiments, the construction of scalable traps is being planned, having as a

starting point the wire trap prototype. In this section some of the modifica-

tions carried out to the prototype to permit the optical detection experiments

are discussed. In addition, some ideas for a scalable design are presented.

4.3.1 Optical Detection Experimental setup

Although the wire trap prototype was mainly designed and constructed with

the electronic detection system in mind, the design also incorporated some

features to facilitate experiments for future optical detection experiments.

As mentioned previously, the prototype was constructed in such a way that

allows optical access to the trapped ions. In addition, the prototype contains

a support for a 40 mm focal length lens to collect fluorescence from the

trapped ions. The setup for optical detection experiments is schematically

presented in Fig. 4.14. In this modified setup, the upper atomic oven was

replaced by the lens holder but everything else in the trap was essentially

unchanged. The vacuum chamber was also modified to allow the optical

access of lasers and the collection of fluorescence. This setup is shown in

Fig. 4.15. As well as in the previous experiments, the atomic oven was

filled with granular calcium for the production of calcium atoms. The main

difference between the new vacuum chamber and the one used for electronic

detection is the addition of two viewports. In the new setup, the leak valve

used to inject molecular nitrogen in the original setup was replaced by an

UHV compatible optical window to permit the collection of fluorescence. In



4.3 Future work with the wire trap. 116

Figure 4.14: Experimental setup for optical detection.

addition, an angled optical viewport was incorporated into the setup to let

the laser beams exit the chamber. An angled optical window was used to

avoid the presence of laser reflections in the trapping region. The angled

window and the 4-way cross that holds the trap were connected by a DN40

CF T-connector, the configuration is shown in Fig. 4.15. A 4-way cross with

connections to the ion-gauge, the ion pump and a leak valve was connected

to the rest of the system by a DN40 CF elbow. The whole system was placed

inside a bake-out oven and then connected to the chain of vacuum pumps (a

turbomolecular pump and a rotary pump).

Following the cleaning procedure and the evacuation method mentioned

in Section 4.1, the trap was pumped out to a pressure of 8.0 × 10−7 mbar

in 24 hours by turbomolecular and rotary pumps. At this pressure, the

temperature of the baking system was increased from 25 oC to 90 oC, at

a rate of 1 oC per minute. After this change of temperature, the system
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Figure 4.15: Schematic view of the vacuum chamber. The second four-way
cross has a line perpendicular to the plane of the page, rotary and turbo-
molecular pumps were connected there.

pressure increased to 1.9×10−5 mbar. At this point, and to prevent damaging

the turbomolecular pump, the system was left to pump out for 12 hours,

achieving a pressure of 1.4 ×10−6 mbar. From this point, the temperature

of the chamber was increased constantly up to 200 oC in 4 hours but the

pressure inside the chamber never exceeded 2.5× 10−5 mbar. 12 hours later

the vacuum system had pumped out the chamber to 2.9 × 10−6 mbar. The

temperature was then increased again up to 240 oC resulting a pressure of

8.6× 10−6 mbar. At 240 oC the system continued pumping out for 48 hours.

The final pressure of the chamber at 240 oC was 1.1 × 10−8 mbar. Then,

the temperature was decreased at a rate of 1 oC/min and then left to pump

out for another 48 hours. At a temperature of 80 oC the UHV valve that

separates the trap setup from the baking system was closed and the ion pump

was turned on. At 25 oC, with the ion pump pumping the trap, the setup

was placed in its position between the poles of the magnet on the top of

an optical table and left for 48 hours. The final pressure in the chamber

after the baking and the pumping period was 6.0 × 10−10 mbar. All these
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steps verified that all the components in the setup were bakeable and UHV

compatible at the 10−10 mbar level. Unfortunately, the operation of the trap

did not have the same results.

Figure 4.16: Photograph of the wire trap prototype for optical detection
experiments.

The optical detection (laser cooling) technique was previously explained

in Section 1.4.1, but briefly consists on the detection of the fluorescence

emitted by trapped ions that are being excited by a laser (preferably in a

fast transition). In the case of 40Ca+, laser cooling is achieved by excit-

ing the transition S1/2 ←→ P3/2 (397 nm) and by repumping the transition
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P1/2 ←→D3/2 (866 nm). At Imperial College, an experimental setup with

these characteristics is constantly used to detect trapped calcium ions in a

hyperbolic trap. This setup is very often used as part of other projects aiming

for applications of ions traps in QIP and/or towards the trapping and cooling

of single Ca ions. As a result, this laser cooling setup is most of the time

not available for other experiments. However, while the prototype was being

tested, such a setup became available for a very short period of time (4 days).

After all the considerations previously explained were taken, the prototype

was tried for optical detection. The prototype was tried only once with the

optical detection setup since it was clear that not all the requirements had

not been taken into account. It was found that the separation of the macor

L-shape mounts were not wide enough to permit the free access of the laser

beams required for laser cooling. As the lasers hit the corners of the macor

mounts, scattered light was sent towards all directions, including towards the

photomultiplier. Later experiments also showed that macor is a translucent

material that not only allows some light to pass through but it also diffuses

the laser light. The scattered light diffused by the macor was detected in the

photomultiplier, at the order of ≈ 400 counts/ms. This value is extremely

high for background noise. The optical detection setup is commonly used

in a hyperbolic trap that has similar dimensions than the one used in the

electronic detection setup (z0 = 9 mm). In this trap, the background noise

is usually less than 5 counts/ms, as can be seen in the experimental results

presented in Fig. 1.22. In addition, when the experiments with this hyper-

bolic trap are just started, non-optimized detection rates are in the range of

50 to 100 counts/ms. Based on these facts, optical detection experiments in

the prototype were tried a few times (in a period of two days) but canceled

and postponed until the trap was modified.

The prototype has been recently modified by members of the Ion Trapping

Group. Until now, the separation of the macor mounts has been modified

by removing some of the material of the mount. In addition, the macor

components have been painted in black with Aquadaq (a carbon base paint

that is UHV compatible) to avoid the glow of such parts. The prototype is

currently being prepared for more optical detection experiments.
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4.4 The transport of charged particles

The idea of moving ions around different trapping regions is, from the point

of view of some authors, a necessity in quantum computation [48]. This re-

quirement creates a scheme where ions can be loaded into an ion trap, cooled,

and then shuttled into different single traps for storage. In addition, a design

with such capabilities would benefit applications where the transportation

of charged particles are required. Under this scenario, some scalable designs

for ion traps have been presented that permit the transport of ions between

traps in a scalable configuration [21] [44]. Following this idea, this section

presents a scalable configuration of wire traps that can produce a scheme

where trapped ions can be produced in one trap and then shuttled to an-

other different trap. This design is also capable of producing conditions to

transport ions around a corner.

The scheme presented to transport ions is basically the combination of

the trap geometries of the planar guide and the wire trap. As mentioned

before, the planar guide is able to generate conditions to transport ions [41]

and, in contrast, the wire trap generates conditions for trapping. These two

properties can be combined to present a scheme to transport ions, [44]. The

layout of this proposal is illustrated in Fig. 4.17.

The setup presented in Fig. 4.17 consists of three concentric circular

wires that are placed above three straight parallel wires that in combination

create the desired setup. In the simulations presented in Fig. 4.17, the circles

formed by the upper wires have diameters of 60, 70 and 80 mm respectively,

whereas their individual diameters are of 2 mm. On the other hand, the

straight wires are separated by 10 mm, and their individual diameters are

also 2 mm. The position of the straight wires is such that the central wire is

aligned to the common center of the circular wires. In addition, a magnetic

field of 1 tesla and perpendicular to the plane of the wires is incorporated

into the simulations. In this example, two trapping regions are formed at the

crossing points of the two sets of wires. In the spaces between the crossings,

the parallel wires are used as guide traps to transport the ions. A trapped ion

stored in a trapping region can be forced to leave it by generating a potential
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Figure 4.17: Simulations of a trap design to transport ions. In a) external
wires are connected to −5V , and central wires to +5 V. In b) upper set as in
a), lower set connected to −3 V, 0 V, +5 V respectively. In c) all potential
levels as in a). In d) upper set as in a), lower set connected to +5 V, 0 V,
−3 V. Simulations for Ca+ at 1× 10−1 eV using SIMION.

gradient in the desired direction using the electrodes that are perpendicular

to that direction. This is illustrated in Fig. 4.17. In this figure, a simulation

of a trapped Ca+ ion is observed in the right crossing, where both sets of

wires are connected to a potential difference of -10 V. In Fig. 4.17b, the

upper set of wires remains at the original potentials creating an ion guide

along its path but the lower straight set of wires has been connected in such a

way that they produce a potential gradient which pushes the ions away from

the old trapping region and around the ring. In Fig. 4.17c the lower set of

wires is adjusted to the same levels as in Fig. 4.17a producing the trapping

conditions again. In Fig. 4.17d a potential gradient is created again to force

the ions to leave the trapping region and follow the path of the ion guide

back to the next trapping region.

This scheme for transporting ions is not unique as many other geometries

can be proposed. An alternative configuration, that is scalable, is schemati-

cally presented in Fig. 4.18.

This design, in a similar way than the circular scheme, can create a three
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Figure 4.18: Scalable design for ion traps. The tracks formed by the long
straight wires can be used as planar guide traps to transport ions from one
trap to another one. The motion is generated by creating an electric potential
gradient.

dimensional trapping region in the junctions and an electric potential to

produce the shuttling of ions to other trapping points. This scheme also

has the ability to transport charged particles around a corner in the array

of wires. The shutting conditions are achieved by replacing the quadrupole

potential of both set of wires by a potential gradient in the desired direction

of motion. Fig. 4.19a shows a snapshot of the axial electric potential when

trapping conditions are established in the surroundings of a junction. This

simulation was produced in SIMION, with the following conditions: wires are

separated by 10 mm in a set and sets are 20 mm apart, wires are connected

to +5 V, - 5 V and +5 V respectively in both set of wires. On the other hand,

Fig. 4.19b presents the axial electric potential when a potential gradient is

created in both sets of wires by connecting the wires to +5 V, 0 V and -5V.

Under these conditions, an electric potential track is created that would allow

the controlled transport of ions through the corner.

This section has presented a scheme to trap and transport charged parti-

cles in a controlled way in an array of wires. These properties lead to more
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Figure 4.19: The figures on the top present the conditions of the wires; the
colour blue indicates that the wire is connected to +5 V, colour red indicates
-5 V, and gray denotes a grounded wire. In the left (a) images the scheme is
being operated as a trap. In the left (b) images the scheme is being operated
in such a way to shuttle charged particles around the corner.

complex systems where ions are trapped in a particular space and then sent

to other regions where they can be used for other purposes. In the next

section, the analysis of this scalable array of wire traps is continued but in a

different way.
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4.5 Trap-trap interaction

Figure 4.20: Two-trap configuration. By design, both traps share the lower
set of electrodes, consequently this configuration allows the exchange of the
motion information between trapped particles. If desired, switches can be
placed along the electrodes to turn on and off the interaction.

The last sections have presented scalable designs of wire traps that allow

the confinement of charged particles in different trapping points in a array

of wires. These arrays present an interesting setup as two or more traps are

connected together by means of a mutual set of three wire electrodes. An

example of this geometry is presented in Fig. 4.20. In this setup, the scalable

design is simply created by the addition of perpendicular electrodes along the

path of three electrodes. This scheme allows the study of interaction effects

between two ions trapped in the center of two different traps. The interaction

is produced by means of induced charges on the common lower electrodes.

This approach has been discussed before for planar traps in [19], and in this

section a similar analysis is presented but applied into a system consisting of

two wire traps with a single ion each.

The interaction between the particles in Fig. 4.20 is produced because

each particle generates an oscillating image charge in the lower electrodes.

In practice, the trap electrodes are connected to power supplies, or to earth,

to produce the trapping conditions. These power supplies will cancel out

the induced charge on the wire electrodes unless a large inductor (a low pass

filter) is connected between the supplies and the electrodes. By using this

current choke, the induced charge on the electrodes will be isolated from

the power supplies. The amount of induced charge is different between the

central and the exterior wires as they are placed at different distances. For
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simplicity, in our analysis all wires have a common radius a and a length l.

The induced charges are Q1 and Q2 for the central and external lower wires

respectively and R is an arbitrary distance at which the potential is set to

be zero. The classical Hamiltonian of the system presented in Fig. 4.20 can

be written as

H(z1, z2) = H1(z1) + H2(z2) + Hint(z1, z2) (4.5.1)

where H1 and H2 are the harmonic oscillator Hamiltonians of the trapping

ions, z1 and z2 are the axial positions of the left and right particles respec-

tively, and Hint is the Hamiltonian of the interaction. As the interaction is

due to the induced charges (Q1 and Q2), Hint takes the form

H(z1, z2) = H1(z1) + H2(z2) + qφ1(z1) + qφ2(z2) +
Q2

1

2C
+

Q2
2

C
(4.5.2)

where q is the charge of the trapped particles, Q1 is the induced charge on

the central electrode, Q2 is the induced charge on the external electrodes,

φ1 is the electric potential generated by Q1 and Q2 at z1, φ2 is the electric

potential generated by Q1 and Q2 at z2, and C is the capacitance of the

wires. The electric potential generated by three parallel wires with linear

charge densities Q2/l, Q1/l and Q2/l is given by

φ = − 1

4πε0l

(
Q2 ln

R2

(y + d)2 + (z + z0)2
+ Q1 ln

R2

y2 + (z + z0)2
+

+Q2 ln
R2

(y − d)2 + (z + z0)2

)

where l is the length of the wires. In the center of the trap, y = 0, the

potential is given by

φ = − 1

4πε0l

(
2Q2 ln

R2

d2 + (z + z0)2
+ Q1 ln

R2

y2 + (z + z0)2

)

By replacing this expression into Eq. 4.5.2, the detailed hamiltonian of the
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interaction can be written as

Hint(z1, z2) =

+q
Q1

4πε0l
ln

R2

d2 + (z1 + z0)2
+ q

Q2

2πε0l
ln

R2

d2 + (z1 + z0)2
+

+q
Q1

4πε0l
ln

R2

d2 + (z2 + z0)2
+ q

Q2

2πε0l
ln

R2

d2 + (z2 + z0)2
+

Q2
1

2C
+

Q2
2

C

(4.5.3)

where d is the separation of the wires and 2z0 the separation of the two sets

of wires. If Q1 and Q2 are adiabatically driven, [19], it is possible to write

dHint

dQ1

= 0 and
dHint

dQ2

= 0 (4.5.4)

where each of these equations gives a relationship for Q1 and Q2 in terms of

z1 and z2 respectively. Consequently, by substituting and simplifying these

expressions into Eq. 4.5.3, the expression for the interaction Hamiltonian is

Hint(z1, z2) = −
5q2

(
ln R2

d2+(z1+z0)2
+ ln R2

d2+(z2+z0)2

)2

C

32l2π2ε2
0

(4.5.5)

From this equation, to estimate the first order interaction, Taylor expan-

sions around the potential minima (z1 = z̃1 + zmin and z2 = z̃2 + zmin) are

calculated. In this case, both particles are oscillating around the center of

the trap, this is at zmin = 0. As only the crossed linear terms are needed

(terms with the factor z̃1z̃2), the Taylor expansions are only calculated from

the constant up to the linear term. So, the linear interaction Hamiltonian

(H̃int) is:

H̃int =
5q2z2

0C

4π2ε2
0l

2(d2 + z2
0)

2
z̃1z̃2 (4.5.6)

where z̃1 and z̃2 can be expressed with ladder operators as follows

z̃ =

√
h̄

2mω
(â + â†) (4.5.7)
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using this expression, the well-known quantised Hamiltonian is

H̃int = h̄ωint(â
†
1â2 + â1â

†
2) (4.5.8)

where ωint is then

ωint =
5q2z2

0

8π2ε2
0l

2mω0(d2 + z2
0)

2
C (4.5.9)

Figure 4.21: The overall capacitance of three wires, when connected in the
way presented in the figure, is equivalent to two capacitors connected in
parallel.

The capacitance of the three wires is easily calculated by analyzing the

electronic diagram of the trap, this is presented in Fig. 4.21. As the circuit is

equivalent to a circuit where two equal capacitors are connected in parallel,

the total capacitance of the system is two times the capacitance of two parallel

wires, which is a well-known value. The capacitance of two charged parallel

wires is

Ctwo−wires =
πε0

ln d/a
l (4.5.10)

where a is the radius of the wires. Consequently, the final expression for the

interaction frequency is

ωint =
5q2z2

0

4πε0lmω0 ln (d/a)(d2 + z2
0)

2
(4.5.11)

For calcium, m = 40 amu, the interaction frequency is given by

ωint = 1.73

[
rad2m3

s2

]
z2
0

lω0 ln (d/a)(d2 + z2
0)

2
(4.5.12)
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In a two-trap system with traps of similar characteristics (milliliter scale)

than the prototype presented in the last section (z0 = 2 mm, d = 3 mm and

a = 0.5 mm),

ωint = 2.3× 104

[
rad2m

s2

]
1

lω0

(4.5.13)

If this system is used under the same conditions as the prototype, ωz = 145

kHz, and the traps are separated by 10 mm, the interaction frequency is

ωint = 25 Hz. If required, the dimensions of the traps or the operational

parameters can be changed to tune the interaction frequency to a desired

range. In addition, switches can be installed on the wires between the traps

to turn on and off the interaction. In fact, it is possible to carry out a similar

analysis like the one presented above, to obtain the interaction frequency of

two ions trapped in the outer positions of the traps. In such conditions, the

position of the trapped particles can be modified by tuning the voltages on the

wires (this was presented in Section 2.1). This implies that even for a fixed

setup, the interaction can be effectively control by attracting the particle to

the wires. There are other proposals to produce a scheme with interacting

particles; the most simple one is to consider only the Coulomb interaction

of two ions. However, this scheme does not attract much attention because

the interaction cannot be controlled or switched off, a requirement desired in

quantum computation, [19].
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5 The two-plate trap

Ever since the work of W. Paul was published in 1950, ion traps have been

constantly used in all sort of experiments. The trap geometries are often

changed as a response to the requirements of the new applications and, as a

consequence, the number of ion trap geometries has been increased in recent

years. Commonly, these novel geometries are modifications or upgrades of

other designs that, in one way or another, present an improvement to a

particular application. In some other cases, the modifications done to a trap

geometry are so extensive that the design has to be classified as novel. The

latter case can be applied to planar and wire traps because their geometries

are too different from hyperbolic, linear, or cylindrical traps to be classified

as modifications of one of them. The trap presented in this section could be

classified as a modification of the planar trap but this should not undermine

the contribution of this proposal as it can be advantageous in applications

where a simpler geometry is required. The trap is explained in the following

section.

5.1 The proposal

The trap presented in this section is inspired by the geometry of the planar

trap, [19]. As mentioned previously, the planar trap consists of a central disk

connected to a positive voltage surrounded by a planar ring connected to a

negative voltage (to trap positive ions). These two electrodes (disk and ring)

are surrounded by a grounded planar electrode and consequently, the whole

geometry is embedded in a planar substrate. When considering the construc-

tion of such device, the problems emerge when the electrodes and connectors

are included in the design. In [19], connectors coming through the substrate

are proposed to solve this problem. This scheme allows the independent ma-

nipulation of traps but, because the number of connectors increases with the

number of traps, the micro-construction or the mass construction of this trap

could be difficult. The geometry presented in Fig. 5.1 proposes a solution

for such a problem by sending one of the electrodes to another plane. The

design by itself does not allow the independent manipulation of traps, but
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Figure 5.1: Sketch of the trap and geometric parameters. The simulated
trapped ion trajectory shown in the figure corresponds to a molecular ion
with a mass of 100 amu and with an initial kinetic energy of 100 meV in an
applied magnetic field of B=1 T as shown. The upper electrode is connected
to −5 V and the lower one to +5 V. The axial potential of this configuration
is shown in Fig. 5.2. The simulation was performed using SIMION.

the simplicity of the geometry may be advantageous in applications of spec-

troscopy. In addition, the design presents a straight-forward scalability and

an interaction scheme by induced charges can be proposed because the traps

share the electrode configuration.

Essentially the trap is made of two planar electrodes positioned at differ-

ent planes (z = 0 and z = z0). The upper electrode is a planar ring with a

width d in the plane z = z0. The lower electrode is a disk of radius D in the

plane z = 0. This type of configuration is able to produce an axial trapping

potential above the electrodes when they are oppositely charged; confinement

in the radial plane is produced by the addition of a magnetic field perpen-

dicular to the electrode planes. A simulated trajectory for a trapped ion in

this trap is shown in Fig. 5.1. In addition, two axial electrostatic potentials

for positively charged ions are presented in Fig. 5.2; in one case the upper

electrode is connected to −5 V and the lower to +5 V and in the second case

the upper electrode is connected to −5 V and the the other is grounded (in
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Figure 5.2: Axial electric potential generated by the two-plate trap shown
in Fig. 5.1 for z0 = 5 mm, and D − d = 10 mm and with the electrodes
connected to ± 5 volts as shown. In this simulation, the ground is a disk
plate placed at z=55 mm. The simulation was performed using SIMION.

both cases z0 = 5 mm and D − d = 10 mm). In addition, three dimensional

equipotential surfaces are presented in Fig. 5.4.

Like some of the other designs presented here, this trap exhibits great

scalability with an easy construction and a good optical access due to the

open structure. In fact, this trap is one of the most simplest designs of an

ion trap as it consists only of two parallel plates with a hole in one of them.

By design, the alignment of this trap is also simple as it would only consists

of fixing two parallel planes. Another interesting characteristic of this design

is its straightforward scalability. An array of traps can be created by only

increasing the number of holes in the two-plate configuration. Using this

idea, a scalable design is presented in Fig. 5.4.
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Figure 5.3: Three-dimensional equipotential surfaces for the two-plate ion
trap. The surfaces correspond to -3.8 V, -3.2 V and 0.0 V. The upper elec-
trode is connected to −5 V (red electrode) and the lower one to +5 V (blue
electrode), z0 = 5 mm, r = 5 mm R = 55 mm. Simulations performed using
SIMION.

Figure 5.4: Schematic view of a multiple trap design.
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The potential depth and the position of the potential minima in the scal-

able design depend on the separation of the plates and on the separation of

the traps. In the extreme scenario, a scalable design of a two-plate trap with

small holes would create a parallel-plate capacitor-like potential and thus the

potential minima would be located in the plane of the holed plate. Despite

its interesting qualities, the two-plate trap does not have an analytical ex-

pression for its electric potential. This, however, has not been a limitation in

other designs of ion traps [21] where the characterization of the traps is done

either empirically or by computer simulations (the second being the most

common).

At this point, five novel designs for ion traps have been presented: two

Penning traps, two RF traps and an the two-plate trap (which is a Pen-

ning trap). These traps are original contributions that were proposed by

the author of this thesis at Imperial College during the period 2003 to 2006.

In addition, during this time, a cylindrical trap was designed to fulfill the

requirements of harmonicity and orthogonality (both characteristics are ex-

plained in the next section). This cylindrical trap is still under construction

but it is planned that the trap will be used in experiments with highly charged

ions in the close future. The trap and its attributes are explained in the next

section.
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6 The HITRAP trap

In this thesis, several designs for ion traps have been presented. Some of

them are novel proposals which are still under development and testing, and

others are traditional designs that have been used in different applications

since their development around twenty years ago. Among the traditional

designs, the cylindrical trap is one of the geometries that has been repeatedly

and reliably used since its development in 1989. The cylindrical trap is a

successful design because it provides a good optical access together with

a harmonic potential (in a design with compensation electrodes), is easy to

machine and assemble and is ideal for loading ions from an external source. In

2002, when the HITRAP network was created to carry out experiments with

highly charged ions in Penning traps, cylindrical traps were already being

used in a large number of successful experiments and consequently its design

was chosen for HITRAP. This section reports the design and characteristics

of the cylindrical trap that will be used for the study of highly charged ions

within the HITRAP project. The calculations and simulations presented in

the following text were performed to support the technical design proposed

by Dr. Manuel Vogel and Prof. Richard Thompson in 2005.

6.1 The design

The HITRAP spectroscopy trap has been under design since 2003 and its

construction began in 2006. Its design and construction was delayed several

times due to changes in the project specifications. In the original proposal,

the injection of the highly charged ions would have been from below the trap,

implying the use of a superconductor magnet with a vertical bore. During the

HITRAP meetings held between the years 2004 to 2005, the design evolved

mostly due to the lack of an available magnet with appropriate specifications.

In January 2005 a magnet inside the HITRAP network became available

and the dimensions of the trap were finally agreed. The first technical draw-

ing of the trap was presented in April 2005, based on the dimensions of the

magnet bore. Because the magnet has not been shipped to GSI (home of

the HITRAP project) and its availability was not absolutely confirmed, the
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spectroscopy trap was designed to fit in different magnet bores in case the

magnet mentioned were not to be available by the proposed date of operation

(end of 2008). At this moment (January 2007), the spectroscopy trap is still

under construction as well as most of the HITRAP setup. Although many of

the final parameters are still unknown, like the final energy of the ions or the

ion species to be used, the design of the trap is only dependent on a few pa-

rameters that are already known (including some dimensions of the magnet

bore ). Plans for testing the trap at Imperial College with singly ionized ion

species like 40Ca+ or N+
2 are being planned prior to the measurements with

HCI at GSI.

Briefly, the HITRAP trap design had to fulfill these requirements:

1) As this is a trap that is going to be used in spectroscopy studies, its

design must allow good optical access to the trapped ions.

2) The trap geometry must provide a good solid angle to collect the

fluorescence emitted by the trapped ions.

3) The trap must allow the loading of ions from the other components of

the HITRAP setup.

4) Preferably, the trap should be harmonic to obtain a simple ion motion.

5) It must be Ultra High Vacuum and cryogenic compatible, at a pressure

comparable to the rest of the HITRAP setup (proposed to operate at ≈ 10−11

mbar).

6) The trap needs to produce a strong confinement; consequently high

magnetic fields and a mechanism to compress the ion cloud are required

(rotating wall technique).

7) The trap must allow the cooling of the trapped ions; the design has to

include a cooling mechanism.

After all these considerations were analyzed, the cylindrical design arose

as the trap geometry that fulfills most of these requirements. A cylindrical

design with compensation electrodes is able to produce the desired harmonic

potential. The optical access of this design provides an excellent setup to

allow the laser excitation as well as the ion injection. The requirement of

UHV compatibility is simple to fulfill as the cylindrical design is easy to

machine and facilitates the use of UHV materials in the construction of the
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trap (some materials like Macor can only be machined in simple shapes). To

fulfill the requirement of a good solid angle, a trap with an expanded ring

electrode with its walls made of a fine metallic mesh was designed. As a

consequence, the dimensions of the trap prototype were chosen, first of all,

to produce good optical access and a large solid angle for the fluorescence

collection and secondly to produce a harmonic trapping potential. In addi-

tion, extra cylindrical electrodes (capture electrodes) were included in the

design to facilitate the injection of the ions at both ends of the trap, and the

ring electrode was segmented to implement ion cloud compression techniques

such as the rotating wall [49]. The technique of rotating wall uses phased

AC signals that rotate about the trap axis. The interaction of this field with

the ion cloud generates a torque that can be use to modify the shape of the

cloud and consequently the density of the cloud. Each segment of the ring

electrode carries the AC field but with a specific phase. Typically, the phase

of the voltages is fixed and depends on the number of ring segments. The

dynamics of large coupled ion cloud cannot be described by the dynamics

of individual charged particles; in this systems, the density of the could de-

pends on a global rotation [50]. To achieve a maximum cloud density, the

frequency of the AC voltages is set to half the cyclotron frequency [49]. The

proposed operation of the HITRAP trap can be summarized as follows: the

highly charged ions enter from below the trap, are reflected by the upper

capture electrode, enclosed by the lower capture electrode, confined by the

trap electrodes, cooled by a resonant resistive circuit and finally compressed

by the rotating wall technique [30].

The harmonicity of the trap can be calculated by the expansion coefficient

method explained in Section 1.3.1. There, it was shown that the electric

potential generated by a cylindrical trap with compensation electrodes can

be expressed as

V = V0φ0 + Vcφc (6.1.1)

where V0 and Vc are the magnitudes of the voltages applied to the endcaps

and the compensation electrodes respectively. On the other hand, in spherical
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coordinates, φ0 and φc are written as

φ0 =
1

2

∞∑
n=0

C
(0)
k

(r

d

)k

Pk(cos θ) (6.1.2)

and

φc =
1

2

∞∑
n=0

Dk

(r

d

)k

Pk(cos θ) (6.1.3)

Combining, Eqns. 6.1.2, 6.1.3 and 6.1.1 one obtains

Ck = C
(0)
k + Dk

Vc

V0

(6.1.4)

which provides the relationship to cancel out a desired term (Ck). In the

case of cylindrical traps, Eqns. 6.1.2 and 6.1.3 can be simplified due to the

cylindrical and azimuthal symmetry of the trap geometry, [15]. The simplified

potentials can be written as

φ0 =
1

2

∞∑
n=0

A(0)
n J0(iknr) cos(knz) (6.1.5)

and

φc =
1

2

∞∑
n=0

A(c)
n J0(iknr) cos(knz) (6.1.6)

where kn = (n+1/2)π
z0+ze

, ze and zc are the length of the endcaps and the length

of the compensation electrodes respectively, and z0 is the distance along the

axis from the center of the trap to the end of the compensation electrode. As

Eqns. 6.1.2 and 6.1.3, and 6.1.5 and 6.1.6, are solutions to the same hyper-

geometric equation (Laplace equation) they are equivalent and are related

by the expressions

C
(0)
k =

(−1)k/2

k!

πk−1

2k−3

(
d

z0 + ze

)k ∞∑
n=0

(2n + 1)k−1 A
(0)
n

J0(iknr0)
(6.1.7)

where

A(0)
n =

1

2
{(−1)n − sin (knz0)− sin[kn(z0 − zc)]} (6.1.8)
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and for coefficients Dk

Dk =
(−1)k/2

k!

πk−1

2k−3

(
d

z0 + ze

)k ∞∑
n=0

(2n + 1)k−1 A
(c)
n

J0(iknr0)
(6.1.9)

where

A(c)
n = sin (knz0)− sin[kn(z0 − zc)] (6.1.10)

Using these relationships, the properties of a cylindrical trap can be de-

termined in terms of the trap dimensions and the voltages applied to the

electrodes. Consequently, the voltages on the trap electrodes can be chosen

to, for example, adjust a certain term of the electric potential. As the HI-

TRAP trap requires a harmonic potential, the voltages on the electrodes of

the prototype trap were calculated to cancel out the term C4 (C4 = 0) or,

in other words, to null the quartic terms of the potential. In practice, the

dimensions of the HITRAP trap electrodes were mainly determined by the

superconductor magnet characteristics. The total length of the prototype

HITRAP trap was influenced by the length of the magnet’s field homogene-

ity region, reported to be in the range of 130 to 150 mm at the center of the

magnet bore. In addition, the diameter of the trap prototype was influenced

by the inner diameter of the magnet bore, reported and measured to be 85.5

mm. The final total length of the trap was chosen to be compatible with the

magnet’s specifications but also to fit inside the vacuum chamber specifically

designed to fit inside the magnet’s bore. Although the latter considerations

fixed the total length and the diameter of the trap, the relative sizes of the

electrodes were chosen to improve the performance of the trap.

Table 2: Expansion coefficients for the original cylindrical trap design (1989).

Expansion coefficients for the Gabrielse trap
r0 = 0.6 cm, z0 = 0.585 cm, zc = 0.488 cm and ze = 2.531 cm

C
(0)
2 = +0.544 D2 = 0.000 C2 = +0.544

C
(0)
4 = −0.211 D4 = −0.556 C4 = 0.000

C
(0)
6 = +0.163 D6 = +0.430 C6 = 0.000

To cancel out quartic anharmonicities: Vc = −0.3806 V0
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Since the dimensions of the trap electrodes are important parameters in

Eqns. 6.1.7, 6.1.8, 6.1.9 and 6.1.10, they can be chosen to impose a particular

condition to the electric potential generated in the trap. An interesting case

arises when the electrode sizes are chosen in such a way that term D2 = 0.

This action causes the quadratic term of the potential to be independent

of the voltage applied to the compensation electrodes. This particular case

is very useful during the operation of an ion trap because a change in the

voltage on the compensation electrodes will not change the axial frequency

of the trapped ions, facilitating the optimization of the trap parameters.

The first trap that fulfilled the latter requirements was the trap proposed by

Gabrielse in 1989. He called this trap an “orthogonal trap” and its dimensions

and expansion coefficients are presented in Table 2. The Maple code used to

generate the expansion coefficients is presented in the Appendix; Fig. 8.1.

Based on the design proposed by Gabrielse [15], the electrode dimensions

of the HITRAP trap were selected in such a way that the trap fulfills the

conditions of a harmonic and an orthogonal trap. These dimensions also

fulfill the conditions determined by the magnet and the vacuum chamber.

The electrode dimensions and the expansion coefficients for the HITRAP

trap are presented in Table 3.

Table 3: Expansion coefficients for the HITRAP design, (2005).

Expansion coefficients for the HITRAP trap
r0 = 10.6 mm, z0 = 5.90 mm, zc = 1.75 mm and ze = 25.00 mm

C
(0)
2 = +0.534 D2 = −0.001 C2 = +0.532

C
(0)
4 = −0.137 D4 = −0.077 C4 = 0.000

C
(0)
6 = +0.137 D6 = +0.039 C6 = +0.067

To cancel out quartic anharmonicities: Vc = −1.768 V0

A sketch of the trap dimensions is presented in Fig. 6.1. As one can

observe, the length of the ring electrode in the HITRAP trap was chosen to

be bigger than the compensation electrodes to produce a better collection of

light from the trapped ions, a feature that is different from the Gabrielse trap.

According to calculations done with the expansion coefficients method, this
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Figure 6.1: Harmonic and Orthogonal dimensions for the HITRAP trap.

modification is capable of producing a harmonic and an orthogonal potential.

In practice, the design of the HITRAP trap has some elements that can

not be considered in the calculations, probably the most important one being

the assumption of negligible gaps between the electrodes. In the HITRAP

prototype, the gaps were reduced to the minimum practical value but were

still too large to be negligible. The trap was designed to have gaps of 0.5 mm,

a separation that is only three times smaller than the length of the compen-

sation electrodes. In addition, the ring electrode of the HITRAP prototype

was designed to be radially segmented in four parts for the application of the

rotating wall technique to the trapped ions, a characteristic that is also not

considered in the calculations. According to [15], ze is formally defined as the

length of the endcap electrode, z0 is the distance from the centre of the trap

to the endcap and zc is the distance from the beginning of the compensation

electrode to the beginning of the endcap. The dimensions of the prototype

electrodes are z0 = 5.90 mm, zc = 1.50 mm and ze = 25.00 mm, and these

electrodes are separated by gaps of 0.5 mm. The values of z0 and ze were not

modified for the calculations but 0.25 mm (half of a gap separation) were

added to zc in an effort to include the size of the gap in the calculations.

To verify that a harmonic potential is generated by using these electrode
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dimensions and the voltages specified by the calculations, simulations were

carried out in SIMION.

A SIMION project was created following the electrode voltages and the

electrode dimensions obtained by the model but with 0.5 mm gaps between

the electrodes. The SIMION project was progressively modified until the

final design included all the electrodes, supports, the vacuum chamber, a

segmented ring and an extra pair of electrodes that will be used during the

injection of ions into the trap. Two views of the SIMION project are shown

in Fig. 6.2.

Figure 6.2: SIMION project for the HITRAP trap. The simulation corre-
sponds to the prototype trap that is being constructed in the Ion Trapping
Group at the Imperial College (2007).
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Using this project, the axial potential along the entire trap length was

obtained to verify the harmonicity of the electric potential in the centre of

the trap. Voltages on the electrodes are in the proportion dictated by the

calculations, this is Vc/V0 = −1.768, with V0 = 1 volt. The results from the

simulations are presented in Fig. 6.3.

Figure 6.3: Axial potential along the trap configuration. In colours, the
respective electrode position. Vc/V0 = −1.768, with V0 = 1 volt

To confirm a good harmonic potential at the center of the trap, the nu-

merical data of the axial potential at the center of the trap were fitted with a

sixth-order polynomial curve. The fitting only considered the data between

-5 mm to 5 mm, centred at the middle of the trap. The results are presented

graphically in Fig. 6.4.

The potential around the centre is given by

φ(z) = −0.5 + 3.26× 10−3[V/mm2]z2 − 3.3× 10−5[V/mm4]z4+

+1.71× 10−7[V/mm6]z6
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Figure 6.4: Axial potential around the centre of the trap. The red line shows
a sixth-order polynomial fitting.

where it can be seen that only the harmonic and the constant terms are

significant near the centre of the trap. At z = 2 mm the contribution of the

quartic term is around 30 times smaller than the quadratic one, and at z = 5

mm the quartic term is around 5 times smaller than the quadratic one.

The trap electrodes and all the trap supports are currently being man-

ufactured out of oxygen free copper. All the parts of the support must be

manufactured using the same material because the whole setup will be used

at temperatures ranging from room to cryogenic temperatures. The use of a

single material for all the trap parts brings a perfect expansion/constraction

coefficient matching, and consequently the expansion/contraction of individ-

ual components is not an issue. The mesh that forms the walls of the ring

electrode is also of oxygen free copper with a mesh size of 0.2 µm. In princi-

ple, the mesh and its supports are going to be bonded by an aluminium alloy,

by a soft-soldering technique, but the response of this technique to cryogenic

temperatures is still unknown.

Tests, using the HITRAP trap prototype, with singly ionized species are
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being planned to be carried out at Imperial College in mid-2007. The HI-

TRAP facility will be ready at the end of 2007, when the first experiments

are planned to be performed. The final technical drawings of the HITRAP

trap is shown in Fig. 6.5.
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Figure 6.5: HITRAP trap technical drawings, produced by Dr. Manuel Vogel
(2005) and reproduced with permission of the author.
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7 Conclusions

This thesis has presented novel designs for Penning and RF traps. All these

proposals were supported by calculations, simulations and, in the case of the

wire Penning trap, experiments.

Wire traps, Penning or RF, present many advantages over the traditional

ion trap designs. They can be used in experiments where i) the optical access

to the trapped ions is critical, ii) an array of many independent traps is re-

quired, iii) the controlled interaction of particles is needed, iv) the transport

of charged particles is needed.

In this thesis, particular attention was given to the six-wire Penning trap

as a prototype was constructed and successfully tested. This prototype con-

firmed some of the advantages suggested by the proposal: it is easy to de-

sign, construct, align and operate. Experiments carried out in this prototype

demonstrated that an ion trap can be created by an array of six cylindrical

electrodes connected to DC power supplies and in the presence of a magnetic

field. From the theoretical point of view, the design of the wire Penning trap

offers a three-dimensional scalable design that is analytically described. In

addition, the geometry of the trap can be miniaturized as it only consists

of an array of wires. In a single array of six wire electrodes, up to four

trapping points can be created; one over, one above and two between the

electrodes. It was also shown that the axial position of the trapping points

can be changed by modifying the voltage on the electrodes; in this way the

two trapping points in the middle can be mixed into one and the outer trap-

ping points can be pulled or pushed from the electrodes. The geometry of

the wire Penning trap is also scalable, as an array of these traps can be cre-

ated by increasing the number of electrodes. Some strategies for moving ions

around in an array of wire traps were also discussed. Finally, a scheme to

study two interacting particles in two different wire traps was presented.

Together with the wire Penning trap, this thesis also presented the novel

designs of an ion guide, two RF traps and a two-plate Penning trap. The

ion guide is basically an array of three wire electrodes that creates trapping

conditions along the axis of the wires. This setup presents a novel approach



147

to transport ions in a controlled way, and when combined with the six wire

Penning trap it can create a scheme to shuttle ions in a scalable design.

As mentioned, this thesis also presented two novel designs for RF traps.

The first design, the linear wire trap, exhibits the same properties as ordinary

linear Paul traps but with a more open and simple geometry. The second

design, the six wire RF trap, stands as a RF trap with open geometry and a

two-dimensional scalability.

In addition to the later designs, another simple design for an ion trap was

presented. This trap was called the two-plate trap as it is made of two parallel

conductor plates; the upper electrode is a planar ring and the lower electrode

is a disk. If the electrodes are connected to opposite voltages, a trapping point

is created above the electrode structure. Consequently, this design offers a

simple geometry that can be easy constructed and miniaturized. A simple

scalable design of this trap was also presented in the text.

This thesis concludes with the design of a cylindrical trap for the study of

highly charged ions. Although this is a traditional geometry for an ion trap,

its design required specific calculations and simulations as the geometry was

modified to fulfill the requirements established by the experiment. This trap

is currently under construction and testing. Experiments in the HITRAP

facility will begin on 2008.

The trap designs presented in this thesis have opened the possibility of

performing different experiments. Currently, the wire trap prototype is being

modified for optical detection experiments with singly ionized calcium atoms.

Once these experiments are carried out, the prototype will be run with RF

drives to demonstrate that this trap geometry can run as a Paul trap. Middle

term plans include the modification of the prototype to allow the optical

detection of Ca+ in the trapping points above and below the wire electrodes.

In the long term, the construction of a scalable setup with wire traps is

being planned. This will allow the study of ion-ion interactions and also the

transport of ions between traps. The two-plate trap also offers an attractive

setup for experimentally studies. Plans to construct and test a two-plate

trap are also under consideration. Finally, the construction of a miniaturized

version of any of the novel designs is also being prepared.
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8 Appendix

Figure 8.1: Maple9.0 worksheet, expansion coefficients for cylindrical traps.
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Figure 8.2: Inventor 11.0 technical drawings for the electrode mounts and
the trap base. The L-shape mounts were made of Macor and the trap base
was made of oxygen-free copper. All dimensions in millimeters.
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Figure 8.3: Inventor 11.0 technical drawings for the base pedestals and upper
supports. These components were made of oxygen-free copper. All dimen-
sions in millimeters.
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Figure 8.4: Inventor 11.0 technical drawings for the DN40 CF flange support.
This component was made of stainless-steel. All dimensions in millimeters.
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Figure 8.5: Maple9.0 worksheet, expansion coefficients for the HITRAP trap.
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