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* (Can data live at the edge?
— Billions of phones & loT devices constantly generate data

— Data processing is moving on device: ENDROINY:
» Improved latency People
» Works offline b =
> Better battery life oonch Oy

» Privacy advantages CRne

L e

What about analytics?

What about learning?

Sources: D. Reinsel, J. Gantz, and J. Rydning, “The digitization of the world from edge to core,” IDC White 3
Paper, 2018.
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» Data synthetization with
generative adversarial
network

» Standardized data formats

» Data synthetization with

simulation

Open datasets

data

S. Ali, W. Saad, N. Rajatheva, K. Chang, D. Steinbach, B. Sliwa, C. Wietfeld, K. Mei, H. Shiri, H.-J. Zepernick et al., “6g
white paper on machine learning in wireless communication networks," arXiv preprint arXiv:2004.13875, 2020
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» What is Federated Learning?

General workflow

Server (Aggregator)

Client 1 Client 2 Client 3 Client 4




UNIVERSITY of

ML Point of View 'HOUSTON

CULLEN COLLEGE of ENGINEERING

» What is Federated Learning?

e General workflow

Server (Aggregator)

Broadcast initial model

Client 1 Client 2 Client 3 Client 4
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» What is Federated Learning?

e General workflow

Server (Aggregator)

Clients generate local data

Client 1 Client 2 Client 3 Client 4
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» What is Federated Learning?

e General workflow

Server (Aggregator)

Clients train the initial model
based on local dataset

Client 1 Client 2 Client 3 Client 4
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» What is Federated Learning?

e General workflow

Privacy principle Server (Aggregator)

Focused collection
Devices report only what is

needed for this computation
Upload updated model

Client 1 Client 2 Client 3 Client 4
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» What is Federated Learning?

e General workflow

Fan! o
Combine in S or)

Repeat these pr
convergence

Client 1 Client 2 Client 3 Client 4

10
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* Federated Averaging (FedAvg)

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E is the number

Overall procedures:
of local epochs, and 7 is the learning rate.

Server executes: 1. At fil'St, a model is randomly
initialize wy initialized on the central server.
foreachroundt:’l,‘z....do 3 Foreach round i

m < max(C - K, 1)
S; + (random set of m clients) i. Arandom set of clients are
for each client k£ € S; in parallel do chosen;

wy, , + ClientUpdate(k, w;)

.- ii. Each client performs local
w L YT

gradient descent steps;

ClientUpdate(k, w): // Run on client k iii. The server aggregates
B + (split P;. into batches of size B) model parameters
for each local epoch i from 1 to F do submitted by the clients.

for batch b € B do

w+—w—nVel(w:b
b o How to handle our research group
return w to server

11
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1. Generally, the data generated by different users are non-i.i.d. data

due to the various behavior characteristics. However, the task aims
at obtaining a model that is suitable for each individual user. FL has
been proved to be an effective way to tackle with non-i.i.d. data [1],
which is perfectly suitable for multi-user scenario.

. Communication cost can be easily relieved by FL because what are

transmitted between edge devices and datacenter are the machine
learning model or the model parameters, whose data size is greatly
smaller than the original dataset [2].

In addition, because the original data will not be uploaded, FL is an
effective way to reduce the probabilities of eavesdropping, which
means the user's privacy can be ensured [3].

[1]. Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federatedlearning with non-iid data,”arXiv preprint arXiv:1806.00582, 2018.

[2]. ). Kone“cn'y, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, andD. Bacon, “Federated learning: Strategies for improving communicationefficiency,”arXiv preprint
arXiv:1610.05492, 2016.

[3]. R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federatedlearning: A client level perspective,” inthe 31st Conference on Neurallnformation Processing
Systems, Long Beach, CA, December 2017. 12
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Challenges of FL over Wireless Networks '

Statistical heterogeneity I System-level heterogeneity l Communication bottlenecks l

e | hdblt """""" +  limited wireless resources
iy arawarcicaasilge * intermittent connectivity

.+ unbalanced dataset | T 20 * __dynamic channel conditions
i« personalized data «  storage/memory R BR B B e

\ 4

» exposed local parameters

Algorithmic design ' *  adversary nodes i
. »___compromised aggregator __ .

*  convergence time A\ 4

*  model size

*  network topology

*  aggregation methods

e computation-
communication methods

____________________________

»  stragglers
»  free-riding problem !
«  adversary nodes

__________________________

13
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 Federated Learning for Wireless Networks
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— Matching Theory Based Low-Latency Scheme for Multi-Task
Federated Learning in MEC Networks

* From Federated Learning to Federated Analysis

— Federated Skewness Analytics in Heterogeneous Decentralized
Data Environments

— Federated Anomaly Analytics for Local Model Poisoning Attack

 Open Problems and Conclusions
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» What AR does is to implant 3-D virtual objects in a real-world context.

» Challenges:
v’ Latency: Real-time interaction; Dizziness
v’ Accuracy: Object recognition and matching
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Example 2: s

N\C(TChing Motivation EHIEC T

* Challenges:
— Once the end devices are invited,
they will unconditionally take T
part in the federated learning

tasks which ignores their i ((K)) <(A)> ...... ((A»

willingness.
. i Task 1 Task 2
* Computation cost, remained energy... '---------- - Q- g —

— There are many available edge Two-Sided] Matching

nodes in a MEC network, how to  |End Devices '

parallelly perform multiple | S\

federated learning tasks needs to . D ------

. : -
be considered. ‘

— Information exchanging cannot |

be d one enti rely in | 3 rg es Cal e Fig. 2. The multi-task federated learning framework in MEC scenario.

. Dawei Chen, Choong Seon Hong, Li Wang, Yiyong Zha, Yunfei Zhang,
IOTS scenarios. Xin Liu and Zhu Han, ““Matching Theory Based Low-Latency Scheme

. M atCh | ng Ga me Fra mework W|th for Multi-Task Federated Learning in MEC Networks," IEEE

Transactions on Mobile Computing, 2021. 17
incomplete preference list
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Stable Marriage Matching

* Basic elements (Stable Marriage):
— Agents: A set of men, and a set of women;

— Preference list: A sorted list of men/women based on
her/his preferences;

— Blocking pair (BP) (m,w):
* 1). mis unassigned or prefers w to his current partner;
* 2). wis unassigned or prefers m to her current partner;

— Stable matching: A matching admit no BPs.
— Gale-Shapley Algorithm: find a stable matching in SM.

18
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Challenge: What if
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Impact of user numbers and edge node numbers
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Fig. 4. Network latency with different number of users. Fig. 5. Network latency with different number of edge nodes.

Evidently, the network latency is positively related to the number of participants
while is negatively correlated with the number of edge nodes.

Our proposed matching with incomplete preference list method is close to the
performance of complete preference list (CPL) case. 20
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Beyond Federated Learning: L

Federated Analytics m

| ~Global
aggregation

Lnr:a] results Global Result

®

Global Model

Distribution l result reporting

HLucaI analytics

®Lucal ; ;T: - ‘I(_;cl:rczl rl'esulé |
- . -Global mode
analytics t t | Data
- -

 Google proposed Federated Analytics in May 2020
— Also for the Gboard application
— Federated learning for model training
— Federated analytics for model testing

 Google’s definition on federated analytics:

— Collaborative data science without data collection
— https://ai.googleblog.com/2020/05/federated-analytics-collaborative-data.html

e My two examples of federated analytics
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What is Federated o

Analytics: Taxonomy CUEN CoLscs o WoNGERNG

* Federated: how nodes collaborate
* Analytics: what the computing task is

$ Billion
Distributed Computing 70 A

Collaborative Intelligence 60 Market size of collaborative
20

50 data analytics!!l ‘
e Fines vﬁnout FALI
10

40
--" Fines with FA
0 _ > Year

30
Collaboration Model Computing Model 2015 2017 2019 2021 2023 2025 2027 2029 2031

* Data analytics: to draw conclusions from data

* Federated analytics: A collaborative computing paradigm that performs data
analytic computing tasks across multiple decentalized devices where the raw data
should be kept local

* Market: Increasing demands on collaborative data analytics vs. Increasing
concerns on privacy and confidentiality
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* To Federated Learning
| federatedlearning | FederatedAnalytics |

Training ML models Non-traml.ng tasks

(data science)

. Task dependent

Aggregation approach FedAvg )
Tree | Bayesian | MPC | etc.

. _ Task dependent

Local insights Model weights o o
Partial info | Distilled info | etc.

* To Distributed Data Mining

_ Distributed Data Mining Federated Analytics
Raw data transmission Redistribution assumed Stay where it origins

. Untrusted
Clients (nodes) and server Trusted O E v ———

Data & device heterogeneity Little concerned Focused
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* FedACS: a stand-alone federated analysis instance
assisting some other federated tasks

— Goal: measuring data heterogeneity (skewness) and create a
client-pool with low data skewness

Goal: data heterogeneity measurement Goal: client selection
Insight: weight reuse Challenge: non-stationary measurement
Aggregation: Hoeffding inequality based Solution: dueling bandit

AN g

EUBEEDBE

Step 1 Step 2
measure data heterogeneity select high-quality clients

"

“FedACS: Federated Skewness Analytics in Heterogeneous Decentralized Data Environments”, Z. Wang, Y. Zhu, D. Wang, Z. Han, IWQoS 2021
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Overview

Client gradient is the average
of datum gradients

L~

9 Gradient derived by one datum
") Gradient of the client
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Skewness estimate is drifting k

200
during the training procedure >0

2 600 aroup 1

Relative preference holds Fm —— group 2
—— group 3

i i —— group 4

between different client groups | | — oo
group 6

0 250 500 750
# Communication Round

1000

Hoeffding’s inequality

Skewness; = ||Aw; — Aw||,

Step 1
measure data heterogeneity

Dueling bandit

U 0

win = 2,lose =0 win = 1,lose = 1 win = 0, lose = 2
Step 2

select high-quality clients

 When assisting FL, FedACS reduces 65.6% of accuracy loss and speeds up for 2.4x
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FA is vulnerable to attacks

() i 1 Qin
Local model poisoning attack i —
e A single malicious worker can t Global Model Broadcasting
arbitrarily manipulate the uploaded
local models during the process of Modelsigggéaﬁon@
federated learning /"\\
* Harmful effect on the whole FL B % 2 & B
e Broadly slowing down the I |
convergence ratelll - g Step II:
« Significantly degrading the = = =J-ocal Model
4 4 t t 4 Training

prediction accuracy of the learned
global model!2!

Shi, Siping, et al. "Federated anomaly analytics for local model poisoning attack." IEEE Journal on Selected Areas in Communications. 2021.
[1] . Blanchard, et al, “Machine learning with adversaries: Byzantine tolerant gradient descent,” NeurPIS 2017
[2] . Bagdasaryan, et al, “Howto backdoor federated learning,” AISTATS 2020
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Motivation:

f\% Step I:
Step III: @Global Model Broadcasting
Model Aggregation T

S 2
(= N/
: Anomaly - Anomaly Anomaly ! 180!
: Detection Verification Removal :
\ “__________i___L ___________ )

Topera NN SR R T |

Modules: Veificaions B o % % 2

L ) t Step II:

e Anomaly Detection Module — Dat;f ' ‘;’f;lrr‘l’gel

 Anomaly Verification Module

* Anomaly Removal Module

Processing
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 FAA-DL outperforms other defense methods on the accuracy

of the learned global model, with an accuracy improvement

up to 2.03X

 The performance gap of FAA-DL is within 0.92% —2.48% of
the ideal baseline across all tested attacks
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Fig. 4: The accuracy of defense to different attacks with different methods.
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v Resource optimization
v' Optimization algorithms for FL, particularly communication-efficient
algorithms tolerant of non-IID data

v’ Scalability

v" Approaches that scale FL to larger models, including model and gradient
compression techniques

v Convergence improvement
v There is a need to devise approaches that converge fast.

v’ Fairness-enabled FL
v’ Bias and fairness in the FL setting (new possibilities and new challenges)

v" Secure FL

v" Enhancing the security and privacy of FL, including cryptographic
techniques and differential privacy

30
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v’ Application/algorithm level: more applications call for redesign
v’ Federated statistics
v’ Federated visualization (e.g. histogram, heatmap)
v’ Federated global/local model evaluation
v Federated database query

v Federated data sketching

. . Local results Global Result Global
v' Federated data publication €yl aggregation

- B
v and more ... Aggregation, &

®Global Model Local analytics
v SYStem level Distribution | result reporting
v" Communication efficiency g - ¢ © Flocal result
R ! analytics p;n ...... % ...... % 4-Global model
v’ Device heterogeneity ra i | | Data

v and more ...

v' Privacy, incentive algorithm, and more...
31
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* Federated learning will be a major part of learning paradigm
— Mobile massively decentralized, naturally arising (non-1ID) partition

— Availability of distributed clients
— Address communication bottleneck
— Privacy concern

* We explore different aspects and applications to integration

of federated learning and wireless networks
N Formulations Distributed Computing

. Problem Speciﬁc Solution Collaborative Intelligence

— Link machine learning, computation,

communication, networking, and OR

— From federated learning to federate analysis

32
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