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Diverse research topics, including:
Image and 3D data processing,
Computer vision and computer graphics,
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Motivation and Background

Study of evolving spatio-temporal processes with incomplete and
ambiguous measurement data

Wish to infer in the presence of highly non-Gaussian (heavy-tailed)
behaviours.

Use powerful combinations of continuous-time stochastic processes
models with modern Bayesian computational techniques.

In collaboration with (at least!):

Yaman Kindap, Lily Li, Patrick Gan, Marina Riabiz, Ioannis Kontoyiannis,
Marcos Tapia-Costa, Joe Johnston, Pete Bunch, Tohid Ardeshiri, Bashar Ahmad,
Tatjana Lemke ...




Framework: Heavy Tails and Asymmetry
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Modelling with Jumps

Generic linear form is:
dX(t) = AX(t)dt + hdW (t)
Example 1d case: stochastic trend model with jumps:

di(t)

— = = i) + W ()

Now assume that {W (%)} is not Brownian motion, but is made up of random
‘jumps’ at random times and random Gaussian amplitudes:

z(t)

Observe on a discrete time ‘skeleton’:

yr = Hx(tg) + vg, vp ~ N(0,C)

See Christensen, Murphy and Godsill, IEEE J Sel. Top. SP, 2012




Jump times 7

W (t)

Each particular realisation is fully characterised by its jump times {7, }.
The transition density f(x(t)|x(s),{7;}) is conditionally Gaussian.

Hence, under the linear/ Gaussian observation model we can compute
a Gaussian likelihood using the Kalman filter, conditioned on the jump
times:

P(Yk|Y1:k—1,17j }7,<t, ), Computed with KF PED

This makes the process tractable for sequential inference schemes such as
Sequential Monte Carlo (particle filter)




The Particle Filter: first step. Time t: many random
draws from the "path’, Zo:

t-4 t3 t2 t-1




The Particle Filter: Prediction step. Extend
each path randomly to time t+1 using f(x,_

t  t




The Particle Filter: Update step. Compute an
importance weight for each path o Q(yt+1 |33't+1)
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The Particle Filter: Final step. Randomly prune out
low weight paths and boost the number of high
weighted paths.

t+1

):t+1 !y(




VRPF (particle) Example: tracking a manoeuvring
ship through persistent clutter

Ship trajectory
provided by QinetiQ
Winfrith

Single sensor at (0,0)

Mean number of clutter
points A-=100

Mean number of target
points = 3

Persistent clutter "hot-
spot’

Poisson likelihood +
VRPF

: Uses Variable Rate Particle Filter, see Godsill et al. 2006 Proc. IEEE,
400 Particles ]

P. Bunch and S. Godsill (IEEE tr SP 2013a,2013b)




Filtering and smoothing with the

stochastic trend jump model

April08 USD-GBR

Filtering only: Forward filtering/backward sampling:
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[See P. Bunch and S. Godsill (IEEE tr SP 2013a,2013b), Christensen, Murphy, Godsill (IEEE Sel. Ar. SP 2012),
Sarkka, Bunch and Godsill (IFAC 2012), Godsill, Doucet, West (2004)]




The Lévy state space model

Previously modelled jumps as a finite activity process

Perhaps more realistic to model the jumps as an infinite collection of
large/ small/tiny jumps occurring in each finite time interval

It turns out that much more general classes of non-Gaussian processes
can be obtained this way:
a-Stable, Student-t, variance-gamma, generalised hyperbolic, ... see e.g. Cont and
Tankov (2002)
Recent work has shown that these too can be inferred within an
optimal Bayesian framework using powerful representations based on
Poisson processes, see e.g.:

[Gan and Godsill, 2020] R. Gan and S. Godsill (2020) a-Stable Levy State-space Models for Manoeuvring Object Tracking, in Proc. of
the International Conf. on Information Fusion, South Africa.

[Riabiz et al., 2020] M. Riabiz, T. Ardeshiri, |. Kontoyiannis and S. Godsill (2020) Nonasymptotic Gaussian Approximation for Inference
with Stable Noise,. 2018,arXiv 1802.10065. /EEE Trans. on Information Theory, 2020

[Godsill et al., 2019] S . Godsill and M. Riabiz and I. Kontoyiannis (2019), The Lévy State Space Model, Arxiv 1912.12524.




Lévy process models of
non-Gaussianity

Gaussian Non-Gaussian (heavy-tailed)

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000
t: t t;

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000
t; t t;

Wish to model broad classes of heavy-tailed driving noise to suit application

Adopt a generic Lévy process approach in which driving noise is modelled as pure jump processes in continuous time
(and observed at random discrete times).

Elegant and (fairly!) simple alternative to the standard Gaussian (Brownian motion)

Many possible distributions: alpha-stable, Generalised Hyperbolic (inc. Student-t, normal-Gamma and normal-
inverse Gaussian), normal tempered-stable, ... see e.g. Cont and Tankov 2002

These methods are ideal for irregularly sampled heterogeneous data sources as they construct the path of the process
at arbitrary time points — in contrast with other non-Gaussian discrete-time models
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Srownlan vs non-Gaussian

Uy
o '

=

)

&SP

e We will be interested in tracking and other models that can be written in
a state-space form with state evolution in continuous time:

dz(t) = Ax(t)dt + HdW (t)

and we will need to be able to characterise transition PDFs for treatment
of discrete time measurements:

p(x(t)|z(t = A))

If {W(t)} is Gaussian (Brownian) then all calculations are simple (Kalman
filter, standard stuff...)

We are extending to a non-Gaussian W (t) that moves only by small per-
turbations at random times {7;}52, (‘jumps’), using a special conditionally
Gaussian class (‘Mean and Scale mixture of Gaussians’) such that at any
jump time 7;:

dLV(Tﬂ “Jf((xipwv,xiday)

where {z;}22, are the jumps of another ‘subordinator’ process X (t)

Because of the conditionally Gaussian structure we can implement the new
models using banks of standard achitectures (Kalman filters etc.) inside
standard particle filters

And because of the ‘discrete’ structure (jumps) it is even easier to compute
p(z(t)|z(t — A)) than the pure Gaussian case for each Kalman filter
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(a-stable case): dW (7;) ~ N (zippw, 22 0y)

The Lévy State Space Model (1919) Godsill, Riabiz, Kontoyiannis https://arxiv.org/abs/1912.12524




Lévy process models of non-Gausianity

* The Jumps {x; }3°, are characterised by a Poisson process with non-uniform intensity
function Q(x), the "Lévy Density’:

Q(x)

Large number of
smaller jumps Small numbe

- of large jump
-l ﬂ”

Jump size (x)

* This is a Poisson process where the average number of points in interval (z,x + dx)
s Q(x)dx

17




Jumps are then uniformly randomly scattered across the time axis [0,T]:

Q(x)

.t'j
\ / Large number of
o 3
\\ smaller jumps [ Small number




rlow to sample frorn Q(¢)7?

—

e
e In general fooo Q(x)dxr — oo so can’t sample directly (Infinite Activity)

e The classical method (Fergusson and Klaas 1970’s) starts with a uniform
P01sson process {I';}2°, and finds a function h(I;) that converts process |,

Q(x):
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|
e Turns out the optimal function h() is the inverse of [~ Q(z')dx’.

e Can think of this as the direct analogue of sampling random variables
using the inverse CDF method

e Also turns out that A() can’t be calculated for most of the processes we
wish to use (e.g. the Generalised Inverse Gaussian (GIG))

e A lot of the fun then has been in developing effective alternative strategies
for these cases:

Godsill and Kindap (2021) Point process simulation of generalised inverse Gaus-
swan processes and estimation of the Jaeger integral, Stats and Comp.

Path of GIG process

Sample QQ plot Histogram comparison
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Inference Procedures

e Forward simulation of the jump sizes and times allows a random generation
of paths of the continous-time process X (¢) over any chosen time interval

This, coupled with the conditionally Gaussian form of the jumps, means
that the process may be fitted very efficiently using simulation-based in-
ference such as Particle Filtering and Markov chain Monte Carlo

For implementation details see:

The Lévy State Space Model. Simon Godsill, Marina Riabiz, Ioannis
Kontoyiannis (Proc. Asilomar 2019)

Inference for Variance-Gamma Driven Stochastic Systems Johnston, Kin-
dap and Godsill (Fusion 2023 (to appear

e Implementation example for exchange rate data follows...




Application to High Frequency
EuroDollar data (tick Data)

Marginal Monte
Carlo filter.
alpha=1.5, 100
particles

EURUSD exchange rate, 2006, one day, a=1.5, #=-0.05, =10, 100 particles. Marginal SMC sample paths for X, solid

Marginal SMC sample paths for dX /dt




Alpha=0.8, 4000 particles:




Result for perturbed pointing data
from automobile UI systems:
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Gan, R., Ahmad, B. 1., & Godsill, S. J. (2021). Levy State-Space Models for Tracking

and Intent Prediction of Highly Maneuverable Objects. IEEE TRANSACTIONS ON
AEROSPACE AND ELECTRONIC SYSTEMS, 57 (4), 2021-2038.




Example: a-stable Lévy State-Space Model for multiple objects in clutter

.
‘Langevin’ dynamics:

dX (t) = =AX (t)dt + dW (t)
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Black lines are ground truth; crosses are measurements;
colored lines are estimates plus 95% confidence ellipse



Conclusion

A general framework for inference in heavy-tailed non-Gaussian
stochastic processes

Straight forward computations using conditionally Gaussian models and
particle filters

Non-parametric estimation of Q()? — non-parametric Bayes/ ML

Applications in tracking models, multiple objects, vector Levy
processes, bounds on convergence etc.

Some recent results on Arxiv:

Generalised shot noise representations of stochastic systems driven by non-Gaussian Lévy processes Marcos Tapia
Costa, loannis Kontoyiannis, Simon Godsill

Point process simulation of generalised hyperbolic Lévy processes. Yaman Kindap, Simon Godsill

Non-Gaussian Process Regression Yaman Kindap, Simon Godsill




A new idea — the non-
Gaussian Process (NGP) model

Here we apply the same Levy process principles to a Gaussian process
(GP) model.

We take a standard GP {W(t)} with covariance function

cov(W (t), W (t")) = C(t, 1)
We use the same class of " subordinator’ jump process {X(t)} to
modulate locally the covariance function (" time-change’ operation):

cov(W(t), W(t)) = C(X (), X(t))

This allows for non-Gaussian perturbations to the process, but retains
once again the structure of a bank of standard GPs, each with a
differently modulated covariance function. Examples...

Kindap, Godsill (2022), Non-Gaussian Process Regression, arXiv:2209.03117




Preliminary examples

Optimised GP surface (Angle 1) Optimised GP surface (Angle 2)

« observed points

unobserved points.
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Figure 4: Posterior subordinator samples for a TS subordinator.

Spatial Tracking models using the NGP are currently under development






