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The Applications of Semantic-aware 
Channel Capacity

2



The School of Electronic Engineering and Computer Science

Semantic-aware channel capacity

3

 Semantic noise model

model= +x z n

o is the output of one layer
o is the semantic information selected from the latent 

semantic codeword
o is the model noise

1LR ×∈x
1LR ×∈z

( )2
model 0, mN σn 
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 Semantic capacity
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o Employ the sphere packing to compute the 
minimum length of L

o N is the number of semantic codewords
o is the maximum value in the semantic codewordsmaxµ
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 Semantic-aware channel capacity

model channel= + +y z n n
 Transmit over the AWGN channels

o is the channel noise( )2
channel 0, nN σn 

o Enlarge the L to avoid the overlap between semantic codewords

(a) (b) (c) 
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 Semantic-aware channel capacity
2
max

2

2 2
max

2 2

log 1

log 1

m

m n

L L

µ
σ
µ

σ σ

 
+ 

 =
 
+ + 

 Remarks
o Indicate how much semantic information can be transmitted 

reliably
o When channel noise disappears, it has the lower bound, L.
o Affect by several factors, N,        ,     , and     .maxµ 2

mσ
2
nσ
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 The neural network

... ...

Relay Relay Relay ......

View it as 
communication

( ) ( ) ( )
model

l l l= +x z n ( ) ( ) ( )1 1 1
model

l l l+ + += +x z n
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Guide the design of neural network
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 Insights
o Compute the L to decide the width of each layer
o Measure the model noise to decide the depth of neural network

 Target
o Transmit the semantic information over multiple layers

 Difficulty
o How to measure the N,         , and maxµ 2

mσ
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 Target

oThe number of semantic codewords
oThe model noise
oThe channel noise

The different L

 Insights

o Perform the resource allocation based on the semantic-aware 
channel capacity

 Difficulty
o Introduce the new characteristics
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 The pre-trained model
o BERT, GPT-3, Switch-Transformer for text tasks
o MAE, Resnet for image tasks
o The multimodal pre-trained model?
o The communication pre-trained model?

 Communication tasks
o Channel estimation
o Channel feedback
o Symbol detection
o Modulation and demodulation
o Precoding
o …
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 Benefits
o Employ one or more expert networks to perform tasks
o Each expert is independent
o Easy to deploy on the devices



The School of Electronic Engineering and Computer Science

Hybrid Semantic-Conventional Communication

13



The School of Electronic Engineering and Computer Science

System Model
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 Two types of System

o Hybrid semantic-conventional communication

Semantic 
Encoder

Vector
Quantization

Semantic 
Decoder

Channel
Encoder

0110
1010

Channel
Decoder

0110
1010

Vector
Dequantization

Semantic 
Encoder

Semantic 
Decoder

Channel
Encoder

Channel
Decoder

o End-to-end Semantic communication
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 Vector Quantization Design

 Semantic-aware design

o Find the optimal vector quantization to preserve more the 
semantic information 

o Constellation design
o Beamformer design
o Space-time coding for MIMO
o …

To prevent the important 
information from distortion

Semantic 
Encoder

Vector
Quantization

Channel
Encoder

0110
1010

Modulation

Beamformer

Space-time Coding

...
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Thanks!
h.xie@qmul.ac.uk
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MIMO Communication Systems
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Precoding

…

Channel 

estimation
Rx

…

CSI Feedback

𝒙

𝑯

𝒚

𝑯

𝑁𝑡 𝑁𝑟



E2E with Reinforcement learning
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Channel

Transmitter Receiver

𝒔 ො𝒔

EnvironmentAgent

𝒙

Loss

𝒚

• State: 𝑠

• Action: 𝑥

• Reward: loss from 

receiver

• Use Deep Deterministic 

Policy Gradient (DDPG) 

algorithm 



E2E with Reinforcement learning
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DNN
𝑠

𝑄(𝑠, 𝑎1)
𝑄(𝑠, 𝑎2)

𝑄(𝑠, 𝑎𝑛)

…

Traditional deep reinforcement learning

DNN

(Actor)

𝑠 𝑎∗

DNN

(Critic)

(𝑠, 𝑎) Critic value

DDPG

Cannot handle continuous action space



E2E with Reinforcement learning
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Accuracy ≈ 91%
BER ≈ 0.09

𝑁𝑡 = 𝑁𝑟 = 2
SNR = 20 dB



E2E with Reinforcement learning
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Channel

Transmitter Receiver

𝒔 ො𝒔

EnvironmentAgent

𝒙

Loss

𝒚

• State: 𝑠 (random bit 

sequence)

• Action: 𝑥

• Next state: a new random 

bit sequence

Action 𝑥 does not have any 

impact on the next system 

state

Reward



E2E MIMO with Loss Feedback
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Transmitter Receiver

𝒙

Loss

… …

𝑁𝑡 𝑁𝑟

𝑯

ෝ𝒙

• Loss value from DNN of 

receiver is used to update 

DNN of transmitter
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SNR 𝑁𝑡=𝑁𝑟=2

0 0.189136819

2 0.136107842

4 0.096050134

6 0.061630068

8 0.034085964

10 0.019189639

12 0.009617051

14 0.004677095

16 0.002291753

18 0.001358665

20 0.000862222

BER



Plans
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• Further improve the accuracy of E2E with loss feedback.

• Compare proposed solution with baseline approaches 
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Multi-agent resource allocation in multi-cell 
wireless communication systems

Kaidi Xu

Joint pilot power control and precoding design

1



Outline

• Joint pilot power control and precoding in multi-cell TDD MISO systems

• Connection to the Learn-to-communicate MARL

• Next steps

2



Pilot power control (motivation)

• Pilot contamination can cause severe performance degradation

• Suppress the pilot contamination

• A chance for agent to learn the wireless environment

• Perform learn-to-communicate scheme without additional cost

3
V. Saxena, G. Fodor, and E. Karipidis, “Mitigating Pilot Contamination by Pilot Reuse and Power Control Schemes for Massive MIMO 
Systems,” in Proc. IEEE VTC Spring, May 2015.



Multi-cell MISO TDD system
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• Multi-cell multi-user TDD MISO 
system

• Uplink and downlink channel 
reciprocity

• Uplink pilot transmission and 
downlink data transmission

• Orthogonal pilot sequences are 
available within a cell

• Joint pilot power control and 
precoding design 



Signal model

• At the beginning of time slot t, user m in cell j sends the orthogonal 
pilot sequence 𝝓𝝓𝑝𝑝(𝑚𝑚𝑗𝑗)

𝑡𝑡 with pilot transmit power 𝑃𝑃𝑚𝑚𝑗𝑗,𝑝𝑝.

• The received signal at BS k after filtered by 𝝓𝝓𝑝𝑝(𝑚𝑚𝑘𝑘)
𝑡𝑡

• BS k estimates its channel �𝒉𝒉𝑚𝑚𝑘𝑘
𝑡𝑡 to user mk based on 

• BS transmits data with precoding vector 𝒘𝒘𝑚𝑚𝑘𝑘to user mk
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Sum throughput maximization problem

• The accurate CSI is not available

• Pilot power affects the accuracy of 
channel estimation and thus the 
system performance

• Agents need to make decision 
based on the environment 
feedback after pilot transmission
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Connection between learn-to-communicate and pilot power control
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Data transmission Data transmission

Time slot t Time slot t+1

Pilot transmission Pilot transmission
J. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson, “Learning to communicate with deep multi-agent reinforcement learning,” in Proc. 
Neural Information Processing Systems, 2016, pp. 2137–2145.



Pilot power control via learn-to-communicate MARL

• The pilot transmit power is seen as communication message 
between agents, i.e., 𝒎𝒎𝑖𝑖

𝑡𝑡 in the figure.

• The precoding vectors and pilot transmit power are determined by 
the deep Q networks.

• At each time slot t, the agent decides the precoding vectors in the 
current time slot t and the pilot transmit power in the next time slot 
t+1.

8



Next steps

• Constructing the reinforcement learning environment

• Realize some baselines and the learn-to-communicate MARL

• Apply the coach-agent method to this system

9



Thank you!
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