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Semantic-aware channel capacity

® Semantic noise model

X=Z-+1N

model

o xe R" isthe output of one layer

o zeR"™ isthe semantic information selected from the latent
semantic codeword

o m,..~N(0,0,) isthe model noise
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Semantic-aware channel capacity

® Semantic capacity

o Employ the sphere packing to compute the
minimum length of L

2log N

2
Y7,
1+ max
( Gi)

o N is the number of semantic codewords
o Muax is the maximum value in the semantic codewords

I =
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Semantic-aware channel capacity

® Transmit over the AWGN channels

y=z+n__. +n

model channel

O Myl ~N(0,G§) is the channel noise

® Semantic-aware channel capacity

o Enlarge the L to avoid the overlap between semantic codewords

o
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Semantic-aware channel capacity

® Semantic-aware channel capacity

2
log (1 + Il’lm;x j
o

m

2

y7i
log| 1+ 4 max
g( 051+0,f)

L =L

® Remarks

o Indicate how much semantic information can be transmitted
reliably

o When channel noise disappears, it has the lower bound, L.

o Affect by several factors, N, 4w, ©,, and o,.
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Guide the design of neural network

® The neural network

View it as
communication

s
Q) Queen Mary

University of London




| The School of Electronic Engineering and Computer Science

Guide the design of neural network

® Target

o Transmit the semantic information over multiple layers

® Insights

o Compute the L to decide the width of each layer
o Measure the model noise to decide the depth of neural network

® Difficulty

o How to measure the N, 4., and o,
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Resource Allocation

® Target

o Perform the resource allocation based on the semantic-aware
channel capacity

® Insights

oThe number of semantic codewords
oThe model noise
oThe channel noise

} The different L

® Difficulty
o Introduce the new characteristics
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The Basic Model in Communications
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The Basic Model

® The pre-trained model

o BERT, GPT-3, Switch-Transformer for text tasks
o MAE, Resnet for image tasks

o The multimodal pre-trained model?

o The communication pre-trained model?

® Communication tasks
o Channel estimation
o Channel feedback
o Symbol detection
o Modulation and demodulation
o Precoding
O ...
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The Pathways
® Benefits

o Employ one or more expert networks to perform tasks
o Each expert is independent
o Easy to deploy on the devices

B /M_OE layer
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Hybrid Semantic-Conventional Communication

\a_@_s’ Queen Mary

University of London




| The School of Electronic Engineering and Computer Science

System Model
® Two types of System

o End-to-end Semantic communication
Semantic Channel Channel Semantic
[ Encoder Encoder }ﬁ[ Decoder [ Decoder }

o Hybrid semantic-conventional communication

Semantic Vector 0110 Channel
Encoder Quantization 1010 Encoder
Semantic Vector 0110 Channel
Decoder Dequantization 1010 Decoder
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Key Problems in the Hybrid Systems

® Vector Quantization Design

o Find the optimal vector quantization to preserve more the

semantic information

® Semantic-aware design

o Constellation design

o Beamformer design

o Space-time coding for MIMO
O ...
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To prevent the important
information from distortion

Modulation
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Beamformer

Space-time Coding
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Thanks!

h.xie@gmul.ac.uk

\a_@_s’ Queen Mary

University of London




. 5255{531
Imperial College e l| T |:'T LAB
Ao y, Intelligent Transmission
London %

Regular Meeting for Project Native
Intelligent Communication Systems

04 July 2022

Huynh Van Nguyen
ITP Lab, Department of EEE, Imperial College London, United Kingdom




Imperial College
London

'4 ’ Intelligent Transmission
%",@‘, @ff“’ & Processing Laboratory

MIMO Communication Systems

Channel

Precoding estimation
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E2E with Reinforcement learning

Agent Environment

State: s

Action: x

Reward: loss from

receiver

Use Deep Deterministic
Policy Gradient (DDPG)

algorithm
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E2E with Reinforcement learning

Traditional deep reinforcement learning

> Q(Sr al)
S_. DNN — 0(s,ay)

s (s, an)

Cannot handle continuous action space
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DDPG
S DNN a’
(Actor)
(S a DNN Critic value
(Critic)
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E2E with Reinforcement learning
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Accuracy = 91%
BER = 0.09
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E2E with Reinforcement learning

« State: s (random bit !

1
| |
sequence) i i
« Action: x | S ]x i
* Next state: a new random i J i
1
: I I
bit sequence : Reward !
1
" Action x does not have any  ~~""TTTTTTTTTTTCS !

impact on the next system

State 5
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E2E MIMO with Loss Feedback

e Loss value from DNN of Transmitter Receiver
receiver is used to update x Pﬁ g
DNN of transmitter

Loss
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SNR N,=N,=2
0 0.189136819
2 0.136107842
4 0.096050134
6 0.061630068
8 0.034085964
10 0.019189639
12 0.009617051
14 0.004677095
16 0.002291753
18 0.001358665
20 0.000862222
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Plans

« Further improve the accuracy of E2E with loss feedback.

« Compare proposed solution with baseline approaches
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Multi-agent resource allocation in multi-cell
wireless communication systems

Joint pilot power control and precoding design

Kaidi Xu
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Outline
« Joint pilot power control and precoding in multi-cell TDD MISO systems
« Connection to the Learn-to-communicate MARL

* Next steps
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Pilot power control (motivation)

* Pilot contamination can cause severe performance degradation
» Suppress the pilot contamination
« A chance for agent to learn the wireless environment

 Perform learn-to-communicate scheme without additional cost

3

V. Saxena, G. Fodor, and E. Karipidis, “Mitigating Pilot Contamination by Pilot Reuse and Power Control Schemes for Massive MIMO
Systems,” in Proc. IEEE VTC Spring, May 2015.
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Multi-cell MISO TDD system

e  Multi-cell multi-user TDD MISO
system

« Uplink and downlink channel
reciprocity

« Uplink pilot transmission and
downlink data transmission

« Orthogonal pilot sequences are
available within a cell

« Joint pilot power control and .

precoding design
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Signal model

« At the beginning of time slot t, user m in cell j sends the orthogonal
pilot sequence ¢f,(mj)with pilot transmit power Ay, .

* The received signal at BS k after filtered by cI)f,(mk)

Y£¢P(mk) - h:”kak V PmkaP i Z h:";c'ak \/P +Nk p(my)

my #my., p(my )= p(my)

« BS k estimates its channel ﬁﬁnk to user m, based on Y4, ,

 BS transmits data with precoding vector w;, to user m,
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Sum throughput maximization problem

max Zm,k R, , » The accurate CSl is not available

2w, JP<P. vk |
» Pilot power affects the accuracy of
P, <P.Vm'k'

my.p =1 p channel estimation and thus the
system performance

t t t
Rmk SLoE s My (W) « Agents need to make decision

based on the environment

; 5 feedback after pilot transmission
M, )'w, | P
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Connection between learn-to-communicate and pilot power control

Time slot t

Time slot t+1
JI\

1I

v Action Action

S — _ Q-network .

&b selection selection

< -

Olf—l

- Action

g —
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selection

Q-network

Action
selection

Time qlot t+1

Data transmission

e S —
Pilot transmission Pilot transmission

Data transmission

J. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson, “Learning to communicate with deep multi-agent reinforcement learning,” in Proc.
Neural Information Processing Systems, 2016, pp. 2137-2145.
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Pilot power control via learn-to-communicate MARL

* The pilot transmit power is seen as communication message
between agents, i.e., m! in the figure.

« The precoding vectors and pilot transmit power are determined by
the deep Q networks.

« At each time slot t, the agent decides the precoding vectors in the
current time slot t and the pilot transmit power in the next time slot
t+1.
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Next steps

« Constructing the reinforcement learning environment
« Realize some baselines and the learn-to-communicate MARL

* Apply the coach-agent method to this system
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Thank you!
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