Native Intelligent Communication

Huiqiang Xie

2022.07.04

The Applications of Semantic-aware Channel Capacity

Semantic noise model

 $\mathbf{x} = \mathbf{z} + \mathbf{n}_{model}$

- $\mathbf{x} \in R^{L \times 1}$ is the output of one layer
- $z \in R^{L \times 1}$ is the semantic information selected from the latent semantic codeword

$$\circ$$
 n_{model} ~ $N(0, \sigma_m^2)$ is the model noise

Semantic capacity

 Employ the sphere packing to compute the minimum length of L

$$L = \frac{2\log N}{\left(1 + \frac{\mu_{\max}^2}{\sigma_m^2}\right)}$$

 \circ *N* is the number of semantic codewords \circ μ_{max} is the maximum value in the semantic codewords

• Transmit over the AWGN channels

 $\mathbf{y} = \mathbf{z} + \mathbf{n}_{\text{model}} + \mathbf{n}_{\text{channel}}$

 \circ **n**_{channel} ~ $N(0, \sigma_n^2)$ is the channel noise

• Semantic-aware channel capacity

Enlarge the L to avoid the overlap between semantic codewords

Semantic-aware channel capacity

$$L_2 = L \frac{\log\left(1 + \frac{\mu_{\max}^2}{\sigma_m^2}\right)}{\log\left(1 + \frac{\mu_{\max}^2}{\sigma_m^2 + \sigma_n^2}\right)}$$

• Remarks

 Indicate how much semantic information can be transmitted reliably

• When channel noise disappears, it has the lower bound, *L*.

 \odot Affect by several factors, N, μ_{max} , σ_m^2 , and σ_n^2 .

Guide the design of neural network

• The neural network

Guide the design of neural network

• Target

Transmit the semantic information over multiple layers

Insights

• Compute the *L* to decide the width of each layer

 \odot Measure the model noise to decide the depth of neural network

Difficulty

 \odot How to measure the *N*, μ_{\max} , and σ_m^2

Resource Allocation

• Target

 Perform the resource allocation based on the semantic-aware channel capacity

Insights

The number of semantic codewords
The model noise
The channel noise

The different L

• Difficulty

○ Introduce the new characteristics

The Basic Model in Communications

The Basic Model

• The pre-trained model

- BERT, GPT-3, Switch-Transformer for text tasks
- \odot MAE, Resnet for image tasks
- \odot The multimodal pre-trained model?
- \odot The communication pre-trained model?

Communication tasks

- Channel estimation
- \circ Channel feedback
- \circ Symbol detection
- Modulation and demodulation
- \circ Precoding
- 0...

The Pathways

Benefits

- Employ one or more expert networks to perform tasks
- \odot Each expert is independent
- \odot Easy to deploy on the devices

Hybrid Semantic-Conventional Communication

System Model

• Two types of System

 \odot End-to-end Semantic communication

 \odot Hybrid semantic-conventional communication

Key Problems in the Hybrid Systems

• Vector Quantization Design

 Find the optimal vector quantization to preserve more the semantic information

Semantic-aware design

15

Thanks!

h.xie@qmul.ac.uk

Regular Meeting for Project Native Intelligent Communication Systems

04 July 2022

Huynh Van Nguyen ITP Lab, Department of EEE, Imperial College London, United Kingdom

MIMO Communication Systems

CSI Feedback

2

E2E with Reinforcement learning

- State: s
- Action: *x*
- Reward: loss from
 receiver
- Use Deep Deterministic Policy Gradient (DDPG) algorithm

E2E with Reinforcement learning

Traditional deep reinforcement learning

$$\stackrel{s}{\longrightarrow} DNN \stackrel{Q(s, a_1)}{\underset{i}{\overset{Q(s, a_2)}{\overset{Q(s, a_2)}{\overset{Q(s, a_n)}{\overset{Q(s, a_n)}$$

Cannot handle continuous action space

E2E with Reinforcement learning

 $N_t = N_r = 2$ SNR = 20 dB

Accuracy $\approx 91\%$ BER ≈ 0.09

E2E with Reinforcement learning

- **State**: *s* (random bit sequence)
- Action: *x*
- Next state: a new random bit sequence
- Action x does not have any

impact on the next system

state

E2E MIMO with Loss Feedback

 Loss value from DNN of receiver is used to update DNN of transmitter

Results

SNR	$N_t = N_r = 2$	
	0	0.189136819
	2	0.136107842
	4	0.096050134
	6	0.061630068
	8	0.034085964
	10	0.019189639
	12	0.009617051
	14	0.004677095
	16	0.002291753
	18	0.001358665
	20	0.000862222

BER

Plans

- Further improve the accuracy of E2E with loss feedback.
- Compare proposed solution with baseline approaches

Q&A

1

Multi-agent resource allocation in multi-cell wireless communication systems

Joint pilot power control and precoding design

Kaidi Xu

Outline

- Joint pilot power control and precoding in multi-cell TDD MISO systems
- Connection to the Learn-to-communicate MARL
- Next steps

Pilot power control (motivation)

- Pilot contamination can cause severe performance degradation
- Suppress the pilot contamination
- A chance for agent to learn the wireless environment
- Perform learn-to-communicate scheme without additional cost

V. Saxena, G. Fodor, and E. Karipidis, "Mitigating Pilot Contamination by Pilot Reuse and Power Control Schemes for Massive MIMO Systems," in Proc. IEEE VTC Spring, May 2015.

Multi-cell MISO TDD system

- Multi-cell multi-user TDD MISO system
- Uplink and downlink channel reciprocity
- Uplink pilot transmission and downlink data transmission
- Orthogonal pilot sequences are available within a cell

4

 Joint pilot power control and precoding design

Signal model

- At the beginning of time slot t, user m in cell j sends the orthogonal pilot sequence $\phi_{p(m_i)}^t$ with pilot transmit power $P_{m_i,p}$.
- The received signal at BS k after filtered by $\boldsymbol{\phi}_{p(m_k)}^t$

$$\mathbf{Y}_{k}^{t}\boldsymbol{\phi}_{p(m_{k})} = \mathbf{h}_{m_{k},k}^{t}\sqrt{P_{m_{k},p}} + \sum_{m_{k'}\neq m_{k},p(m_{k'}')=p(m_{k})}\mathbf{h}_{m_{k'}',k}^{t}\sqrt{P_{m_{k'}',p}} + \mathbf{N}_{k}\boldsymbol{\phi}_{p(m_{k})}$$

- BS k estimates its channel $\widehat{h}_{m_k}^t$ to user m_k based on $Y_k^t \phi_{p(m_k)}$
- BS transmits data with precoding vector w_{m_k} to user m_k

Sum throughput maximization problem

$$\max \sum_{m,k} R_{m,k}$$

s.t. $\sum_{m'} || \mathbf{w}_{m',k'} ||^2 \le P_{k',t}, \forall k$
 $P_{m'_{k'},p} \le P_p, \forall m',k'$

$$R_{m_k}^t = \log(1 + \gamma_{m_k}^t(\mathbf{W}^t))$$

- The accurate CSI is not available
- Pilot power affects the accuracy of channel estimation and thus the system performance
- Agents need to make decision based on the environment feedback after pilot transmission

$$\gamma_{m_{k}}^{t}(\mathbf{W}^{t}) = \frac{|(\mathbf{h}_{m_{k},k}^{t})^{H}\mathbf{w}_{m_{k}}|^{2}}{\sum_{m'\neq m} |(\mathbf{h}_{m_{k},k}^{t})^{H}\mathbf{w}_{m'_{k}}|^{2} + \sum_{j\neq k,m'\neq m} |(\mathbf{h}_{m_{k},j}^{t})^{H}\mathbf{w}_{m'_{j}}|^{2} + \sigma^{2}}$$

7

Connection between learn-to-communicate and pilot power control

J. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson, "Learning to communicate with deep multi-agent reinforcement learning," in Proc. Neural Information Processing Systems, 2016, pp. 2137–2145.

Pilot power control via learn-to-communicate MARL

- The pilot transmit power is seen as communication message between agents, i.e., m_i^t in the figure.
- The precoding vectors and pilot transmit power are determined by the deep Q networks.
- At each time slot t, the agent decides the precoding vectors in the current time slot t and the pilot transmit power in the next time slot t+1.

Next steps

- Constructing the reinforcement learning environment
- Realize some baselines and the learn-to-communicate MARL
- Apply the coach-agent method to this system

Thank you!